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We model Covid-19 vaccine uptake as a reinforcement learning dynamic between two populations:
the vaccine adopters, and the vaccine hesitant. Using data available from the Center for Disease
Control (CDC), we calculate a payoff matrix governing the dynamic interaction between these two
groups and show they are playing a Hawk-Dove evolutionary game with an internal evolutionarily
stable Nash equilibrium (the asymptotic percentage of vaccinated in the population). We then
ask whether vaccine adoption can be improved by implementing dynamic incentive schedules that
reward/punish the vaccine hesitant, and if so, what schedules are optimal and how effective are
they likely to be? When is the optimal time to start an incentive program, and how large should
the incentives be? By using a tailored replicator dynamic reinforcement learning model together
with optimal control theory, we show that well designed and timed incentive programs can improve
vaccine uptake by shifting the Nash equilibrium upward in large populations, but only so much, and
incentive sizes above a certain threshold show diminishing returns.

I. INTRODUCTION

The voluntary uptake of vaccines for Covid-19 has
proven to be a challenge across the world, but partic-
ularly in the United States where multiple vaccine op-
tions have been available since early in 2021. After an
initial population of early adopters were vaccinated, the
surge began to slow, despite widespread availability, and
has now reached what looks to be a fairly stable resting
point (see figure 1). While 100% voluntary compliance is
rarely if ever achievable, vaccine hesitancy [1] has proven
to be more widespread for Covid-19 than for other vac-
cines, such as seasonal flu vaccines [2], the polio vaccine,
smallpox, HPV and others [3]. With any widespread
nationally coordinated vaccination effort, there will al-
ways be a population of people who we label vaccine
adopters (e.g. elderly, immuno-compromised, healthcare
workers) who get vaccinated as soon as they are eligible,
or shortly thereafter, then others follow. The vaccine
uptake curve for this group in these early stages is lim-
ited mostly by vaccine availability and logistics. There
is also a vaccine hesitant population who will delay their
initial chances to get vaccinated, then as they see oth-
ers getting sick and weigh evidence and public opinion,
some might decide to vaccinate (adopters), while still
others might further delay, or forgo their chance alto-
gether for various reasons (hesitant) [4]. We view the

∗ kstuckey@usc.edu
† newton@usc.edu (Corresponding author)

full population as a collection of two types of players in
a time-evolving game, who interact, learn, and receive
payoffs (reward/punishment) according to the strategy
(adopt/forgo) they choose, where the interactions deter-
mine the fitness of the players using one of two strategies,
and the survival of that strategy is determined by the fit-
ness function. The two competing behaviors ultimately
result in a growth curve describing vaccine uptake, shown
in figure 1, that starts out rapidly (exponential), then
slows down, passing through an inflection point to a fairly
stable resting percentage of vaccinated individuals, which
in the United States seems to have settled at just under
60% of the population (figure 1).

The question we address in this paper is whether or
not a well designed (optimized) punishment/reward sys-
tem can significantly alter this natural dynamic, and if
so, how best to do that? Vaccine incentive programs
have been utilized with varying degrees of success for
other vaccines, but for the Covid-19 vaccine they have
largely been local (county-wide and state-by-state) and
somewhat haphazard, ranging from small cash rewards
handed out at vaccination clinics, medium-sized vacation
add-ons, or larger lottery-style rewards [5, 6]. Punish-
ments for the unvaccinated have also been levied, rang-
ing from the small extra hassle of requiring weekly Covid
testing, more severe restrictions of not being allowed en-
try to restaurants or public events, and larger vaccine
mandates that require vaccines as part of the employ-
ment requirement or school enrollment [7–9]. Table 1
shows a compilation of the mostly ad hoc strategies that
have been implemented in states across the country but
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FIG. 1. Covid-19 vaccine uptake data in the United States (1
dose for Johnson & Johnson or 2 doses for Pfizer/Moderna)
starting in January 2021. Red curve shows a Gompertzian
fit to the data (first derivative curve also in red), blue curve
shows the results of the Hawk-Dove evolutionary game theory
model (first derivative curve also in blue). Error bars show
one standard deviation from the mean using an ensemble of
stochastic realizations from the model. Vertical lines mark the
inflection point (maxima of the first derivative) where vaccine
uptake begins to slow, resulting in an asymptote (Nash equi-
librium) at roughly 58% of the population. Upper left insert
shows the phase-plane diagram for the Hawk-Dove dynami-
cal system with an internal evolutionary stable state (ESS) at
58%. How much can well designed incentive programs push
this percentage up?

larger scale national programs have not been systemati-
cally designed or implemented. Specific questions we ad-
dress in this paper include whether there are inherent lim-
itations to well designed (optimized) punishment/reward
systems, if implemented on a wide-scale basis? Are there
optimal schedules that can be designed that would work
most effectively? What are the optimal starting and
ending times for such dynamic incentive programs? Is
there a point of diminishing returns where larger incen-
tives are no longer as effective? By modeling the vaccine
uptake problem as a reinforcement learning evolutionary
game played between two sub-populations of ”players”
(the vaccine adopters and the vaccine hesitant), we ad-
dress these questions within the context of a mathemat-
ical model calibrated with vaccine uptake data obtained
from the Center for Disease Control both on a nationwide
level, and a state-by-state level. With models tailored to
individual states and for different age groups, we are able
to test various types of incentive schedules to produce
upper and lower bounds (using the Pontryagin maxi-
mum/minimum principle from optimal control theory) on
the inherent limitations of dynamic incentive programs,
and by producing incentive/response curves (analogous
to chemotherapeutic dose/response curves [10]), we are
able to hypothesize likely responses to different types and
sizes of the incentive schedules.

Aspects of vaccine policy and individual decision mak-

ing surrounding these policies has been studied recently
using mathematical models. Korn et al. [11] has studied
vaccine uptake arguing that it can be viewed as a so-
cial contract where individuals reward others who com-
ply and punish those who do not, while Bauch et al. [12]
frame it similarly in terms of the complex trade-offs be-
tween group interests versus self-interest arguing that, in
the case of extreme events (e.g. bio-terrorist attack), it
is unlikely that voluntary vaccination levels alone would
reach the group optimal level necessary for herd immu-
nity. Bauch et al. [13, 14] have used game-theoretical
models to help explain human decision-making surround-
ing vaccine uptake studying how vaccine scares unfold
[15], and in [16], they invoke imitation dynamics mod-
els to understand the complex interplay between vac-
cine coverage, disease prevalence, and individual deci-
sion making. More general modeling frameworks have
used tools borrowed from statistical physics in interest-
ing ways [17] to model vaccine dynamics.

Our approach makes use of the vaccine uptake data
(country-wide data, and four key states) available
at https://covid.cdc.gov/covid-data-tracker/
#datatracker-home to fit the Gompertzian parameters
(a, b, c) and the entries of the 2 × 2 payoff matrix that
describes the evolutionary game played between the
vaccine adopters and the vaccine hesitant populations.
The data shows that the population is effectively
playing a Hawk-Dove game with an evolutionary stable
internal fixed point (ESS) representing the percentage
of vaccine adopters (Hawks) in the population. We then
use optimal control theory to design time-dependent
incentive schedules that alter the baseline payoff matrix
entries (altering the reward/punishment balance) in
order to obtain upper (and lower) bounds on how
different incentive strategies can shift the asymptotic
percentage of vaccine adopters in the population. This
control technique was originally developed for the design
of adaptive/optimal chemotherapy schedules for control-
ling resistance in tumors [18–23]. Here, we exploit the
observation that optimizing vaccine incentive schedules
is analogous to optimizing chemotherapy schedules to
produce dose-response curves [10] for specific goals, such
as, for example, avoiding chemotherapeutic resistance
[18–21]. The adoption of these techniques to vaccine
incentive scheduling presents a different set of questions
and challenges but can be addressed within a similar
modeling framework. Other recent work that makes
use of feedback control ideas to develop COVID-19
policies includes [24]. While the merging of reinforce-
ment learning models with optimal/adaptive control
theory is a new and promising field with many potential
applications, a nice introduction to the field, described
mostly in the robotics framework, can be found in a
recent monograph [25].
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II. THE VACCINE UPTAKE MODEL

Calibrating the Gompertzian curves

The vaccine uptake curve shown in figure 1 is a three
parameter (a, b, c) Gompertzian curve,

f(t) = a exp[− exp(b− ct)] (1)

which has a long history of use in actuarial sciences (laws
of human mortality), economics (growth laws of wealth),
biology (population growth and saturation), cancer (tu-
mor growth) [26, 27]. Key parameters for fitting such a
curve to this data are: (1) T : the location of the inflec-
tion point (shown in figure 1); (2) f ′(T ): the slope of
the tangent line at the inflection point (the growth rate
when the growth curve changes from concave up to con-
cave down); (3) f ′(0): the slope of the tangent line at the
origin (initial growth rate). In eqn (1), a is the asymptote
(limt→∞f(t)) (also known as carrying-capacity in other
contexts [28, 29]), b is the displacement along the t-axis
(time-shift parameter), and c is a time-scaling factor. In
terms of those parameters, the inflection point is located
at T , where:

T = b/c, (2)

is the ratio of time-shift to time scaling parameters, while
the slope of f(t) at the origin and inflection points are
given by:

f ′(0) = ac exp(b− exp(b)), (3)

f ′(T ) = ac/ exp(1). (4)

We fit the three parameters (a, b, c) to the data as shown
in figure 1 (in red) for the US population. For this, the
asymptote is roughly 58% vaccinated, and the uptake in-
flection point is T ≈ 88 days from when vaccines first
became available. Table 2 provides a summary of all
of the model parameters we use for the different sub-
populations. With these parameters, we develop the re-
inforcement learning model.

The reinforcement learning/replicator model

We use the replicator dynamics equations from evolu-
tionary game theory and reinforcement learning to model
vaccine uptake dynamics between the two populations
xA (vaccine adopters) and xH (vaccine hesitant), where
each represents a proportion of the entire population,
x⃗(t) = (x1, x2)

T ≡ (xA, xH)T ; xA + xH = 1. The essen-
tial feature of replicator dynamics is that people (rein-
forcement learners) copy others, and succesful strategies
get replicated more frequently than unsucessful strate-
gies [30]. This makes the model useful not only in con-
texts where Darwinian evolution by natural selection is
prominant [31], as cells and organisms with higher fitness
(measured by their ability to replicate) more often pass
along their genetic characteristics in the population, but

also in any reinforcement learning setting where learners
copy succesful strategies [32] more often than unsucces-
ful ones (success begets success and failure spirals down-
ward), with success determined by fitness level. The at-
tractiveness of this framework in the present context is
that it has been widely documented that vaccine uptake
is more common in a positive uptake environment, and
less common in settings where fewer people choose to
get vaccinated. This dynamic is the hallmark of a rein-
forcement learning process where people interact, learn
strategies from others, receive payoffs (in the form of ad-
vantage or disadvantage) based on strategies they adopt,
the payoffs determine the fitness (ability to survive) of
those strategies in the overall population, the fitness con-
trols the survival probability of the strategy.
To formulate the dynamical system, we use:

ẋA = xA(fA − ⟨f⟩), (5)

ẋH = xH(fH − ⟨f⟩). (6)

Here, fA and fH denote the fitness of the vaccine
adopters and the vaccine hesitant populations, while ⟨f⟩
denotes the average fitness of the entire population under
consideration. The system simply says that the growth
rate of each sub-population (ẋA/xA; ẋH/xH) is governed
by the difference between the fitness of that population
and the overall average fitness of both populations. The
more each sub-population fitness deviates from the av-
erage (either above or below), the larger/smaller the in-
stantaneous growth rate is of that strategy in the popu-
lation. The fitnesses are defined via a 2×2 payoff matrix
A as:

fA = (Ax⃗)1 = a11xA + a12xH , (7)

fH = (Ax⃗)2 = a21xA + a22xH , (8)

⟨f⟩ = x⃗T (Ax⃗) = xAfA + xHfH , (9)

with:

A =

[
a11 a12
a21 a22

]
(10)

which defines the evolutionary game being played as de-
termined by the CDC data. The four entries of this
matrix encode the punishment-reward balance (i.e. pay-
offs) associated with competition between the two groups
and is the heart of the model. As described in [33], the
payoffs are decided by many complex factors, including
each person’s perceived risk of infection (which can vary
in time), the severity of the disease (which can vary in
time), perhaps measured in hospitalization rates, finan-
cial costs of vaccinations, and also the perceived uptake
of vaccinations by others. Increasing/decreasing either
of the entries of the top row of A increases/decreases
the fitness of the vaccine adopter population, whereas
increasing/decreasing either of the entries of the bottom
row of A increases/decreases the fitness of the hesitant
population. Without loss, we can choose a22 = 0, while
the remaining three entries can be obtained as functions
of (a, b, c) which were optimally fit to the data. Thus,
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all of the complexities associated with the many decision
processes which result in the Gompertzian uptake curves
are neatly packaged into three of the four entries of the
payoff matrix determining the evolutionary game which
unfolds between the vaccine adopters and the vaccine hes-
itant. This gives rise to a Hawk-Dove evolutionary game
based on the inequalities: a21 > a11 > a12 > a22 = 0.
A key feature of a Hawk-Dove evolutionary game is the
existence of an internal ∈ (0, 1) ESS (Nash equilibrium),
which we denote by a (the asymptote of f(t)). As shown
in figure 1, for the US population as a whole, a ≈ 0.58.
Figure 2 shows the data, curve fit, and replicator dynamic
model for the two states with the highest vaccine uptake
percentages (Vermont and Connecticut ≈ 69%), and the
two lowest (West Virginia and Idaho ≈ 41%). Figure
2(a) shows the results of the vaccine uptake data along
with both the Gompertzian curve fit and the replicator
dynamics model for the four states, along with the entire
US population. In figure 2(b) we break the US data into
three different age groups (18-39; 40-64; 65+) in a simi-
lar way that the vaccine rollout prioritized these groups.
This is reflected in the leftward shift of the curve corre-
sponding to the older compared to younger groups, with
the oldest population showing the steepest uptake curve
consistent with the notion that this group was among
the most eager to be vaccinated. The inflection point for
the US population as a whole is roughly at T ≈ 88 days
which we take as a benchmark for scaling time when we
implement our control strategy on this group. Similarly,
for all other subgroups, we use the corresponding inflec-
tion point location associated with that subgroup (see
Table 2).

Shifting vaccine uptake curves with time-dependent
payoffs

To implement an optimal vaccine incentive strategy,
we now consider the time-dependent payoff matrix:

A =

[
a11 a12
a21 a22

]
= A0 +A1(t) (11)

=

[
a11 a12
a21 a22

]
+

[
0 u1(t)

u2(t) 0

]
(12)

=

[
a11 a12 + u1(t)

a21 + u2(t) a22

]
, (13)

where A1(t) represents our control with entries in the
off-diagonal terms (without loss of generality), and A0 is
the baseline Hawk-Dove payoff matrix as obtained from
the vaccine uptake data. The time-dependent controllers
u⃗(t) = (u1(t), u2(t)) ∈ R2 are bounded above and below
(based on the incentive size p):

− ap

a12 + a21
≤ u1(t), u2(t) ≤

ap

a12 + a21
(14)

(0 ≤ p ≤ 1) and a global contraint on the incentive sched-

ule, U⃗(t) =
∫ t

0
u⃗(τ)dτ = const. is enforced, all of which

FIG. 2. Vaccine uptake curves (data (dots), Gompertzian fit
(dashed), replicator model (solid)) of different groups within
the United States. Vertical lines mark inflection points at
maximizers of the derivative curves. (a) The two states with
highest vaccination rate, Vermont and Connecticut, versus
two states with lowest vaccination rates, Idaho and West Vir-
ginia; (b) Three different age groups: 18-39, 40-64 and 65+;

play an important role in determining the optimal incen-
tives.

III. RESULTS

State-by-state results

The first question we address using our optimized in-
centive model, is whether it is possible to incentivize
the states with low vaccine uptake curves (West Virginia
and Idaho) to bring them up to the level of states with
high uptake curves (Vermont and Connecticut). Figure
3(a) shows the result of our simulations for West Vir-
ginia. With relatively large incentize sizes roughly be-
tween 15% − 20% (measure normalized by the baseline
value), we show this is possible. But we consider this
range of incentive sizes to be so large that the price of
implementing them might be prohibitive. Figure 3(b)
shows our simulations for Idaho, with the same general
conclusions as West Virginia. Incentive sizes this large
can have a considerable effect, but the price would be
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FIG. 3. Maximizing (blue) and minimizing (red) vaccination
percentages for state with lowest vaccination rates, West Vir-
ginia and Idaho, in comparison with states with the highest
vaccination rates, Vermont (purple) and Connecticut (green).
(a) Solid red curve depicts West Virginia vaccine uptake
curve. Blue dashed curves show West Virginia model with
optimized incentive schedules (upper bound) using 5%, 10%,
15%, 20% incentive sizes (normalized uisng baseline value).
Red dashed curves show West Virginia model with optimized
incentive schedules (lower bound) using 5%, 10%, 15%, 20%
incentive sizes (normalized uisng baseline value);(b) Solid blue
curve depicts Idaho’s vaccine uptake curve. Blue dashed
curves show Idaho model with optimized incentive schedules
(upper bound) using 5%, 10%, 15%, 20% incentive sizes (nor-
malized uisng baseline value). Red dashed curves show Idaho
model with optimized incentive schedules (lower bound) using
5%, 10%, 15%, 20% incentive sizes (normalized using baseline
value).

high to implement them.

Optimal timing

We next address whether or not the initial start-time
of our optimal incentive schedule has much impact on
the end result. The short answer to this is no, it does
not, as shown in the figure 4 panel for the (a) US pop-
ulation, (b) Connecticut population, (c) Idaho popula-
tion, and (d) West Virginia population. In all cases, the

incentivized curves (dashed) asymptote to the absolute
max/min curves no matter when the schedules begin.
This indicates that we could begin the schedules at the
inflection point of the uptake curves, allowing us to col-
lect and develop the model in real time as the uptake dy-
namics unfolds, designing the optimal incentive schedules
to use going forward. The one caveat with this approach
is that although the curves all reach the same asymptote,
if time is of the essence (say because of high death rates
in the unvaccinated population), there could well be ad-
vantages to starting the incentive schedules as early as
possible. To design optimal schedules in real time before
reaching the inflection point of the uptake curve would
require a seperate careful forecasting model based only
on earlier data.

Incentive-response curves

We now address the question of what incentive size
leads to the best response? Figure 5 shows the percent
shift in the asymptote (US population) for different size
incentives, both upper (blue) and lower (red) bounds.
With no incentive (0%), the asymptote remains at 58%
of the population, as expected. In general, the larger the
incentive, the larger the response, but two features stand
out from these curves. First, low percentage incentives,
generally, are more efficient than higher percentage incen-
tives, whose curves all bunch together near an asymptote
that even the lower percent incentives generally eventu-
ally will reach. The high percentage incentives do have
much faster initial rise, so as stated earlier (for different
reasons), if time to maximum effect is of the essence, then
higher percentage incentives will be superior.

Diminishing returns

Is there a point of diminishing returns on implementing
larger incentives, after which the response diminishes?
Figure 6 shows an incentive-response curve for the US
population. Our model produces a curve (data points
fit to three-parameter Gompertzian curve) depicting the
incentive strength (abscissa) versus the change in asymp-
tote (ordinate). For incentive strengths below 11%, the
curve is concave up, indicating a better response with
higher incentives. Above 11%, however, the curve is con-
cave down, indicating a weaker response to higher incen-
tives. We can think of this threshold value (∼ 11%) as a
point of diminishing returns. This is in many ways anal-
ogous to dose-response curves in chemotherapy settings
[10] where at low values, higher doses produce better re-
sults, but past a threshold (typically called maximum
tolerated dose, determined via clinical trials) increasing
the dose further shows a diminished response. This leads
to a theshold value of optimal incentive size, which our
model predicts is roughly 11%. We place more value in
showing that such a threshold exists in our model, than
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FIG. 4. Maximizing and minimizing vaccination uptake with controllers turning on at different times. All plots show incentive
shedules beginning at t0 = T

4
n for increasing n. In all cases, the incentivized schedules reach upper and lower asymptotes,

indicating relative insensitivity of the optimal outcome to start times. (a) United States un-incentivized uptake curve (black),
T = 88 days. Blue shows optimized upper bounds using incentive schedules, red shows lower bounds using incentive schedules;
(b) Connecticut un-incentivized uptake curve (green), T = 86 days. Blue shows optimized upper bounds using incentive
schedules, red shows lower bounds using incentive schedules; (c) Idaho un-incentivized uptake curve (blue), T = 77 days. Blue
shows optimized upper bounds using incentive schedules, red shows lower bounds using incentive schedules; (d) West Virginia
un-incentivized uptake curve (red), T = 63 days. Blue shows optimized upper bounds using incentive schedules, red shows
lower bounds using incentive schedules.

the actual threshold value, which can be tricky to pin
down accurately and actually implement.

IV. DISCUSSION

Although it is presumably unrealistic to assume that
optimality will actually be achievable in practice, optimal
control nonetheless gives clear upper and lower bounds on
what is theoretically attainable in an ideal setting. But
there are several tangible ways the model could be im-
proved. First, we make the simplifying assumption that
response times to incentives are instantaneous. Building
in finite-time responses (i.e. time delays) would make the
model more realistic. Second, the hesitant population
could be further sub-divided into groups, such as hesi-
tant but willing, hesitant and unwilling, with incentives
influencing each of those groups differently. This would
lead to a higher dimensional model with more complexity

but perhaps higher fidelity. Third, the model assumes
what is called a well-mixed population (i.e. no spatial
structure). A spatially dependent model would be signif-
icantly more complex but has the potential to be more
targeted geographically. Finally, the psychological as-
pects of how people, states, groups, respond to different
incentives is not considered in our model. Matching the
size of our controllers with actual incentives/punishments
would best be handled by experts in human psychology
and is not addressed in our approach.

Two strengths of our model we would like to empha-
size are that only data up until the inflection point needs
to be used, and starting the incentives after that point
will ultimately lead to the same shift in the asymptotic
percentage of vaccinated people as would have happened
if the incentives started earlier. It is not a priori clear
whether or not nationwide, state-wide, or even more lo-
calized data is most useful, but models that use more
localized information (at least state-wide) would prob-
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FIG. 5. Absolute maximizers (blue) and minimizers (red) for
a range of incentive intensities using US population model.
Cycle times 44 days ≤ T ≤ 352 days.

FIG. 6. Incentive-response curve fit to data. Abscissa indi-
cates the incentive size (measured as % of baseline). Ordinate
shows the shift in the asymptote (measured as % of baseline).
Also shown is the first derivative of the response curve. Re-
sponse curve is concave up for incentive strengths below 11%,
and concave down for larger incentives indicating diminishing
returns in terms of response.

ably be more useful as it seems probable that different
regions of the country would respond differently to dif-
ferent kinds of incentives.

V. CONCLUSION

Every vaccine rollout associated with each new epi-
demic will have its own natural uptake curve, depend-
ing esentially on the complex nature of the interactions
between the vaccine adopters and the vaccine hesitant
populations, and also the interactions within each group,
all of which are nicely encoded as elements of the payoff
matrix as determined by the data. But it is not unrea-
sonable to speculate that they should all commonly fol-

low the general form of a three-parameter Gompertzian,
with different parameters in each case, and geographic
location (targeted population), but of the same universal
form. This general form is an outcome of the fact that
there are, generally speaking, early adopters, followed
by a population of players who decide to adopt as time
proceeds, leaving only the most hesitant who remain to-
wards the later stages of a rollout. As a vaccine rollout
unfolds, the key parameters to obtain from the vaccine
uptake curve are: (i) the initial rate of uptake (which we
write as % of the relevant population per day), (ii) the
inflection point location on the uptake curve (i.e. when
uptake begins to slow down), and (iii) the slope of the
tangent line at the inflection point (rate of uptake). As
long as reliable data is available up until the inflection
point, the reinforcement learning model described can
then be developed and calibrated in real-time. When the
uptake rate begins to slow (i.e. at or near the inflection
point), using the controlled replicator dynamical system
model, vaccine incentive schedules can be optimized go-
ing forward and likely responses can be predicted from
the dose-response curves produced by the model. A re-
cent review paper [33] has highlighted the importance
and need for using game theory and mathematical mod-
els in designing vaccine policy, which we enthusiastically
endorse and feel is an under-utilized tool in the arse-
nal of developing science-based decision making during
an infectious outbreak. The framework developed here,
which allows the mathematical models to be tailored to
specific settings, offers the possibility of testing different
strategies in real time for many different scenarios and is
flexible, generalizable, relatively simple, and actionable.

VI. MATERIALS AND METHODS

To implement the Pontryagin maximum (minimum)
principle with boundary value constraints in order to
compute upper (maximum principle) and lower (mini-
mum principle) bounds, we follow [34] and use:

X⃗ = [x⃗(t), U⃗(t)]
T
, X⃗ ∈ R4 (15)

˙⃗
X = F⃗ (X⃗) = [ ˙⃗x,

˙⃗
U(t)]

T

, F⃗ : R4 → R4 (16)

where we would like to minimize or maximize a general
cost function:∫ t

0

L(x⃗(τ), u⃗(τ), τ)dτ + φ(x⃗(τ)). (17)

Since we are optimizing the final value, φ(x⃗(τ)) = x1 =
xA(τ) only (i.e. the asymptotic vaccine acceptance
value), we can take L = 0 (called a Meyer problem [34]
developed in the context of missile guidance problems
where final distance from the target is minimized). We
briefly describe the basic framework and refer readers to
[34] for more details on how to implement the approach.
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In particular, we construct the control theory Hamilto-
nian:

H(x⃗(t), U⃗(t), λ⃗, u⃗(t)) = λ⃗T F⃗ (x⃗) + L(x⃗, u⃗(t), t) (18)

where λ⃗ = [λ1, λ2, µ1, µ2]
T are the co-state functions (i.e.

momenta) associated with x⃗ and U⃗ respectively. Assum-
ing that u⃗∗(t) is the optimal control for this problem,

with corresponding trajectory x⃗∗(t), U⃗∗(t), the canonical
equations satisfy:

ẋi
∗(t) =

∂H

∂λ∗
i

(19)

U̇i
∗
(t) =

∂H

∂µ∗
i

(20)

˙λi
∗(t) = − ∂H

∂x∗
i

(21)

˙µi
∗(t) = − ∂H

∂U∗
i

(22)

where i = (1, 2). The corresponding boundary conditions
are:

x⃗∗(0) = x⃗0 (23)

U⃗∗(0) = 0, U⃗∗(τ) = U⃗∗
τ (24)

λ∗
i (τ) =

∂φ(x⃗(τ))

∂x∗
i (τ)

(25)

Then, at any point in time, the optimal control u⃗∗(t) will
minimize the control theory Hamiltonian:

u⃗∗(t) = argmin
u⃗(t)

H(x⃗∗(t), U⃗∗(t), λ⃗∗(t), u⃗(t)) (26)

The optimization problem becomes a two-point bound-
ary value problem (using (23)-(25)) with unknowns
(λ∗

2(0), x
∗
2(τ)) whose solution gives rise to the optimal

trajectory x⃗∗(t) (from (19)) and the corresponding con-
trol u⃗∗(t) that produces it.
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Rank % Vaccinated State One Dose Fully Vaccinated
2 70.68 Connecticut Free event admission Free drinks

Concert tickets
Free food

4 70.56 Maine License or event pass $1 per person vaccinated
5 69.69 Massachusetts 5 $1 million prize

5 $300,000 scholarship
6 66.72 New York Baseball tickets State Park pass
7 66.4 New Jersey Free Beer State Park Vax Pass

Dinner with governor
8 66.18 Maryland $100 for state employees $2 million lottery
9 63.48 Washington Lottery tickets
11 62.88 Oregon $1 million prize

36 $10,000 prizes
5 $100,000 scholarships

14 62.14 New Mexico 5 wkly $250,000 prize
$5 million prize

$100
10 prize wheels
Travel prize

15 61.64 Colorado Weekly lottery $500 for CDOC
$50,000 tuition

16 61.31 California 10 $1.5 million prize
30 $50,000 prizes

$50 gift card
6 vacations

18 60.42 Illinois 50,000 six flags tickets
3 $1 million prizes
40 $100,000 prizes

19 59.9 Minnesota Free/discounted drinks
20 59.81 Hawaii Travel perks
22 59.73 Delaware Inmate incentives $302,000 prize

Scholarship raffle Free drinks
Vacation passes

27 53.54 Michigan $5 million in cash prizes
31 52.98 Nevada “Vax Nevada Days”
32 52.67 North Carolina 4 $1 million prizes

$25 cash cards
35 51.88 Ohio $1 million drawings
36 50.72 Kentucky Lottery Tickets

3 $1 million prizes
15 scholarships

40 49.87 Indiana Girl scout cookies
43 48.04 Arkansas $20 lottery tickets $100 for state employees
44 47.71 Louisiana State park access Free drinks

$100,000 prizes
45 47.66 Tennessee Car sweepstakes
47 44.78 Alabama Talladega Sweepstakes

$250 gift cards
48 43.89 Wyoming “Shots for swag”
49 43.92 Idaho 4 hr paid leave
50 41.04 West Virginia $100 gift cards

$1.58 million prize

TABLE I. Compiled information on different forms of vaccine incentives states have used. States are ranked in order of highest
adoption percentage to lowest. Not listed are states where we were not able to obtain information on any incentive programs.
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Population T (days) f ′(0) f ′(T )
US population 88 0.028256504 0.405499161

18− 39 year olds 106 0.008343649 0.382741771
40− 64 year olds 90 0.004432806 0.597362637
65+ year olds 58 0.015256548 1.024397092
Connecticut 86 0.012707894 0.563297
Vermont 89 0.002882054 0.612739997
Idaho 77 0.030170215 0.327559854

West Virginia 63 0.065387774 0.331017921

TABLE II. Model parameters for different population groups.
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