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Abstract 10 

Cytokine storm is a life-threatening inflammatory response that is characterized by 11 

hyperactivation of the immune system, and which can be caused by various therapies, auto-12 

immune conditions, or pathogens, such as respiratory syndrome coronavirus 2 (SARS-CoV-2), 13 

which causes coronavirus disease COVID-19. While initial causes of cytokine storms can vary, 14 

late-stage clinical manifestations of cytokine storm converge and often overlap, and therefore a 15 

better understanding of how normal immune response turns pathological is warranted. Here we 16 

propose a theoretical framework, where cytokine storm phenomenology is captured using a 17 

conceptual mathematical model, where cytokines can both activate and regulate the immune 18 

system. We simulate normal immune response to infection, and through variation of system 19 

parameters identify conditions where, within the frameworks of this model, cytokine storm can 20 

arise. We demonstrate that cytokine storm is a transitional regime, and identify three main 21 

factors that must converge to result in storm-like dynamics, two of which represent individual-22 

specific characteristics, thereby providing a possible explanation for why some people develop 23 

CRS, while others may not. We also discuss possible ecological insights into cytokine-immune 24 

interactions and provide mathematical analysis for the underlying regimes. We conclude with a 25 

discussion of how results of this analysis can be used in future research. 26 

 27 

Keywords: cytokine release syndrome; CRS, cytokine storm, mathematical model, IFN-gamma; 28 

IL-6; second touch hypotheses 29 

 30 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.15.480585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480585
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

 

31 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.15.480585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480585
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

 

Introduction 32 

Cytokine storm, a life-threatening inflammatory response involving elevated levels of cytokines 33 

and hyper activation of the immune system, has recently gained particular note as one of the 34 

causes of morbidity and mortality from coronavirus disease COVID-19 (1). It has previously 35 

been observed in a variety of other circumstances, including graft vs host disease (2) and other 36 

viral infections, such as SARS (3); cytokine storms have also been implicated as one of the key 37 

culprits in the severity of the 1918 Spanish flu pandemic (4). Additionally, cytokine storms have 38 

been observed as a side effect of certain anti-cancer therapeutic interventions, such as chimeric 39 

antigen receptor, of CAR-T cell therapy (5) and bispecific T cell engagers, also known as BiTEs 40 

(6). One of the most notable therapy-induced instances of cytokine storm was the case of a 41 

Phase I clinical trial of monoclonal antibody TGN1412, which resulted in severe damage to the 42 

health of six volunteers that participated in the trial despite very accurately chosen initial doses 43 

that were administered to them (7); numerous additional reports of the details of the case can 44 

be found in the literature.  45 

Cytokine storms are most often characterized by severe lung infections, which can lead 46 

to respiratory distress, multi-organ failure, sepsis and in some cases, death (5,8,9). 47 

Mechanistically, cytokine storms are mitigated by cytokines, which are molecules involved in 48 

supporting and regulating the immune response. Cytokine interactions form complex networks, 49 

geared towards mounting fast and efficient immune response against pathogens while also 50 

preventing excessive damage to normal tissues. If these interactions become destabilized, 51 

cytokine storms, or hypercytokinemia, may occur, where immune response causes greater 52 

collateral harm than benefit. Some prominent cytokines that are elevated during cytokine storms 53 

include interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, as well as interleukins (IL)-54 

6,8 and 10 (1,3,5,8,9). More generally, cytokine storms appear to reflect a scenario when the 55 

response to a pathogen, or an immune stimulatory agent, rather than a pathogen itself, results 56 

in pathology, and this is the mechanism that we wish to explore in greater detail.  57 

Notably, while they are often used interchangeably, there exists a distinction between 58 

the terms “cytokine storm” and “cytokine release syndrome” (CRS). Cytokine storm typically 59 

refers to an acute reaction, while CRS typically refers to a more delayed response. There exists 60 

a discussion about qualitative differences between the two responses, how they are triggered 61 

and how they proceed (5), although it appears that the final qualitative dynamics are very similar 62 

between the two. Henceforth we will be using the term cytokine storm; however, we believe that 63 

the proposed model can be used for better understanding of CRS as well. 64 
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Several mathematical models have been developed to try to create and formalize a 65 

framework for better mechanistic understanding of cytokine storm dynamics.  Waito et al. (10) 66 

proposed a mathematical model of cytokine storm, where they grouped cytokines into 7 67 

categories based on their pro- and anti-inflammatory properties. They use the model, 68 

parameterized with mouse data, to describe the mutual influence of cytokine groups on each 69 

other during a cytokine storm. Yiu et al. (11) developed a large scale eighteen-order 70 

mathematical model to analyze the data from the TGN1412 clinical trial, using principal 71 

component analysis to reveal functional cytokine clusters that were specific to this case. 72 

Hopkins et al. (12) created a model of 9 major cytokines affecting the outcome of CAR-T cell 73 

based therapy. A smaller more conceptual model was proposed by Baker et al. (13), where a 74 

two-dimensional system of equations captured interactions between pro- and anti-inflammatory 75 

cytokines, displaying large regions of bi-stability and oscillations reminiscent of immune 76 

behavior in rheumatoid arthritics; the model was later extended by other authors, such as by 77 

Zhang et al. (14).  78 

Here we propose a conceptual mathematical model that is aimed to capture general 79 

phenomenology of transition from norm to storm rather than the intricate details of cytokine 80 

biology and interactions. We use the model to identify within a theoretical framework what 81 

factors may be critical to result in this transition. The model is coupled with a model of viral 82 

infection to initiate the immune-cytokine dynamics, which can be substituted with a different sub-83 

model depending on the question, since, according to (8), although the initial drivers leading to 84 

cytokine storm dynamics may differ, late-stage clinical manifestations of cytokine storm 85 

converge and often overlap, and therefore we expect the proposed modeling framework to be 86 

translatable for different causes.  87 

Through our analysis, we identify key processes that within this framework can result in 88 

storm-like behavior. We demonstrate existence of a sequence of regimes as one transitions 89 

from normal to storm-like behavior, that is parameter dependent. We show the impact of both 90 

intrinsic individual-specific characteristics and infection-specific characteristics that need to 91 

converge in order to result in a cytokine storm. We analyze the immune-cytokine dynamics from 92 

an ecological point of view, showing that their interactions can shift from stabilizing predator-93 

prey like dynamics to mutually augmenting mutualistic relationship, and show how these shifts 94 

are reflected in normal vs pathological dynamical behaviors. Finally, we show that the proposed 95 

model predicts existence of “long-haulers”, patients with chronic persistent infections, which 96 

have been observed in COVID-19, and that it predicts infection-induced autoimmunity. We 97 
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conclude with a discussion of next steps and potential experiments to be designed to test 98 

predictions generated by this model to potentially identify patients that may be at a higher risk of 99 

developing a cytokine storm. 100 

 101 

Model Description 102 

The proposed model consists of two subsystems: immune-cytokine subsystem (primary), and 103 

an SIV (susceptible-infected-virus) sub-system (secondary) that serves to provide sufficient 104 

perturbation to the immune-cytokine system to initiate an immune response.  105 

Even before running simulations, we would expect to see the following types of responses: 106 

1) Normal response: after external perturbation to the immune system subsides (infection is 107 

cleared), immune-cytokine populations return to pre-infection equilibrium. 108 

2) CRS: even though external perturbation to the immune system has subsided (infection 109 

has been cleared), immune cells and cytokines continue affecting each other even in the 110 

absence of external stimulus. 111 

Notably, the goal of this work is to describe a mathematical model that can capture and 112 

reproduce these behaviors, and to analyze conditions for when one or the other type of behavior 113 

will occur. 114 

Viral subsystem 115 

In order to describe the impact of a viral infection on the immune system, we adapt an SIV 116 

model described in (15). We consider the dynamics of the following 3 variables: susceptible 117 

cells S(t), infected cells I(t) and viral particles V(t). We assume that the population of susceptible 118 

cells S(t) undergoes normal turnover described by ( )in SS k S t− , and can be infected by the 119 

virus at a rate b, creating infected cells I(t). Infected cells can die at a rate Ik  or can be cleared 120 

by immune cells ( )x t  at a rate γ . Viral particles V(t) are produced by the infected cells I(t) at a 121 

rate inv  and get cleared at a rate vk . These mechanisms are described by system (1) 122 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

 

in S

I

in V

dS
S k S t V t S t

dt
dI t

V t S t k I t x t I t
dt

dV t
v I t k V t

dt

β

β γ

= − −

= − −

= −

   (1) 123 

This proposed model is of course highly simplified and primarily serves the purpose of 124 

introducing a dynamic perturbation to the immune-cytokine subsystem; as such, it will not be 125 

fully analyzed. It is used here instead of a simple mechanical perturbation to the immune-126 

cytokine subsystem to allow us to describe a variety of situations, such as chronic infection. It 127 

can be modified and adapted to different questions as needed. 128 

 129 

Immune-cytokine subsystem 130 

The following system of equations aims to capture the qualitative aspects of the dynamical 131 

relationship between immune cells x(t), and two types of cytokines y(t) and z(t) that can regulate 132 

immune activity and that appear to act synergistically in hyperactive immune response (16).  133 

First, we describe the dynamics of y(t), which are involved in direct regulation of T cells; 134 

these can be interpreted as TNF-alpha or IFN-gamma. We also describe the dynamics of z(t), 135 

which can stimulate production of y(t) and thus indirectly regulate immune cells x(t); these 136 

species can be interpreted as interleukins, such as IL-6. 137 

We assume that cytokines y(t) have a normal turnover rate and thus maintain an 138 

infection-free baseline level 
2

* iny
y

k
= . We assume that interleukins z(t) are produced in 139 

response to interactions between immune cells x(t) and cytokines y(t), and are cleared at a 140 

natural rate 2a . Finally, the dynamics of immune cells x(t) is described as follows: we assume 141 

that immune cells have a normal turnover rate to maintain a normal infection-free level *x . 142 

Immune cell population can additionally increase in response to infection, as captured by the 143 

term ( ) ( )x t I tγ . Finally, we assume that there exists a threshold m , beyond which immune cells 144 

receive an additional growth boost; we interpret the existence of threshold m to be with in 145 

accordance with the second touch hypothesis (17), where antigen-experienced T cells require a 146 

“second touch” by the necessary antigen to achieve full immune activation, resulting in part in a 147 
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delay between antigen encounter and immune cell expansion. The duration of additional 148 

immune cell expansion is regulated by cytokines y(t) as follows: we assume that there exists a 149 

range of concentrations of y(t) that acts as immune stimulatory, and a concentration that can 150 

become immune inhibitory. We assume that the immune cells have an additional positive 151 

growth term when concentration of cytokines is between y1<y(t)<y2, thereby capturing in a 152 

phenomenological way the dual regulatory and inhibitory property of cytokines on the immune 153 

system. 154 

The resulting system then takes the following form: 155 

   

{

( )( )( )
inflow from infectionnormal turnover

immune cells x undergo epxansion when above threshold m; 
upper bound for grow

1 1 1 1 2
1

immune
  cells

( )
( )

(

( )
( ) ( ) ( )

)
( ) ( )in

dx t
x k x t x t I t y

x t
y t

с x
b m x t y y t

dt t
γ= − + + − − −

+1424314243

{

{

{

th is regulated by cytokines

immune cells normal 

2 2

cytokines 
(i.e., IFN-g/
TNF-a)

1

interleukins 
(i.e.,

s

 IL-6,8,1

t
t

0)

urnover
stimula e cytokine

( )
( )

(

( )

(
)

) (

in

t

dy t
y k y t b

dt

a y t

z t

dz t x

dt

= − +

=

1444444442444444443

14243

2
2

)
)

( )
(a t

с x
z

t
−

+

(2) 156 

Schematic representation of this model structure is given in Figure 1A. Notably, disease-free 157 

equilibrium has to satisfy *x m<  , which is necessary to capture antigen-induced immune cell 158 

expansion. 159 

 160 

Next, we assume that compared to the dynamics of the immune cells x(t), the y-z 161 

subsystem reaches a quasi-steady state before it can affect immune cells x(t).  162 

Therefore, taking 0
( )dz t

dt
=  leads to interleukins z(t) reaching a quasi-steady state 163 

1

22 )

( )
z

)

(
*

(
=

xy t

с

a t

a x t+
. Substituting this expression into System (2), we get the following 2-164 

dimensional system of equations, describing interactions between immune cells and cytokines: 165 
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( )
{

( ) ( ) ( ) ( )( ) ( )( ) ( )( )
normal turnover inflow from infection

immune cells x grow additionally when above threshold m; 
upper bound is regulated b

2

y cytok

1 1 1 1
1

immun

in

e

es

( )

( )
 in

dx t
x k x t x t I t b x t m y y t y t y

сd

x

x tt

tγ= − + + − −−
+14243 14243

144 2

( )
{

( ) ( )
2immune cells normal turnover normal turnover

stimulate cytokine m

1
2 2 2

i

2

s im une cells 
stimulate cy

2
cytokines

tok nes

( )
*

)

(
(

)
)

(in in

dy
z

t a y t
t

x
y k y t b y

с

k y b
dt

t
t

a x t
= − + − +=

+

444444 444444443

1424314243 14243

1442443

(3) 166 

Schematic representation of this reduced system is shown in Figure 1B. 167 

Final system of equations becomes 168 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( )

2

1 1 1 1 2
1

1
2 2

2

( )

( )

( )

( )

 

( )

in S

I

in V

in

in

dS
S k S t V t S t

dt

dI t
V t S t k I t x t I t

dt
dV t

v I t k V t
dt

dx t
x k x t x t I t b x t m y y t y t y

dt

dy t a

t

x t

с x t

xy t
y k y

t
t

d с x t
b

a

β

β γ

γ −
+

= − −

= − −

= −

= − + + −

+

−

= − +

 (4) 169 

 170 
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 171 

Figure 1. Schematic representation of immune-cytokine interactions subject to perturbation by 172 

infection. (A) Full system as described by Equations (1) and (2). (B) Mechanisms described by 173 

System (4).  174 

 175 

 176 

The final System (4) captures the following set of key mechanisms:  177 

1) Viral subsystem serves to provide a stimulus to the immune system that has the 178 

potential to trigger cytokine storm in the immune-cytokine subsystem x-y. 179 

2) Immune cells x(t) undergo additional expansion only after threshold m is crossed. 180 

3) Once the threshold m is crossed, cytokines regulate the degree of immune cell 181 

expansion as determined by the values of parameters y1 and y2. 182 

 183 

Simulations are conducted as follows. The system is allowed to reach a steady state before 184 

infection is introduced at time t=500 (value chosen arbitrarily to ensure sufficient time for the 185 

model to reach a steady state). After the infection is introduced, we observe the resulting 186 

trajectories of immune cells x(t) and cytokines y(t), as well as the impact of the immune system 187 

on the infection.  188 
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Due to the phenomenological nature of the proposed model, parameter values were chosen 189 

arbitrarily in order to capture qualitatively different behaviors; furthermore, since the model is not 190 

fit to specific data, units are chosen to be generic units of volume and time that can be specified 191 

when necessary for the purposes of a specific data set. A summary of default parameter values 192 

used in the simulations is given in Table 1. 193 

 194 

Table 1. Parameters used in System (4). Parameter values were chosen arbitrarily to allow to 195 

capture qualitatively different behaviors. Parameters a1 and a2 are taken as 1. 196 

Parameter Description Value Units 
S(0) Initial size of population of susceptible cells 1 vol. 
I(0) Initial size of population of infected cells 0 vol. 

V(0) Initial size of population of virus particles 0 vol. 
x(0) Initial size of population of immune cells  0.07 vol. 
y(0) Initial size of population of cytokines 0.18 vol. 

inS   Production rate of susceptible cells, (0) sS k×   0.01 vol./time 

Sk   Normal decay rate of susceptible cells 0.01 1/time 

Ik   Normal decay rate of infected cells 0.01 1/time 
γ   Rate of elimination of infected cells by immune 

cells 
0.5 1/vol/time 

inv   Rate of viral replication in infected cells 0.1 1/time 

Vk   Natural virus decay rate 0.1 1/time 

β   Rate at which virus infects susceptible cells 0.1 1/vol./time 

inx   Normal production of immune cells,  1(0)x k×   7e-4 vol./time 

1k   Normal decay rate of immune cells 0.01 1/time 

1γ   Conversion of immune cell kill of infected cells 
into immune cell proliferation 

0.05 1/vol/time 

m Threshold of activation of additional immune cell 
proliferation (second touch) 

0.1 vol.  

iny   Cytokine production rate, 2(0)y k×   0.018 vol./time 

y1 Cytokine-mediated threshold of immune cell 
expansion 

1 vol.  

y2 Cytokine-mediated threshold of immune cell 
regulation 

3 vol.  

b1 Rate of additional immune cell expansion as 
mitigated by cytokines 

1 1/(time*vol.3) 

b2 Rate of cytokine stimulation by immune cells 1 1/time 
k2 Normal cytokine decay rate 0.1 1/time 
с1 Population size that results in half-maximal 

growth of x(t) in response to cytokine stimulation 
1 vol.  

с2 Population size that results in half-maximal 
increase in production of cytokines in response to 
stimulation by immune cells 

1 vol.  

 197 
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Results 198 

Dynamical regimes 199 

Initial numerical analysis is performed through variation of parameter b2, which represents the 200 

impact of immune cells on cytokine production; all other parameters were fixed at values 201 

defined in Table 1 unless indicated otherwise. 202 

Norm 203 

 204 

Figure 2. Normal immune response to infection. Infection is introduced at time t=500; parameter 205 

b2 is increased from 0.5 to 0.7 to 0.88. All other parameters are held constant at values reported 206 

in Table 1.  (A) Dynamics of immune cells x(t). (B) Dynamics of cytokines y(t). (C) Phase 207 

parameter-portrait of the x-y subsystem. (D) Dynamics of the virus subsystem for b2=0.5; curves 208 

are qualitatively similar for other values of parameter b2. After the infection is introduced, the 209 

number of susceptible cells decreases, and the number of infected cells increases. This results 210 

in increase in immune cells x(t) as population size surpasses threshold m, followed by increase 211 

in cytokines y(t). After the infection is cleared, immune cells and cytokines return to pre-infection 212 

equilibrium. 213 

 214 
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In the first set of simulations we observe expected dynamical behaviors for a normal immune 215 

response. Infection at time t=500 is assumed to be sufficiently immunogenic to cause increase 216 

in the size of the population of immune cells x(t) for them to surpass threshold m, which now 217 

leads to additional immune cell expansion (Figure 2A). As a result, the number of cytokines y(t) 218 

increases as well (Figure 2B). Even through for b2=0.88, the concentration of y(t) surpasses 219 

threshold y1, it is not sufficient to initiate additional immune proliferation, and the system quickly 220 

returns to equilibrium. The phase-parameter portrait of immune-cytokine interactions is shown in 221 

Figure 2C. The immune response is sufficient to clear the infection, as can be seen in Figure 222 

2D.  223 

Notably, there exists an inverse relationship between baseline levels of immune cells x(t) 224 

and cytokines y(t), with lower baseline levels of immune cells corresponding to higher baseline 225 

levels of cytokines. While mathematically, this relationship is clearly affected by changes in 226 

parameter b2, it may also be capturing age-related changes in immune-cytokine balance, with 227 

the number of immune cells declining with age, coupled with increased levels of inflammatory 228 

cytokines (18). This hypothesis is supported by the observation that older people may be more 229 

susceptible to cytokine storms, at least in case of COVID-19 (19). 230 

 231 

Storm 232 

As we increase the value of parameter b2, we observe a qualitative change in system behavior, 233 

where immune cells and cytokines start amplifying each other, as can be seen in Figure 3 234 

(unless indicated otherwise, in all of the cases shown, the immune system is capable of clearing 235 

the virus, and thus the panel with the viral subsystem is not shown). As one can see in Figure 236 

3A, for b2=0.89, infection-induced perturbation to the immune system causes a dramatic spike in 237 

immune cell population size, leading to subsequent spike in the population of cytokines (Figure 238 

3B), behavior which we interpret as cytokine storm. The phase parameter portrait of the x-y 239 

interactions is shown in Figure 3C. While the population eventually returns to equilibrium, it 240 

should be noted that after the spike, the model predicts a dip in immune population size before it 241 

equilibrates; this prediction remains to be confirmed against experimental observations.  242 
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243 

Figure 3. Normal vs storm-like response to infection. As parameter b2 increases from 0.88 to 244 

0.89, qualitative change in behavior is observed, as immune cells x(t) and cytokines y(y) start 245 

augmenting each other’s behavior. Infection is introduced at time t=500; parameter b2 is 246 

increased from 0.88 to 0.89. All other parameters are held constant at values reported in Table 247 

1.  (A) Dynamics of immune cells x(t). (B) Dynamics of cytokines y(t). (C) Phase parameter-248 

portrait of the x-y subsystem. Dynamics of the virus subsystem is not reported as it is 249 

qualitatively similar to one reported in Figure 2D.  250 

 251 

Storms of different magnitude 252 

As we further increase the value of parameter b2, we observe that the magnitude of the 253 

predicted cytokine storm changes, as does its duration (Figure 4). Moreover, increase in the 254 

value of parameter b2, which represents the magnitude of cytokine stimulation by the immune 255 

cells, results in less severe storms, as can be clearly seen through both the maximal size 256 

reached by population of immune cells (Figure 4A), and the size of the characteristic storm-like 257 

loop as seen on the phase parameter portrait in Figure 4C.  258 

 259 

260 
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Figure 4. Storms of varying magnitude. As the value of parameter b2 increases from 0.89 to 261 

1.05, one can observe storm-like behavior, but the magnitude of the predicted storm is different 262 

depending on the value of b2. Infection is introduced at time t=500. All other parameters are held263 

constant at values reported in Table 1.  (A) Dynamics of immune cells x(t). (B) Dynamics of 264 

cytokines y(t). (C) Phase parameter-portrait of the x-y subsystem. Dynamics of the virus 265 

subsystem is not reported as it is qualitatively similar to one reported in Figure 2D. 266 

 267 

 268 

The explanation for this observation lies in timing, and specifically, the amount of time that the 269 

population of cytokines y(t) spends between thresholds y1 and y2 (Figure 5). Larger b2 results in 270 

increased production of cytokines y(t), and so they reach the inhibitory concentration faster than 271 

for smaller values of b2, resulting in a shorter and less severe storm-like behavior. 272 

273 

Figure 5. Timing as the key to variations in storm magnitude. (A) Time between thresholds y1 274 

and y2 for b2=0.89. (B) Time between thresholds y1 and y2 for b2=1.05. Since b2 represents 275 

stimulation of cytokines by the immune cells, larger values of b2 result in faster time between 276 

thresholds y1 and y2, resulting in a storm of a smaller magnitude. 277 

 278 

New norm 279 

Finally, as we further increase the value of parameter b2, we observe the population reaching a 280 

new equilibrium, with population of immune cells x(t) equilibrating at the threshold m, which is 281 

higher than pre-disease baseline; in this case, cytokines equilibrate above threshold y2 (Figure 282 
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6). We propose that this behavior can be interpreted as infection-induced autoimmunity, a 283 

phenomenon that has been previously reported in the literature (20).  284 

285 

Figure 6. New norm. As the value of parameter b2 increases from 1.05 to 1.065, one can 286 

observe shift towards a new equilibrium, where immune cells x(t) equilibrate at threshold m, and 287 

cytokines y(t) equilibrate above threshold y2. Infection is introduced at time t=500. All other 288 

parameters are held constant at values reported in Table 1. (A) Dynamics of immune cells x(t). 289 

(B) Dynamics of cytokines y(t). (C) Phase parameter-portrait of the x-y subsystem. Dynamics of 290 

the virus subsystem is not reported as it is qualitatively similar to one reported in Figure 2D. 291 

 292 

Sequence of dynamical regimes 293 

Next, we wanted to capture the impact on system dynamics of variation of parameter b1, which 294 

represents the rate at which cytokines y(t) stimulate immune system x(t); all other parameters 295 

were held constant at values given in Table 1. The result is shown in Figure 7, which reveals a 296 

sequence of dynamical regimes, where cytokine storm is a transient regime that can become 297 

realized when several conditions are met. Specifically, we have shown that for low b1, the 298 

immune response is insufficient to clear the infection (region 0), regardless of the value of b2. 299 

Once the value of b1 is sufficiently large, we can observe that increasing b2 leads first to normal 300 

response (region 1), after which the immune system quickly returns to pre-disease equilibrium. 301 

As we increase b2, we observe storm-like behavior, with smaller b2 predicting more severe 302 

storms due to longer time spent between thresholds y1 and y2 (region 2). Further increase in b2 303 

leads to less severe storms because of shorter time spent between y1 and y2 (region 3). Finally, 304 

further increase of b2 results in what we term a “new norm”, or infection-induced autoimmunity 305 

(region 4).  306 

5 

 

d 

f 

, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.15.480585doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480585
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16

 

 307 

Figure 7. Sequence of regimes predicted by the model, subject to variation of parameters b1 308 

and b2, where cytokine storm is revealed to be a transient regime. 309 

 310 

Conditions corresponding to storm-like behavior  311 

Additional insights into observed behaviors can be obtained from analysis of isoclines and the 312 

change in their relative positions depending on values of parameters within the relevant 313 

parameter space; parameter values are held at values reported in Table 2 unless indicated 314 

otherwise. Recall that we are only considering the case when stable disease-free equilibrium is 315 

such that x*<m, and additional immune cell expansion only occurs after this threshold is passed 316 

as a result of perturbation, either from infection or any other cause.  317 

Isoclines for System (3) are given by  318 
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     (5)                            319 

Depending on parameter values, isoclines can have between one and three points of 320 

intersection. As one can see in Figure 8, there always exists one stable equilibrium, a nodal 321 

sink, which corresponds to infection-free immune-cytokine balance. Additionally, there can exist 322 

two more equilibrium points, a spiral source and a saddle point, which exist for small values of 323 
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b2 (Figure 8A); as b2 increases, the source and the saddle merge (Figure 8B) and eventually 324 

disappear (Figure 8C), resulting in existence only of the nodal sink.       325 

326 

Figure 8. Isocline analysis of immune-cytokine subsystem (3). (A) For smaller b2, there can 327 

exist 3 equilibrium points, one stable node, one spiral source and a saddle point. (B) As the 328 

value of b2 increases, saddle and source merge into a single point. (C) As b2 increases further, 329 

only one equilibrium point remains. We observe that storm-like dynamics occurs only when 330 

there exists a single equilibrium point. 331 

 332 

In this system, we observed that storm-like dynamics occur only when there exists only one 333 

equilibrium point (Figure 8C).  334 

 335 

Ecological perspective  336 

To further our understanding of this system, we analyze it from the perspective of community 337 

modules, which are frequently used in ecological systems (21). Consider partial derivatives of 338 

immune-cytokine subsystem (3): 339 
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Recall from (21) that if a21 is > 0, depending on the sign of a12, the relationship between the two 341 

variables can be either mutualistic if a21>0, or predator-prey if a12<0. In a mutualistic system, 342 

11

22

a

a

+⎛ ⎞
⎜ ⎟+⎝ ⎠

, populations amplify each other, while in a predator-prey type system, 11

22

a

a

−⎛ ⎞
⎜ ⎟+⎝ ⎠

, 343 

the two interacting populations regulate each other. Within the context of the proposed immune-344 

cytokine System (3), one can classify observed dynamical regimes depending on the sign of a12 345 

as follows.  346 

The two populations are in a mutualistic relationship when 1 2,
2

y y
x m y

+< >  or when 347 

1 2,
2

y y
x m y

+> <  ; in this case, immune cells x(t) and cytokines y(t) amplify each other, which 348 

corresponds to regions of accelerated immune and cytokine population size increase as 349 

observed in Figure 9. The two populations are in a predator-prey type relationship if 350 

1 2,
2

y y
x m y

+< <  or 1 2,
2

y y
x m y

+> > ; in this case cytokines act as regulators and 351 

“dampeners” of immune response. Notably, if a12=0, then the two populations are in a 352 

commensal relationship, where cytokines y(t) benefit from the interactions but cause neither 353 

increase nor decrease to the immune population size. This occurs when 1 2 or 
2

y y
x m y

+= = , a 354 

behavior we observe in the “new norm” region of Figure 7.  355 

These results are summarized in Table 2 and visualized in Figure 9. 356 

 357 

Table 2. Ecological relationships between immune cells x(t) and cytokines y(t). 358 

Relationship Commensalism  Mutualism Predator-prey  

Dynamics cytokines y(t) 
benefit from 
interaction but 
cause neither 
good nor harm 

immune cells x(t) and 
cytokines y(t) amplify each 
other 

Immune cells x(t) and 
cytokines y(t) regulate 
each other 
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s360 

361 

Figure 9. Application of ecological analysis to immune-cytokine trajectories for normal and 362 

storm-like responses. Boundaries for predator-prey vs mutualism interactions are given in Table 363 

2. Top panel: norm, b2=0.8, other parameters reported in Table 1. Dashed lines correspond to 364 

conditions when switch from mutualism to predator-prey like behavior can occur. (A) Immune 365 

cells x(t); (B) cytokines y(t); (C): phase parameter portrait. Normal immune response involves a 366 

single transition from stabilizing predator-prey type interaction to mutually amplifying mutualist 367 

and back to stabilizing predator-prey. Bottom panel: cytokine storm, b2=0.9. (D) immune cells 368 

x(t), (E) cytokines y(t), (F) phase-parameter portrait. In a cytokine storm, there exists an 369 

additional predator-prey to mutualism cycle compared to normal response.  370 

 371 

Notably, this perspective could provide potential additional explanation for why timing matters in 372 

treatment administration: if a cytokine blocker results in reducing cytokine concentration such 373 

that the system moves into, or remains in a mutualistic regime, then it may instead amplify the 374 

severity of immune and cytokine production rather than reduce its impact. 375 

 376 

Impact of parameter γ and the severity of infection 377 

Up to this point, we have identified the impact of the following parameters on occurrence of a 378 

cytokine storm: 1) parameters b1 and b2, which represent the degree to which immune cells and 379 

cytokines stimulate each other’s production, 2) parameter m, which represents a threshold for 380 
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additional immune cell expansion, and 3) parameters  y1 and y2, which determine a region of 381 

cytokine-induced stimulation or inhibition of additional immune cell expansion.  382 

Now we evaluate the impact of responsiveness of immune system to infected cells themselves 383 

as measured through changes in the value of parameter γ . We fix the value of b1 and vary 384 

parameters b2 and γ  to evaluate whether the infection was cleared, and whether the immune-385 

cytokine response is normal or storm-like. As one can see in schematic Figure 10, the model 386 

predicts that for large enough values of γ , the infection will be cleared without a cytokine storm; 387 

it also confirms that increase in the value of b2 can lead to storm-like behavior. Notably, the 388 

model also predicts the possibility of a cytokine storm without infection clearance (figure not 389 

shown, parameter values are b2=0.9, γ = 0.1, b1=1; other parameters are as reported in Table 390 

1). In this case, the immune system is not efficient in clearning the infection (small γ ) but the 391 

cytokine-immune dynamics are triggered, resulting storm-like dynamics due to a combination of 392 

individual-specific intrinsic factors summarized above. 393 

 394 

Figure 10. Impact of variation of immungenicity parameter γ on immune response. It is possible 395 

to observe both normal and storm-like reponse, with or without infection elimination. 396 

 397 

Chronic infection and the long-haulers 398 

Long-haulers are a subset of patients who develop chronic coronavirus disease (22–24). Within 399 

the frameworks of the proposed model, this behavior is captured as stable non-trivial equilibrium 400 

between all five variables of System (4), as can be seen in Figure 11. Notably, as predicted by 401 

analysis done in Figure 10, this can occur with or without storm-like dynamics. 402 
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 403 

 404 

Figure 11. Model predicts possibility of chronic infection (long haulers) with and without cytokine 405 

storm. Top panel: normal immune response, γ =0.5, b2=0.8, other parameters reported in Table 406 

1. (A) Immune cells x(t), (B) cytokines y(t), (C) viral subsystem. Infection is eliminated. Middle 407 

panel, normal immune response; γ =0.1, b2=0.8. (D) immune cells x(t), (E) cytokines y(t), (F) 408 

virus subsystem. Even though immune-cytokine dynamics are normal, the efficiency of infection 409 

kill is too low, resulting in persistent infection, which can be interpreted as a “long hauler”. 410 

Bottom panel: b2=0.9, γ =0.1. (G) immune cells x(t), (H) cytokines y(t), (I) viral subsystem. Even 411 

though immune-cytokine dynamics show cytokine storm, the efficiency of infection elimination is 412 

insufficient, suggesting that an individual can go through a cytokine storm and still not clear the 413 

infection. Note: in figures A, D and G, immune system equilibrates below threshold m, returning 414 

to its pre-disease baseline. The y-axis was scaled to enable comparison between the cases. 415 

 416 

Discussion 417 

Here we propose a conceptual mathematical model of immune-cytokine interactions capable of 418 

reproducing the qualitative behaviors that capture transition from normal immune response to a 419 

response that can be interpreted as cytokine storm. The goal of the model was not to describe a 420 
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particular data set or to incorporate great biological detail but to capture qualitative relationships 421 

between the broad classes of immune cells and cytokines that are sufficient to reproduce these 422 

dynamics, as well as to identify key parameters that may suggest whether an individual may be 423 

susceptible to experiencing a cytokine storm. The proposed model was coupled with a SIV 424 

model that describes immune response to a viral infection and which serves to trigger immune-425 

cytokine interactions. The viral subsystem serves as a source of perturbation and is not the 426 

focus of the current discussion; it was chosen nevertheless to enable demonstration of various 427 

dynamical regimes, such as chronic infection, and can be substituted by another model tailored 428 

to the question of interest. 429 

We show that there exists a parameter-dependent sequence of dynamical regimes 430 

(Figure 7) that describe how immune cells and cytokines stimulate each other in response to 431 

infection as the body tries to mount an appropriately strong immune response while also 432 

avoiding excessive activation. Specifically, we show that as the value of parameter b2 (extent of 433 

cytokine stimulation by immune cells) increases, we see a transition from normal response 434 

(Figures 2 and 3) to cytokine storm (Figure 4) to a regime that we interpret as infection-induced 435 

autoimmunity (Figure 6). We also demonstrate that counterintuitively, lower b2 predicts more 436 

severe storm-like behavior due to longer time spent between cytokine-specific thresholds y1 and 437 

y2 (Figure 5). If the framework proposed here is true, then susceptibility to a cytokine storm is 438 

more likely to be an individual-specific characteristic that may or may not become realized 439 

subject to a challenge to the immune system. The model also predicts the existence of so-called 440 

long-haulers, patients harboring a chronic infection that may or may not be accompanied by 441 

storm-like immune-cytokine dynamics (Figure 11). 442 

The proposed immune-cytokine model is reduced to two equations, which allows for 443 

additional analysis. Specifically, a 2-dimensional system was analyzed from the point of view of 444 

ecological community modules, revealing conditions under which the immune cells and 445 

cytokines were in a mutually amplifying mutualistic vs more stabilizing predator-prey type 446 

relationship (Table 2). We were able to show the difference between normal and storm-like 447 

behavior from the point of view of switching between the two types of ecological relationships 448 

(Figure 9), where an additional mutualistic phase amplifies storm-like behavior.  449 

Through our analysis, we demonstrate that within the frameworks of the proposed model, 450 

cytokine storm is a transient regime that can become realized when the following individual and 451 

infection- specific conditions are met:  452 
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1) when baseline level of immune cells is close to activation threshold m, 453 

2) when cytokines spend a lot of time between thresholds y1 and y2, either because the two 454 

thresholds are far apart, or when the value of parameter b2 is small, and  455 

3) when the infection is sufficiently immunogenic. 456 

Even through here the perturbation to immune-cytokine equilibrium was achieved using a 457 

viral subsystem, other model variations can be used in future work, including simulations of 458 

impact of therapeutic agents that are known to have a high likelihood of cytokine storm reaction, 459 

such as bispecific T cell engagers (BiTEs) or CAR-T cell therapies (5,6,25,26). Furthermore, 460 

since two of the three identified factors that can result in a storm-like reaction to an 461 

immunological challenge are individual-specific, it is likely that they can be leveraged during 462 

patient selection process for such therapies if a sufficiently robust approach to estimating these 463 

qualities can be found, such as genetic factors that may serve as predictive biomarkers (27). It 464 

is our hope that the proposed model can help narrow down the list of possible culprits 465 

responsible for cytokine storms and guide additional research into ways that it can be mitigated. 466 

 467 
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