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Abstract

The ongoing global pandemic has sharply increased the amount of data available
to researchers in epidemiology and public health. Unfortunately, few existing analysis
tools are capable of exploiting all of the information contained in a pandemic-scale
data set, resulting in missed opportunities for improved surveillance and contact trac-
ing. In this paper, we develop the variational Bayesian skyline (VBSKY), a method
for fitting Bayesian phylodynamic models to very large pathogen genetic data sets. By
combining recent advances in phylodynamic modeling, scalable Bayesian inference and
differentiable programming, along with a few tailored heuristics, VBSKY is capable
of analyzing thousands of genomes in a few minutes, providing accurate estimates of
epidemiologically relevant quantities such as the effective reproduction number and
overall sampling effort through time. We illustrate the utility of our method by per-
forming a rapid analysis of a large number of SARS-CoV-2 genomes, and demonstrate
that the resulting estimates closely track those derived from alternative sources of
public health data.

1 Introduction
The COVID-19 pandemic has demonstrated an important supporting role for phylogenetics
in epidemiology and public health, while also creating unforeseen technical and methodolog-
ical challenges. As the first global public health event to occur in an era of ubiquitous gene
sequencing technology, the pandemic has resulted in a data explosion of unprecedented pro-
portions. GISAID, a worldwide repository of SARS-CoV-2 genomic data, currently has over
7.5M samples, with contributions from almost every country (Elbe and Buckland-Merrett,
2017; van Dorp et al., 2021). A phylogenetic representation of this database is believed to
be the largest ever constructed (Turakhia et al., 2021a). Existing phylogenetic methods,
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which were developed and tested on datasets orders of magnitude smaller, are inadequate
for pandemic-scale analysis, resulting in missed opportunities to improve our surveillance
and response capabilities (Hodcroft et al., 2021; Ye et al., 2021; Morel et al., 2021).

These shortcomings have spurred new research initiatives into phylogenetic inference
methods capable of analyzing millions of samples. In particular, there has been significant
recent progress in estimating and/or placing novel sequences onto very large phylogenies
(Minh et al., 2020; Turakhia et al., 2021a; Aksamentov et al., 2021; Ye et al., 2022a,b).
Accurate estimation of the underlying phylogeny has numerous downstream applications,
including contact tracing (e.g., Lam-Hine et al., 2021; McBroome et al., 2022), surveillance
(e.g., Abe and Arita, 2021; Klink et al., 2021), and improved understanding of pathogen
biology (e.g. Majumdar and Sarkar, 2021; Turakhia et al., 2021b).

Another area of active research in phylogenetics, distinct from tree inference, is so-called
phylodynamics, which seeks to understand how immunological, epidemiological, and evolu-
tionary forces interact to shape viral phylogenies (Volz et al., 2013). Here, the quantity of
interest is typically a low-dimensional parameter vector characterizing the underlying phylo-
dynamic model, while the phylogeny itself is a nuisance parameter. Of particular interest for
the current pandemic are methods that can estimate effective population size and reproduc-
tion number of the pathogen from viral genetic data (e.g. Zhou et al., 2020; Lai et al., 2020;
Volz et al., 2021; Campbell et al., 2021). Compared to phylogeny estimation, less progress
has been made on so-called “phylodynamic inference” at the pandemic scale. This absence
motivates the present study.

Bayesian methods are often preferred for phylodynamic inference because there are usu-
ally many trees which explain the data equally well. Hence, downstream quantities of interest
possess a potentially significant amount of “phylogenetic uncertainty” which is not reflected
in frequentist point estimates. Unfortunately, Bayesian phylogenetic procedures inherently
scale very poorly: the space of phylogenetic trees grows rapidly, and there are an astronom-
ical number of possible trees to consider, even for relatively small samples. Consequently,
on large problems, the workhorse algorithm of field, Markov chain Monte Carlo (MCMC),
tends to either conservatively explore very limited regions of tree space, or liberally propose
large moves that are often rejected (Whidden and Matsen IV, 2015; Zhang and Matsen IV,
2019).

Even before the pandemic, awareness of the scalability issues surrounding Bayesian phy-
logenetics was growing (Höhna and Drummond, 2012; Whidden and Matsen IV, 2015; Aberer
et al., 2016; Dinh et al., 2017). As a scalable alternative to MCMC, variational inference (VI)
has recently garnered some attention in phylogenetics. VI is a general method for sampling
approximately from a posterior distribution using techniques from optimization (Jordan
et al., 1999). Fourment et al. (2020) used VI to accelerate computation of the marginal
likelihood of a fixed tree topology. Fourment and Darling (2019) used the probabilistic pro-
gramming language STAN to perform variational inference of the Bayesian skyline model
(Pybus et al., 2000). Both of the preceding methods only analyze a fixed tree topology, so
they cannot account for phylogenetic uncertainty. Simultaneously, Zhang and Matsen IV
(2018, 2019); Zhang (2020) have made progress on a full variational approach which includes
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optimization over the underlying topology. Although these innovations represent signifi-
cant advances in terms of performance, they still cannot come close to exploiting all of the
information contained in a pandemic-scale data set.

2 New Approaches
Inspired by these works, and responding to the need for better tooling to study the ongoing
pandemic, we devised a method capable of providing accurate and calibrated estimates of
the rates of transmission and recovery for COVID-19 using data from tens of thousands of
viral genomes. Our approach unites several threads of research in phylogenetics and scal-
able Bayesian inference. We build on aforementioned advances in variational phylogenetic
inference (Fourment and Darling, 2019; Zhang, 2020), as well as recent progress in phylody-
namic modeling of infectious diseases (Stadler et al., 2013), Bayesian stochastic optimization
(Hoffman et al., 2013), and differentiable programming (Bradbury et al., 2018). To achieve
this level of scalability, our method makes several tradeoffs and approximations which are
detailed below. Briefly, we adopt a divide-and-conquer strategy where distant subtrees of
a very large phylogeny are assumed to evolve approximately independently, and we further
assume that topological estimates of these subtrees are an accurate reflection of their distri-
bution under the prior. We argue that these are reasonable approximations in the context
of an massive, global phylogeny, and that their combined effect appears to be benign: the
resulting estimates closely agree with the existing state of the art on simulated data, and
exhibit a remarkable level of concordance with ground-truth estimates on real data, while
taking just minutes to produce.

3 Results
In this section, we test our method on both simulated and real data, and compare it to the
existing implementation of the birth-death skyline model in BEAST.

3.1 Simulation
First, we performed a simulation study to evaluate how well VBSKY approximates the
posterior distribution compared to BEAST. We studied four different scenarios:

1. Constant: the effective reproductive number stays constant through time;

2. Decrease: there is a sharp drop in the effective reproductive number;

3. Increase: there is a sharp increase in the effective reproductive number; and

4. Zigzag: the effective reproductive number goes through a series of decreases and in-
creases.
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We simulated transmission trees using the R package TreeSim (Stadler, 2011) and generated
sequences data along each tree using the program Seq-Gen (Rambaut and Grass, 1997).

Across all scenarios, the rate of becoming uninfectious, δ is held constant at δ(t) = 4 for
all t. The sampling rate is also held constant at s(t) = 0.25. Only R is allowed to vary.
Under the constant scenario, R(t) = 1.3 for all t. In the decrease scenario,

R(t) =

{

2.25, t ≤ 1

0.75, t > 1.

In the increase scenario,

R(t) =

{

1, t ≤ 3

2.5, t > 3.

In the zigzag scenario,

R(t) =

{

2.0, t ∈ [0, 1] ∪ (2, 3]

0.75, t ∈ (1, 2] ∪ (3, 4].

Each simulation was run for four time units, and ten trees were generated under each
scenario. Because the sampling process is stochastic in this model, the size of the simulated
tree varied from run to run. The minimum (maximum) number of samples in each under
the constant, decrease, increase, and zigzag scenarios was 175 (1553), 117 (590), 124 (1075),
and 161 (1852), respectively.

We compared the performance of our method to the current state-of-the-art for Bayesian
phylogenetic analysis, BEAST (Bouckaert et al., 2019). BEAST allows for the birth-death
skyline model to be used as a tree prior, facilitating direct comparison with VBSKY. Because
BEAST uses MCMC to estimate the posterior, the number of sequences it can analyze is
limited. Therefore, for each simulation, we randomly sampled 100 sequences for BEAST to
analyze. We allowed BEAST to run long enough that the effective sample size exceeded 1000
for each evolutionary parameter. Since VBSKY is not limited by sample size, we analyzed
all sequences in each simulation, as follows: We set the size of each random subsample to be
b = 100 tips. The number of trees in the ensemble was set to be the smallest integer such
that the number of trees multiplied by 100 was larger than the number of sampled sequences.
Under this scheme, each sequence was sampled once on average.

The results of the simulation study are shown in Figures 1 and 2. Figure 1 displays the
median of the medians and 95% equal-tailed credible intervals of the simulations under each
scenario using BEAST to analyze the data. Figure 2 shows the same for VBSKY. Besides
a few minor differences, the estimates given using VBSKY are similar to those given by
BEAST; both BEAST and VBSKY adequately capture the true value of the effective repro-
ductive number. The credible intervals given by BEAST are wider than those of VBSKY,
and do a better job of covering the true model in some cases; we return to this point in
Section 4. In the decrease scenario, VBSKY is better able to capture the larger value of R
earlier in time, while BEAST appears to revert to the prior at times earlier than t = 0.5.
Because VBSKY allows for more sequences to be analyzed, the method is able to detect
transmission events further back in time.
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Figure 1: Median of the medians and the
equal-tailed 95% credible intervals of the poste-
riors of the effective reproductive number over
time of the 10 simulations for each scenario us-
ing BEAST. The dotted red line is the true ef-
fective reproductive number over time.
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Figure 2: Median of the medians and the
equal-tailed 95% credible intervals of the poste-
riors of the effective reproductive number over
time of the 10 simulations for each scenario us-
ing VBSKY. The dotted red line is the true ef-
fective reproductive number over time.

Even though in some cases we analyzed hundreds more sequences using VBSKY than
when we used BEAST, the run-time of VBSKY was 71.75 seconds on average for each
simulation whereas BEAST took 20 minutes to perform 10,000,000 MCMC steps. The
simulation results show that VBSKY is able to get comparable results as BEAST with a
much shorter run-time, and in some cases like the decrease scenario, VBSKY can produce
more accurate estimates than BEAST.

3.2 Analysis of the global pandemic
We tested our method on a large, serially-sampled COVID-19 dataset from the GISAID
initiative (Elbe and Buckland-Merrett, 2017). At the time this analysis was performed,
there were 6.5M SARS-CoV-2 sequences in the database. In addition to the raw nucleotide
data, GISAID provides sample time and location information. The collection dates of the
sequences range from January 3rd, 2020 to December 8th, 2021.

For our analysis, we chose to study the transmission of COVID-19 of Michigan, Florida,
and the entire USA. It is important to study the epidemiology of COVID-19 at the sub-
national level as many public health policies such as mask mandates, stay at home orders,
vaccine distribution, and other social distancing measures are enforced at the state level.
Policies or decisions made in one state may not be detected studying national data. Due to
the differences in health policies across states and the reduced frequency of travel during the
pandemic, we expect the incidence and prevalence of COVID-19 to vary from state to state.
On the other hand, policies are sometimes made at the national level, and more recently
travel especially around the holidays has become widespread, so understanding trends at a
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national level is equally vital.
After filtering the sequences by location, the number of sequences were 81,375, 34,978,

and 1,280,563 for Florida, Michigan, and the USA respectively. We noticed that the number
of confirmed cases increased or decreased based on the day of the week, likely because fewer
cases are reported over the weekend. To correct for any inaccuracies in the sample time
distribution, we set all sequences sampled in the same calendar week to have the same sample
time. We used a fixed molecular clock model with substitution rate 1.12 × 10−3/bp/year
which is the estimate given by the World Health Organization (WHO) (Koyama et al., 2020).

3.2.1 Hyperparameter Tuning

Before proceeding to the analysis, we sought to better understand how the various tuning
parameters of our method affected the results. VBSKY has two main tuning parameters that
can be adjusted: the number of tips in each subsample (denoted b in the preceding section),
and the number of subsamples of the overall dataset D (denoted S in the preceding section).
Increasing either enables us to analyze more sequences, but at the expense of additional
computation time.

To understand the effect of the number of trees, we examined the posterior of the effective
reproductive number and the sampling rate of Florida and the USA while fixing the number
of tips and varying the number of trees. We set the number of tips to be 200 and examined
the posterior for each number of trees in the set {10, 25, 50, 100, 150}. Patients with mild
bouts of COVID-19 are generally not infectious after 10 days of symptom onset (Arons
et al., 2020; Bullard et al., 2020). The rate of becoming uninfectious is the inverse of the
number of infectious days. As one unit of time corresponds to one year, the estimated
value for δ is given by 1/10 × 365 = 36.5. Using this, we fixed the uninfectious rate to be
36.5 to avoid nonidentifiability issues since we cannot estimate R, δ, and s simultaneously
(Stadler, 2009; Louca and Pennell, 2020). For the GMRF smoothing prior, we chose a
relatively uninformative hyperprior distribution with large variance for the parameters of
the smoothing prior. In particular, we selected a gamma distribution distribution with
parameters a = b = 0.001, giving a mean of 1 and variance of 1000. As a rough estimate
of the sampling rate, we also chose the prior for s to be a Beta(0.02, 0.98) distribution with
expectation 0.02, as the ratio of sampled sequences to the number of cumulative cases is
around 0.02. The remaining priors are shown in the first line of Table 1.

Figure 3 shows the posterior of R for both Florida and the USA when varying the number
of trees. Figure 4 shows the posterior for s. The figures indicate a larger difference when the
number of trees is 10 compared to any greater number of trees. The median and credible
interval for R was much smaller and the median and credible interval for s was much larger
closer to the present when the number of trees was 10. The credible intervals when the
number of trees was 10 was also much wider. A closer inspection showed that this also
seems to be the case when the number of trees is 25, albeit to a smaller degree. When we
increased the number of trees to 50, this difference mostly disappeared.

We performed a similar study to understand the effect of varying the number of tips.
We fixed the number of trees as 50 and adjust the number of tips to values in the set
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Figure 3: Posterior of R while varying the number of trees. Solid lines represent the median and
the dotted lines represent the equal-tailed 95% credible intervals.

{50, 100, 200, 400}, and examined the posteriors of R and s while holding δ fixed. Similar
to above, varying the number of tips does not appear to have a large effect on the results.
Using only 50 tips per tree resulted in a wider credible interval for Florida and the USA for
both R and s. Figure 5 shows that using 50 tips also leads to flatter estimates for R further
back in the past. This is likely the result of trees with fewer tips having fewer transmission
events further back in the past which can be used to estimate R.

When comparing the posteriors when the number of tips is 100 or 200, only minor
differences appeared. Using 200 tips did seem to lead to better detection of changes in R
and s further back in the past. Looking at Figure 5, using 400 tips per tree led to a sharper
decrease in R towards the present. Figure 6 shows that using 400 tips generally led to slightly
larger estimates of s at all points in time.

Overall, regardless of the number of tips or trees used, the posterior estimates of both
R and s for both Florida and the USA are similar. However, increasing the number of trees
decreases the variances in posterior estimates of R and s, and also results in more accurate
estimates of both parameters towards the present. This improvement seems to plateau after
increasing the number of trees to 50. Similarly, increasing the number of tips can increase
the power to detect changes in R and s further back in the past, but using too many tips
can lead to more erratic estimates of the parameters towards the present.
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Figure 4: Posterior of s while varying the number of trees. Solid lines represent the median and
the dotted lines represent the equal-tailed 95% credible intervals.

Keeping this in mind while also noting that increasing the number of trees and tips can
incur large computational costs, using 50 trees with 200 tips leads to sharper estimates of
the posterior without requiring excessive computation.

3.2.2 Results

Based on the results from the previous section, we ran VBSKY with 50 subsamples of 200
sequences for a total of 104 sequences. We estimated the epidemiological parameters for
Florida, Michigan, and the overall USA. State-level results were compared to a “ground
truth” estimator of the effective reproductive number which is derived from orthogonal
(i.e. non-genetic) public health data sources (Shi et al., 2021). The prior and hyperprior

Table 1: Prior Distributions used in Analyses.

Analysis R s τR τs x1

Uninformative Smoothing LogN(1,1) Beta(.02, .98) Gamma(.001, 0.001) Gamma(.001, 0.001) LogN(-1.2, 0.1)
Less Smoothing LogN(1,1) Beta(20, 980) Gamma(10, 100) Gamma(10, 100) LogN(-1.2, 0.1)
Biased Sampling LogN(1,1) Beta(20, 980) Gamma(.001, 0.001) Gamma(.001, 0.001) -
Multistrain LogN(1,1) Beta(.02, .98) Gamma(10000, 0.01) Gamma(.001, 0.001) LogN(-1.2, 0.1)
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Figure 5: Posterior of R while varying the number of tips. Solid lines represent the median and
the dotted lines represent the equal-tailed 95% credible intervals.

settings for all of the scenarios described below are shown in Table 1.
We first analyzed the data using the same uninformative smoothing hyperpriors as in

the hyperparameter study in the previous section (“Uninformative Smoothing” in Table 1).
Figure 7 displays the posterior of R over time for each region for the uninformative smoothing
analysis. For Florida (top panel), we see that the estimates for R over time produced by
VBSKY matches the results using surveillance data in the recent past. However, earlier in
the pandemic, VBSKY does not seem to be able to capture the rise and fall of R but instead
provides a flat estimate of the parameter.

In the middle panel (Michigan), we see the VBSKY posterior is very similar to the pos-
terior given by the surveillance data method even looking further back in the past. Looking
at the top panel (USA), similar to the results for Florida, the posterior for R is very flat
further back in the past. Given that we have seen large rises and falls in the number of cases
over time (Figure S2), it seems unlikely that the actual value of R is as flat as the method
suggests.

One explanation for this performance discrepancy is that the prior may be oversmoothing
the estimates of R further back in the past for some of the data sets. Figure S1 shows the
distribution of sample times for Florida, Michigan, and the USA. Michigan has a larger
proportion of sequences sampled early in the pandemic compared to either Florida or the
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Figure 6: Posterior of s while varying the number of tips. Solid lines represent the median and
the dotted lines represent the equal-tailed 95% credible intervals.

overall USA. Oversmoothing may occur because a lack of samples further back in the past
causes the prior to overwhelm the data.

To investigate this, we reran the analysis with stronger hyperpriors designed to reduce the
overall amount of smoothness (“Less Smoothing” in Table 1). Figure 8 shows the posterior
when we set the prior of the smoothing parameter to be a gamma distribution with a = 10
and b = 100, giving a mean of 0.1 and variance 0.001. Looking at the top panel (Florida)
of Figure 8, we see that the posterior median of R for VBSKY is no longer flat and instead
oscillates to better match the results using surveillance data. The bottom panel (USA) also
shows the estimates for R for the entire USA are also no longer completely flat further back
in the past. The middle panel (Michigan) shows that even with less smoothing, the results
for VBSKY in Michigan match well with the surveillance data. When the sample time
distribution is unbalanced, as with Florida and the USA, imposing less smoothing can help
better capture the signal where the sampling may be more sparse. However, it also widens
the credible intervals.

In addition to decreasing the amount of smoothing, we explored the use of a biased
sampling scheme to yield sharper estimates further back in the past. The algorithm de-
scribed in Section 5 generates an ensemble of trees by sampling the data randomly without
replacement. Hence, if most of the samples were collected in the recent past, most of the
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trees in the ensemble will have tips from near the present, making it difficult to estimate
transmission events further back in time. To verify this, we split the data by the quarter
in which the sequence was sampled, where the first quarter of each year was defined to be
the first three months (January, February, March) of the year, and so on. Then, instead of
randomly sampling to generate the ensemble of trees, for each tree the tips were restricted
to only one quarter. We also enforced the number of trees per quarter to be approximately
equal. One caveat is that this stratified sampling approach could bias the estimates of the
sampling rate.

Figure 9 shows the results using the biased sample approach. For this final analysis we
reverted some of the smoothing prior changes (“Biased Sampling” in Table 1). (Because of
convergence issues encountered during model fitting, for this scenario we fixed the origin to
0.3 years prior to the earliest sample date; therefore, no prior on x1 is listed in the table.)
There is a surprisingly close match between our model output and the ground-truth, which
we reiterate was estimated using a completely different source of data. The estimates using
the biased sampling approach improve the estimates of R further back in the past especially
for Florida. Using less smoothing, VBSKY was able to capture the shape of estimates using
surveillance data, but the biased sampling approach results in a much closer estimate of R
further back in the past. The credible bands produced by VBSKY tend to be narrower,
which could reflect either differences in the underlying data or violations of the modeling
assumptions described in Section 5. Interestingly, both methods appear unable to reject
the null hypothesis R = 1 except for very early in the pandemic (winter 2020) and very
recently (spring-summer 2021). One drawback of the stratified sampling approach is that
the estimates of R towards the present seem to be further away from the estimates using
surveillance data. While using the biased sampling approach can improve estimates within
time periods where sampling is sparse, it can also bias the estimates where sparse sampling
is not an issue.

In this section we focused on estimating the effective reproduction number R. A parallel
set of estimates for the sampling fraction s are shown in Figures S3–S5.

3.2.3 Comparison to BEAST

We ran BEAST on the same data set as in the previous section. BEAST was incapable of
analyzing the same number of samples as VBSKY, so to facilitate comparison, we limited
the number of sequences we analyzed with BEAST. Both the sample size and the sampling
scheme can affect the results of the analysis as well as the mixing time, so we compared
how BEAST performed with different combinations of sample sizes and sampling schemes.
We ran BEAST with both 100 and 500 sequences. For each sample size, we sampled the
most recent sequences by date (contemporary sampling), and we also sampled uniformly at
random without any regard to the sample time (random sampling). The XML configuration
files we used to run BEAST are included in the supplementary data.

Even after greatly reducing the number of sequences analyzed, accurately sampling from
the posterior may still take longer than using VBSKY. We performed both a “short” run
for BEAST, where the MCMC sampler is only allowed to run for as long as it took VBSKY
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to analyze the full data, as well as a “long” run where BEAST was allowed to perform 100
MCMC million iterations, or run for 24 hours, whichever was shorter.

The estimates of the effective reproductive number of the short run for Florida, Michigan,
and the USA are displayed in Figures 10, S6, and S7 respectively. The estimates for the long
runs are shown in Figures 11, S8, and S9.

For the short runs, depending on the number of samples and the sampling scheme, the
results varied widely. Under a short time constraint, the posteriors using 500 tips and
both sampling schemes for Florida, 500 tips and recent sampling for Michigan and 500 tips
and recent sampling for the USA were mostly flat centered close to 1. The posteriors did
not reflect the rise and fall in R that is exhibited in both the surveillance data and VBSKY
estimates. In most cases, BEAST is unable to capture any signal further back in the past, and
the posterior provided by BEAST does not track the estimates provided by the surveillance
data as well as VBSKY.

In the long runs, the issue of completely flat posteriors when using 500 tips mostly disap-
peared. However, BEAST is only capable of producing comparable results to VBSKY and
the surveillance method when analyzing 100 tips sampled uniformly at random, presumably
because mixing occurred more rapidly in the time allotted. The long runs also illustrate
that uniform random sampling performs better than most-recent sampling when running
BEAST. This indicates that having samples throughout time may help infer more trans-
mission events further back in the past rather than having only contemporary sequences.
The discrepancy between using 100 tips and 500 tips exists only when the sampling scheme
is random. When using contemporary sequences, BEAST is able to complete 100 million
iterations. But when random sampling is used, because the MCMC sampler mixes more
slowly, BEAST was unable to complete 100 million MCMC moves within 24 hours.

In summary, BEAST performed fairly well when we randomly sample 100 tips, though
there was considerable variation between data sets and scenarios. The main difference be-
tween VBSKY and BEAST is that the latter was usually unable to capture signal far back in
the past. Analyzing more sequences could help, but the computational difficulties that would
ensue imply that it is not practical to completely resolve this issue if time is a constraint.
Overall, our results indicate that efficiently analyzing thousands of sequences, even using an
approximate inference method, generally leads to a sharper posterior which is closer to the
ground truth.

3.2.4 Strain Analysis

As a supplement to our main analysis, we further investigated the history of different COVID-
19 variants. Using GISAID-annotated variant information, we split our data set of Florida,
Michigan, and USA sequences into smaller data sets specific to the Alpha and Delta variant
and fit our model to each variant.1 Except for a minor adjustment to the prior on the origin
time, we used all the same hyperparameters and priors as in the preceding section. For the
GMRF smoothing prior, we chose a hyperior for τR to have large expectation to increase

1At the time this manuscript was written, there were no available sequences from the Omicron variant.
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smoothing.
The results of our analysis are shown in Figure 12 for R and Figure S10 for s. The Alpha

variant of COVID-19, also known as lineage B.1.1.7, originated in England and was first
reported in the USA in early 2021. Using surveillance data, Volz et al. (2021) showed that
at the time, the Alpha variant had a transmission advantage over other variants, which is why
it came to dominate in the USA in early 2021. There are no samples for the Alpha variant
beyond summer 2021, so the estimates for Alpha are truncated at various points during that
period depending on the region considered. As shown in Figure S2, the number of cases in
Michigan, Florida, and the USA all dropped after the first third of the year, corresponding
to a decrease in R below one for the Alpha variant. At the same time, the Delta variant
was rising in prevalence, such that R is estimated greater than one in all cases until about
the third quarter of 2021. Analysis of the sampling fraction over time (Figure S10) also
shows some interesting trends, for example sampling of the Delta variant in Michigan seems
to have been extremely low compared to other areas and strains. Finally, we also explored
using other hyperparameter settings to analyze these data, but found that they produced
suboptimal results. In particular, without additional smoothing, our model unrealistically
estimated that R increased for the Alpha variant throughout the second quarter of 2021,
although the credible intervals generally place substantial posterior probability on the event
R < 1 (Figures S11 and S12). We noticed that for the Alpha variant, the number of available
samples drops severely near the point of truncation. The absence of data would lead to the
prior dominating the posterior samples of R. By increasing smoothing, we were able to
circumvent this issue.

4 Discussion
In this paper, we presented the variational Bayesian skyline, a method designed to infer evo-
lutionary models from large phylogenetic datasets. Our method works by fitting a variational
Bayesian posterior distribution to a certain approximation of the phylogenetic birth-death
model. We showed that, under some simplifying heuristic assumptions, it can be used for
posterior inference of epidemiologically relevant quantities such as the effective reproduc-
tion number and sampling fraction. We demonstrated that our estimates adhere reasonably
closely to alternative approaches such as MCMC, while being significantly faster and there-
fore able to incorporate large numbers of observations. On real data, we showed how our
model corroborates public health surveillance estimates, and could work to fill in the gaps
when such data are unavailable.

One shortcoming of our model is that it tends to be overconfident, in the sense that it
produces credible intervals which are narrower compared to other methods, and not as well
calibrated in simulations. Generally, it is preferable for a method to overcover since this
is inferentially more conservative. We believe this behavior is attributable to the heuristics
that underlie our approach: since they ignore certain forms of dependence in the data, they
create the illusion of a larger sample size than actually exists. We suggest that the credible
intervals produce by our method are best interpreted relatively, as showcasing portions of

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.10.479891doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479891
http://creativecommons.org/licenses/by-nc-nd/4.0/


time where the estimates are especially sharp or loose.
Our method could be extended in several ways. Currently, it estimates the tree topology

and the continuous variables separately, relying on a distance-based method infer the topol-
ogy. While faster, distance-based methods are less accurate than likelihood-based methods
for tree reconstruction (Kuhner and Felsenstein, 1994). Our method could be potentially
extended to unify the estimating procedure for tree topologies and other variables under one
variational framework allowing (Zhang and Matsen IV, 2019). We also take random subsam-
ples of data to accelerate our inference. However, the subsampling approach we adopt is very
naive, and future work could include developing an improved way strategy for subsampling
in phylogenetic problems.

The variational inference scheme we used makes a standard but highly simplified mean-
field assumption about the dependence structure of the variational approximating family.
We also experimented with other, recent approaches such as normalizing flows (Rezende
and Mohamed, 2015), but observed that, consistent with earlier findings (Fourment and
Darling, 2019), they did not measurably improve the results and occasionally caused the
algorithm to fail to converge. If our approach is adapted to more complex problems, it could
be advantageous to revisit this modeling choice.

Currently, our method is restricted to using a strict molecular clock model. Additionally,
the substitution models in our method do not currently allow for rate heterogeneity across
sites. Allowing for more flexible and complex substitution and clock models could aid in the
application of our method to other data sets that evolve differently than COVID-19, when
the time scale of the epidemic is much larger.

5 Materials and Methods
In this section, we derive our method, which we call variational Bayesian skyline (VBSKY).
As the name suggests, VBSKY descends from a lineage of earlier methods designed to infer
evolutionary rate parameters from phylogenetic data (Pybus et al., 2000; Drummond et al.,
2005; Minin et al., 2008; Gill et al., 2013). Our running example will be inferring the
epidemiological history of the COVID-19 pandemic, but the method applies generally to any
evolving system that is aptly modeled using a phylogenetic birth-death or coalescent process
and approximately meets the assumptions described below.

5.1 Notation and model
The data consists of a matrix of aligned sequences D = {A,C,G, T,N}n×L, where n is
the number of viral sequences and L is the number of sites, and a vector of times when
each sample was collected y = (y1, . . . , yn) where y1 ≤ · · · ≤ yn. Row j of D corresponds
to a sequenced viral genome collected from an infected host at time yj. Subsamples of
rows of D are denoted by Di ∈ {A,C,G, T,N}

b×L, with corresponding sample times y(i) =

(y
(i)
1 , . . . , y

(i)
b ), where b is the size of the subsample. We occasionally abuse notation and

write Di ⊂ D to denote a subsample, and |D| to denote the number of samples contained
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in a dataset (so e.g. |Di| = b above). Phylogenetic trees are denoted by T = (T topo, T br),
which we decompose into a discrete topological component and continuous branch length
component. Given n sampled taxa, the topological component T topo lives in the space of
rooted, labeled bifurcating trees on n leaves, and the branch length component lives in the
non-negative orthant R

2n−1
≥0 and gives the length of each edge of the tree (including an edge

from crown to origin).
The data are assumed to be generated according to a phylogenetic birth-death skyline

model (Nee et al., 1994; Morlon et al., 2011). In this model, samples are related by an
unobserved “transmission tree” that records every infection event that occurred during the
pandemic. Leaf nodes in the transmission tree represent sampling events, and internal nodes
represent events where the virus was transmitted from one host to another. Edges denote
periods during which the virus evolved within a particular host, with the length proportional
to the amount of evolutionary time that elapsed between the parent and child nodes. The
distribution of the infection tree depends on three fundamental parameters, usually denoted
µ(t), λ(t), and ρ, which are respectively the time-varying per-capita rates at which extant
lineages in the phylogeny go extinct and speciate, and the fraction of the extant population
that was sampled at the present.

Further generalizations (Stadler et al., 2013) incorporate both random and deterministic
sampling across time, and it was also shown how phylogenetic BD model can be used for pa-
rameter estimation in the susceptible-infected-recovered model (Kermack and McKendrick,
1927) that forms the foundation of quantitative epidemiology. Let ψ(t) denote the rate at
which each extant lineage is sampled in the phylogeny. (Henceforth we suppress dependence
on time, but all parameters are allowed to be time-varying.) If we assume that sampling
is tantamount to recovery (a valid assumption when positive testing leads to quarantine,
as is generally the case during the current pandemic), then the overall rate of becoming
uninfectious is δ = µ + ψ; the average time to recovery is 1/δ; the sampling proportion is
s = ψ/δ; and the effective reproduction number is R = λ/δ. Using prior knowledge, it is
also common to specify an origin time t0 when the pandemic began.

Let ζ = (R, δ, s, t0) denote the vector of epidemiological parameters of interest. The hy-
perprior on ζ is denoted π(ζ). The latent transmission tree describing the shared evolutionary
history of all of the sampled pathogens is denoted by T = (T topo,T br). We assume a simple
“strict clock” model, with known rates of substitution, so that no additional parameters are
needed to complete the evolutionary model.

We desire to sample from the posterior distribution of ζ given the phylogenetic dataset
D. Let p(T | ζ) denote the likelihood of the transmission tree given the evolutionary
model. An expression for p(T | ζ) can be found in Stadler et al. (2013, Theorem 1), and
is reproduced in Appendix S-1 for completeness. The data depend on ζ only through T ,
so that p(D | T , ζ) = p(D | T ). Here p(D | T ) denotes the “phylogenetic likelihood”,
which can be efficiently evaluated using the pruning algorithm (Felsenstein, 1981). Putting
everything together, the posterior distribution over the unobserved model parameters is

p(ζ,T | D) ∝ p(D | T )p(T | ζ)π(ζ). (1)

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.10.479891doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479891
http://creativecommons.org/licenses/by-nc-nd/4.0/


5.2 Scalable inference
The constant of proportionality in (1) is p(D), the marginal likelihood after integrating out
all (hyper)parameters and the unobserved tree T . In large phylogenetic data sets, exact
evaluation of the marginal likelihood is impossible due to the need to enumerate all possible
trees, a set whose cardinality explodes in the number of taxa (Alfaro and Holder, 2006). In
practice, methods such as Markov chain Monte Carlo (e.g., Drummond and Rambaut, 2007)
which do not require evaluating p(D) are utilized.

Since current phylogenetic MCMC algorithms cannot scale up to pandemic-sized datasets,
we propose to modify the inference problem (1) using a few heuristics in order to make
progress. Let D1,D2, . . . ,DS ⊂ D be subsamples of b1, . . . , bS rows from the full dataset.
If the subsamples are temporally and geographically separated, and bi ≪ n, then it is
reasonable to suppose that these subsamples are approximately independent conditional on
the underlying evolutionary model.

Heuristic 1. In a very large phylogenetic dataset D, small subsets D1,D2 ⊂ D with
|D1|, |D2| ≪ |D| that are sufficiently separated in space and/or time are approximately
independent: p(D1,D2 | ζ) ≈ p(D1 | ζ)p(D2 | ζ).

True independence holds, for example, when the clades corresponding to D1,D2 are so
distant that a reversible substitution process reaches stationarity on the edge connecting
them. While we do not expect this to occur in real data, it seems like a reasonable approxi-
mation for studying distant subclades in a large, dense phylogeny which are evolving under
a common evolutionary model. An example of the subsampling scheme we have in mind is
when D = “all of the samples collected in Florida” (n ≈ 81, 000), D1 = “all of the samples
collected in Florida during June, 2020” (b1 ≈ 300), and D2 = “all of the samples collected
in Florida during June, 2021” (b2 ≈ 5, 100).

Though incorrect, Heuristic 1 furnishes us with a useful formalism for performing large-
scale inference, as we now demonstrate. Using the heuristic, we can approximate the poste-
rior distribution (1) as

p(ζ, T1:S | D1:S) ∝ π(ζ)
S
∏

i=1

p(Di | Ti)p(Ti | ζ), (2)

where we used the array notation T1:S ≡ (T1, . . . , TS) to streamline the presentation. Sam-
pling from (2) is easier than sampling from the full posterior (1) since it decomposes into
independent subproblems, and each subtree Ti is much smaller than the global phylogeny T .
However, the normalizing constant in (2) remains intractable even for small trees, so naive
sampling would still require expensive MCMC algorithms.

To work around this, we start by rewriting the last term in (2) as

p(Ti | ζ) = p(T br
i | T

topo
i , ζ)p(T topo

i | ζ).

As noted in the introduction, the primary difficulty in Bayesian phylogenetic inference is
navigating regions of topological tree space that have high posterior probability. If we could
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efficiently sample T̂ topo
i ∼ p(T topo

i | ζ), then the approximate posterior

p̂(ζ, T br
1:S | T̂

topo
1:S ,D1:S) ∝ π(ζ)

S
∏

i=1

p(Di | T
br
i , T̂ topo

i )p(T br
i | T̂

topo
i , ζ) (3)

would have the property that

ET̂ topo
1:S

p̂(ζ, T br
1:S | T̂

topo
1:S ,D1:S) = p(ζ, T br

1:S | D1:S). (4)

This leads to our second heuristic.

Heuristic 2. Fitted tree topologies T̂ topo
1:S obtained from subsets D1, . . . ,Dm pairwise satisfying

Heuristic 1 are independent and approximately distributed as p(T topo | ζ).

By “fitted trees” we mean trees estimated using any method, including fast heuristic
algorithms such as UPGMA, or its extension to serially-sampled time trees (sUPGMA;
Drummond and Rodrigo, 2000); maximum likelihood; or simply extracting subtrees from
a high-quality, pre-computed reference phylogeny (e.g., Lanfear, 2020). The heuristic can
fail in various ways: in reality, tree reconstruction algorithms do not necessarily target the
correct/any evolutionary prior, and there could be dependence between different trees if
they are jointly estimated as part of a larger phylogeny. Also, our current implementation
uses the data twice, once to estimate each tree, and again during model fitting to evaluate
its phylogenetic likelihood. The tree inference procedure we used to analyze data in this
paper is described more fully in the supplement (Section S-2). Note that we only utilize the
topological information from these procedures; we still perform posterior inference over the
branch lengths T br as detailed below.

Setting these caveats aside, the point of Heuristic 2 is to endow our posterior estimates
with some measure of phylogenetic uncertainty, without resorting to full-blown MCMC in
tree space. By (4), the approximate likelihood (3) is unbiased for p(ζ, T br

1:S | D1:S), and the
latter quantity correctly accounts for phylogenetic variance in the posterior. However, since
(3) conditions on T̂ topo

1:S , all of the remaining parameters to be sampled are continuous, and
the problem becomes much easier.

Finally, we point out that our method is not capable generating useful samples from
the posterior distribution p(T | D), that is of the overall transmission tree given the orig-
inal dataset D. But, as noted above, in skyline-type models the main object of interest
is the evolutionary posterior p(ζ | D). In Section 3, we demonstrate that the heuristic,
subsampling-based approach developed here yields a fairly sharp posterior on ζ, while still
utilizing a large amount of information from D.

5.2.1 Stochastic variational inference

Since (3) is a distribution over continuous, real-valued parameters, it is amenable to vari-
ational inference (Jordan et al., 1999). As noted in the introduction, variational Bayesian
phylogenetic inference has previously been studied by Zhang and Matsen IV (2019); Zhang

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.10.479891doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479891
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2020) and Fourment and Darling (2019). Our approach is most related to the latter since
we do not optimize over the topological parameters of our model in any way. Because we
are operating in a different data regime than either of these two pre-pandemic papers, we
further incorporated recent advances in large-scale Bayesian inference in order to improve
the performance of our method.

Given a Bayesian inference problem consisting of data x and model parameters z, tradi-
tional VI seeks to minimize the Kullback-Leibler (KL) divergence between the true posterior
of interest and family of tractable approximating distributions Q:

q∗(z) = argmin
q(z)∈Q

KL(q(z) ∥ p(z | x)).

We cannot carry out this minimization as the KL divergence still requires evaluating the
intractable quantity p(x). However,

KL(q(z) ∥ p(z | x)) = E(log q(z))− E(log p(z | x))

= E(log q(z))− E(log p(x, z)) + log p(x)

= −ELBO(q(z)) + const.
(5)

where the expectations are with respect to the variational distribution q, and

ELBO(q(z)) := Ez∼q(z) [log p(x, z)− log q(z)] (6)

is known as the evidence lower bound. Hence, minimizing the divergence between the true
and variational posterior distributions is equivalent to maximizing the ELBO.

For VI involving complex (non-exponential family) likelihoods, the ELBO is generally
approximated by replacing the first term in (6) by a Monte Carlo estimate:

Ez∼q(z) log p(x, z) ≈
1

B

B
∑

i=1

log p(x, zi); z1, . . . , zB ∼ q(z) i.i.d. (7)

where B = 1 is a common choice. Each evaluation of the complete likelihood log p(x, z)
requires a full pass over the data, which can be prohibitive when the data are large. Stochastic
variational inference (SVI; Hoffman et al., 2013) addresses this problem through stochastic
optimization. Many Bayesian models naturally factorize into a set of shared, global hidden
variables, and sets of local hidden variables which are specific to each observation. Each
observation is conditionally independent of all others given its local parameters. Hoffman
et al. show how models of this form are well suited to stochastic gradient descent. Specifically,
they derive an unbiased gradient estimator of the ELBO (6) which operates on a single,
randomly sampled data point at each iteration. The algorithm tends to make better progress
in early stages when the variational approximation to the shared global parameters is still
quite inaccurate (Hoffman et al., 2013).

By design, the model we derived above is suited to SVI. In equation (3), the evolutionary
parameters ζ are shared among all datasets, while the branch length parameters T br

i are

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.10.479891doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479891
http://creativecommons.org/licenses/by-nc-nd/4.0/


specific to the ith dataset Di. We therefore refer to ζ as the global parameter, and the
vectors of dataset-specific branch lengths T br

1:S as local parameters. Our algorithm proceeds
by iteratively sampling a single dataset Di and taking a noisy (but unbiased) gradient step.
Note that, because our model is not in the exponential family, we cannot employ the elegant
coordinate-ascent scheme originally derived by Hoffman et al.. Instead, we numerically
optimize the ELBO using differentiable programming (see below).

5.2.2 Model parameterization

It remains to specify our model parameterization and the class of distributions Q that are
used to approximate the posterior. Recall from Section 5.1 that the global parameter ζ
includes the effective reproduction number R(t), rate of becoming uninfectious δ(t), and
sampling fraction s(t). We follow earlier work (Gill et al., 2013) in assuming that these rate
functions are piecewise constant over time, with changepoints whose location and number
are fixed a priori. The changepoints are denoted t = (t1, . . . , tm) satisfying 0 = t0 < t1 <
· · · < tm < tm+1 =∞. Thus,

R(t) =
m+1
∑

i=1

Ri1{t∈[ti−1,ti)}(t),

where the transmission rates in each time interval are denotedR = (R1, . . . , Rm) ∈ R
m
>0. The

rate of becoming uninfectious and sampling fraction are similarly denoted by δ ∈ R
m
>0 and

s ∈ [0, 1]m, respectively. Finally, a Gaussian Markov random field (GMRF) smoothing prior
is used to penalize consecutive differences in the log rates (Minin et al., 2008). To account
for the fact that each rate parameter may have varying degrees of smoothness and also could
be on different scales, each rate parameter has a corresponding precision hyperparameter
τR, τδ, and τs.

An extension of the BDSKY model allows for additional sampling efforts at each time
tk. Infected individuals are sampled with probability ρk at time tk. When all sequences are
sampled serially without the added sampling effort, ρk = 0 for 1 ≤ k ≤ m. When all
sequences are sampled contemporaneously, ψ = 0, ρk = 0 for 1 ≤ k ≤ m − 1, and ρm > 0.
For our work, we only consider cases where ρk = 0 for 1 ≤ k ≤ m − 1. We define bs as the
number of sequences sampled serially, and bm to be the number of sequences sampled at time
tm. In other words, bm is the number of contemporaneously sampled sequences at time tm.
Note that b = bm + bs. The sample times of the bs serially sampled sequences are denoted
by ỹ(i) = (y

(i)
1 , . . . , y

(i)
bs
). Because the sequences sampled at tm have the largest sample time,

ỹ(i) is just a truncated version of y(i). When all sequences are sampled serially, y(i) = ỹ(i).
To conserve notation, from this point onward, we will use y(i) to refer to ỹ(i).

The final remaining global parameter is the epidemic origin time t0. In order for the
model to be well defined, this must occur earlier than the earliest sampling time in any of
the S subsamples. Therefore, we set t0 + x1 = ymin, where ymin is the earliest sampling time
across all subsamples, and place a prior on x1 > 0 as detailed below.
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Given the sampling times and estimated tree topology T̂ topo
i , we can identify each lo-

cal parameter T br
i with a vector h(i) ∈ R

b−1
>0 giving the height of each internal node when

enumerated in preorder. Hence the height of the root node is h(i)1 . We follow the parameter-
izations set forth by Fourment and Darling (2019). In order for a sampled tree to be valid,
we must have h(i)j < h

(i)
pa(j) for every j. Here pa(j) denotes the parent node of node j. This

constraint can be met by setting the height of internal node j as h(i)j = p
(i)
j (h

(i)
pa(j) − h

(i)
d(j))

where d(j) is the earliest sampled tip from the set of descendants of j and p
(i)
j ∈ [0, 1].

Finally, let x(i)1 denote the distance of the root node from the origin measured forward in
time. We must have t0 < x

(i)
1 < y

(i)
1 since the root node of Ti has to be between the origin

and the earliest sample time. Therefore we set x(i)1 − t0 = r(i)y
(i)
1 for some r(i) ∈ [0, 1], and

calculate the root height h(i)1 from it. Under this parameterization, the set of local variables
z(i) = (p

(i)
1 , . . . , p

(i)
b−1, r

(i)) ∈ [0, 1]b is a set of proportions, with transformations to switch
between parameterizations for BDSKY and the observed data likelihood.

5.2.3 Variational approximating family

We make a standard mean field assumption, which posits that members of Q completely fac-
torize into a product of independent marginals. Letting ζ = (R1, . . . , Rm, δ1, . . . , δm, s1, . . . , sm)
denote the collection of all global parameters defined above, and recalling the definition of
z(i) in the preceding paragraph, we assume that

q(ζ, z(1), . . . , z(m)) =
∏

i

q(ζi | πi)
∏

j

∏

k

q(z
(k)
j | ϕ

(k)
j ), (8)

where we have introduced variational parameters πi and ϕ(k)
j corresponding to each marginal

distribution. The distributions q(ζi | πi) and q(z
(k)
j | ϕ

(k)
j ) are (suitably transformed) Gaus-

sians, so that πi, ϕ(k)
j ∈ R× R≥0 each comprises a real location parameter and non-negative

scale parameter. In our model, all latent parameters, local or global, are constrained to be
positive (e.g., R, δ) or in the unit interval (e.g., s, z(i)). For each parameter we take q to
be an appropriately transformed normal distribution. For positive parameters we use an
exponential transformation, and for parameters constrained to be in (0, 1) we use an expit
(inverse logistic) transformation.

5.2.4 Implementation using differentiable programming

Our Python software implementation uses automatic differentiation in order to efficiently
optimize the variational objective function (Kucukelbir et al., 2017; Bradbury et al., 2018).
We sample from the variational distribution and estimate the gradient of the (7) objective
function with respect to the variational parameters π and ϕ using Monte Carlo integration
(cf. eqn. 7). Gradients of the phylogenetic likelihood are computed in linear time using the
recent algorithm of Ji et al. (2020). The complete fitting algorithm is shown in Algorithm 1.
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Algorithm 1: Variational Bayesian Skyline (VBSKY)
Input : Data set D, sampling times y; Fixed parameters m, ν, S, b; Step size α.
for i = 1→ S do

Sample with replacement b times from the data to get subsample Di,y
(i).

Estimate the tree topology T̂ topo
i .

end
Initialize π,ϕ randomly.
while not converged do

for i = 1→ B do
Draw M samples z(i) ∼ q(· | ϕ(i)), ζ ∼ q(· | π).
Approximate ∇φ(i)L and ∇πL using MC integration.
Update ϕ(i) ← ϕ(i) + α∇φ(i)L.
Update π ← π + α∇πL.

end
end
Return: π,ϕ
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Figure 7: Posterior of R for Florida, Michigan, and the USA using an uninformative smoothing
prior. VBSKY estimates are in blue. The orange estimates are derived from surveillance data. For
each method the posterior median and equal-tailed 95% credible interval are shown. The dotted
red line is R = 1.
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Figure 8: Posterior of R for Florida, Michigan, and the USA using less smoothing. VBSKY
estimates are in blue. The orange estimates are derived from surveillance data. For each method
the posterior median and equal-tailed 95% credible interval are shown. The dotted red line is
R = 1.
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Figure 9: Posterior of R for Florida, Michigan, and the USA using biased sampling and a strong
prior on s. VBSKY estimates are in blue. The orange estimates are derived from surveillance
data. For each method the posterior median and equal-tailed 95% credible interval are shown. The
dotted red line is R = 1.
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Figure 10: The posterior median and equal-tailed 95% credible interval of R for Florida given
by BEAST. The top panel contains randomly sampled data, while the bottom contains the most
recent available samples. The sampler was allowed to run as long as it VBSKY to analyze the
Florida data. This is referred to as the short run in the text.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.10.479891doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.10.479891
http://creativecommons.org/licenses/by-nc-nd/4.0/


2020.00 2020.25 2020.50 2020.75 2021.00 2021.25 2021.50 2021.75
Year

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Surveillance Data
BEAST - 100 tips, random
BEAST - 500 tips, random

2020.00 2020.25 2020.50 2020.75 2021.00 2021.25 2021.50 2021.75
Year

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Surveillance Data
BEAST - 100 tips, contemporary
BEAST - 500 tips, contemporary

Florida - R - Long

Figure 11: The posterior median and equal-tailed 95% credible interval of R for Florida given
by BEAST. The sampler was allowed to run for 100 million steps or 24 hours to analyze the data.
This is referred to as the long run in the text.
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Figure 12: The posterior median and equal-tailed 95% credible interval of R for the Alpha and
Delta variants.
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