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Abstract 

A nudge changes people's actions without removing their options or altering 
their incentives. During the COVID-19 vaccine rollout, the Swedish Region 
of Uppsala sent letters with pre-booked appointments to inhabitants aged 
16–17 instead of opening up manual appointment booking. Using regional 
and municipal vaccination data, we document a higher vaccine uptake 
among 16- to 17-year-olds in Uppsala compared to untreated control regions 
(constructed using the synthetic control method as well as neighboring mu-
nicipalities). The results highlight pre-booked appointments as a strategy for 
increasing vaccination rates in populations with low perceived risk. 
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1 Introduction 

COVID-19 vaccines are offered free of charge in all rich countries, but vac-
cination uptake mostly falls below 80 percent (Ritchie et al., 2020). Different 
measures are considered to increase vaccine uptake among hesitant individ-
uals, such as cash incentives (direct payments and lotteries) and mandatory 
COVID-19 certificates (Campos-Mercade et al., 2021; Mills and Rüttenauer, 
2021; Barber and West, 2022). These interventions can be expensive or in-
trusive, and the use of interventions that alter people’s behavior without 
changing economic incentives or regulating behavior has thus received sig-
nificant interest. A common approach is the use of nudges, which change the 
choice architecture to steer people’s choices without limiting their options 
(Thaler and Sunstein, 2008). Two randomized controlled trials have studied 
the effects of nudges on COVID-19 vaccination uptake. Dai et al. (2021) 
found that text-based reminders effectively increased vaccination uptake 
from low vaccination levels early in the vaccination rollout. In contrast, 
Campos-Mercade et al. (2021) found no effect of three different types of 
nudges, starting from a higher vaccination level (70 percent).1 

On July 15th, 2021, Region Uppsala, one of Sweden’s 21 regional govern-
ments and home to approximately 375,000 people, sent letters with pre-
booked COVID-19 vaccination appointments to all residents aged 16 and 17. 
Other Swedish regions simply opened up bookings for this cohort. Similarly, 
other age groups could make their own appointments in Region Uppsala as 
well as in the rest of Sweden. The alternatives were to get vaccinated or not, 
and the decision by the regional authorities merely moved the default from 
the possibility of choosing an array of times or no time to the choice of a 
particular time. Not showing up (which one is not charged for) or cancelling 
the appointment remained possibilities. Thus, these letters in Region Upp-
sala provide a real-world example of an extensive nudge. 

Our aim is to study whether these pre-booked appointments increased 
vaccine uptake. We use two empirical strategies to identify the effect. First, 
we use the synthetic control method to estimate the impact in Region Upp-
sala compared to other (untreated) Swedish regions. Second, we estimate 
the impact in municipalities in Region Uppsala compared to bordering (un-
treated) municipalities in other regions. We find a large and statistically 

                                                           
1 They asked the participants to either (1) make a list of four people who would benefit 
from the participant getting vaccinated (social impact), (2) write down arguments that 
could best convince another person to get vaccinated (argument), or (3) participate in a 
quiz with information on the safety and effectiveness of COVID-19 vaccines (information). 
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significant effect of Region Uppsala’s nudge on vaccine uptake, regardless of 
which of these two methods we use. 

Important features of a nudge are that it neither removes nor adds alter-
natives and that it does not change the utilities associated with any of the 
available alternatives, other than through the presentation of the options 
(Thaler and Sunstein, 2008). The relevant nudge in this paper involves 
changing the default. Regarding this way of nudging, Madrian and Shea 
(2001) find that the decision to participate in a pension-savings program in 
which the employer matches one’s own contribution is made far more often 
when it is made the default option. Similarly, Pichert and Katsikopoulos 
(2008) find green energy to be a more frequently chosen option when it is 
the default, and Li et al. (2013) report that registrations to organ donation 
registers increase with opt-out rules in comparison to opt-in rules. 

The nudge may also work through social effects. Knowing that everyone 
else receives the same letter with a pre-booked appointment, teenagers who 
wish to be like other teenagers presume that their peers are now likelier to 
get vaccinated and so choose to do the same. Note that the recipients of the 
pre-booked appointments must still believe that the default option induces 
more of their peers to get vaccinated, although the independent effect of the 
default may be miniscule. A well-known feature of peer effects is that small 
changes in price (or the mental cost of making an appointment) can cause 
large equilibrium changes when peer consumption complements own con-
sumption. This is because the small change will induce some portion of the 
peer group to get vaccinated, which, through the complement, causes some 
other portion to get vaccinated, etc. (Becker and Murphy, 2000). 

Our results are consistent with those of Löfgren and Nordblom (2020), 
who construct a theoretical model that predicts the circumstances in which 
a nudge is likely to be effective. Their model shows that the likelihood of a 
nudge having an effect is higher for choices that the individual believes are 
unimportant. For choices that the individual considers important, nudges 
are less likely to have an effect. Since 16–17-year-olds are unlikely to suffer 
or die from either a COVID-19 infection (Kolk et al., 2021) or the side-effects 
of a vaccine (Patone et al., 2021), we should expect a considerable effect 
from the nudge studied in the present article. Indeed, the effect that we find 
is greater than those based on modest monetary payments or conditional 
cash lotteries in previous research. We note, however, that the young age of 
the individuals in our study also makes it unclear how generalizable our 
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findings are to older individuals, for whom the incentive to get vaccinated is 
greater. 

Apart from adding to the health-economics literature on incentives and 
vaccination uptake (Campos-Mercade et al., 2021; Dai et al., 2021; Mills and 
Rüttenauer, 2021; Barber and West, 2022), we also contribute to the bur-
geoning literature on nudging (Madrian and Shea, 2001; Pichert and 
Katsikopoulos, 2008; Li et al., 2013; Löfgren and Nordblom 2020), the use 
of nudging as one tool, and the implementation of mandates and payments 
to increase vaccination rates. 

 

2 Methods and data 

2.1 Empirical framework 

Since we have access to both regional and municipal vaccination data, we 
conduct analyses on both levels to assess the effect of the nudging interven-
tion. In the regional analyses, we measure the impact through a comparative 
case study approach that compares the trend in vaccination uptake between 
Region Uppsala and a set of untreated but similar regions. Specifically, we 
implement the synthetic control method to construct a synthetic Uppsala, 
which closely resembles the real Uppsala in terms of pre-intervention char-
acteristics, from a combination of all other Swedish regions (Abadie et al., 
2010; Abadie, 2021). The synthetic control method is specifically designed 
to measure the impact of policy interventions affecting one unit (e.g., coun-
try, region, or municipality) when only a small number of control units are 
available. It is a data-driven method used to estimate counterfactuals—i.e., 
what would have happened without the nudge—which automatically deter-
mines the weighted combination of untreated regions that provides the best 
match to the treated region with regard to pre-intervention outcomes and 
covariates. The weighted average vaccination uptake from the synthetic con-
trol group then provides the counterfactual trend of the vaccination share 
for Region Uppsala, that is, it predicts how the vaccination rates would have 
developed in the absence of the nudging intervention. For a detailed presen-
tation of the method, see Abadie (2021). For recent implementations of the 
synthetic control method related to the COVID-19 pandemic, see, for exam-
ple, Cho (2020), Mitze (2020), and Alfano et al. (2021). 

Abadie and Gardeazabal (2003) proposed a nested optimization routine 
to simultaneously determine (i) a set of unit weights (one for each control) 
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that determine each untreated unit’s contribution to the synthetic control 
and (ii) variable importance weights (one for each covariate) to prioritize a 
good match on strong predictor outcomes. The latter aspect is useful in 
small datasets where a perfect match cannot be expected for all included 
variables. The standard method for determining variable weights relies on 
pre-intervention variation in the outcome. However, our data have (almost) 
no variations in any region before the vaccination rollout that can be ex-
ploited. Instead, we determine variable importance by regressing the mean 
of the post-intervention outcomes among the control regions on standardized 
versions of the covariates. Then, we use the absolute standardized coeffi-
cients from this procedure to construct variable importance weights that—
as in the original approach—are normalized to sum to one (Bonander, 2021). 
We also consider equal importance weights and the standard variable im-
portance estimation procedure in sensitivity analyses. Following Abadie et 
al. (2010), we conduct inference using in-place placebo studies, where we 
estimate “effects” in each control region to assess uncertainty. 

In the municipal analysis, we compare the eight municipalities in Region 
Uppsala to all eight municipalities that share a border with a treated mu-
nicipality. The idea is that the geographical proximity should make the un-
treated neighbors a reasonable control group, as individuals on different sides 
of the border share similar social environments. We conduct a descriptive 
comparison of the vaccination development in the treated and neighboring 
municipalities and compare the final vaccination share in the treated munic-
ipalities to those of their neighbors. We also run ordinary least squares re-
gressions with the share of vaccinated as the outcome variable, with neighbor 
fixed effects and covariates (see next section for details). Finally, we perform 
difference-in-differences and event study difference-in-differences estimation 
(Schmidheiny and Siegloch 2019), in which we contrast the increase in vac-
cinations in the treated municipalities with the increase in the neighboring 
municipalities. 
 

2.2 Data 

The outcome data in the present study are the share of vaccinated individ-
uals from the Public Health Agency of Sweden, structured as regional-level 
weekly panel data covering all 21 Swedish regions (defined in Eurostat's 
Nomenclature of Territorial Units for Statistics [NUTS3]). We have data on 
the share of vaccinated individuals in the 16–17-year age group and the 18–
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19-year age group from week 1 to 46 in 2021 for all 21 Swedish regions. 
Covariates are share of COVID-19 deaths in 2020 (also from the Public 
Health Agency of Sweden); share with at least three years of higher educa-
tion in 2020 (Statistics Sweden); share of foreign-born in 2020 (Statistics 
Sweden); and the pre-intervention share of vaccinated 18–29-year-olds, which 
we use as a proxy for the general willingness to get vaccinated in each region. 
All variables refer to the entire population unless otherwise noted. For the 
vaccination data, cells with three or fewer observations were set to zero by 
the Public Health Agency of Sweden due to integrity reasons, so we have 
some missing data in weeks when very few individuals got vaccinated. This 
was more of a problem in the early stage of the pandemic, when mainly 
individuals with medical risks (e.g., chronic lung disease, cancer, and diabe-
tes) in the 16–17 year age group were vaccinated. 

 For the municipal analysis, we use data on the vaccination share in two-
week intervals and the total vaccination share in week 49. We received two-
week (instead of one-week) data to reduce the number of cells with three or 
fewer observations. We also use the cumulative share of vaccinated individ-
uals in week 49; with this outcome, we lose no data but do not have the time 
series. As control variables, we have the share of foreign-born, the share with 
at least three years in higher education (both from Statistics Sweden), and 
the share of COVID-19 deaths in 2020 reported by the Public Health Agency 
of Sweden. 

 

3 Results 

3.1 Regional analyses 

Figure 1 plots the trends in the share of first-dose vaccinations among 16–
17-year-olds in Uppsala and the rest of Sweden. The vertical line indicates 
when Region Uppsala sent out letters with pre-booked vaccination times to 
all 16–17-year-olds (week 28). In the final week that we observe (week 46), 
we can see that vaccinations reached 85 percent of the age group in Uppsala 
and 75 percent in the other regions (unweighted average). In Table 1, we can 
see that Uppsala clearly differs from the average of the 20 control regions in 
terms of pre-intervention characteristics, whereas synthetic Uppsala closely 
matches real Uppsala on predictors with high variable importance weights. 
Table 2 displays the region weights for synthetic Uppsala, which are a 
weighted combination of two regions: Östergötland and Stockholm. 
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Figure 1. First-dose vaccinations in Uppsala (treated) and average of all other 

20 Swedish regions 
 

Table 1. Vaccination share predictor means 
 Uppsala Synthetic 

Uppsala 
Average of 20 

Control regions 
V 

Share foreign-born .189 .189 .160 .69 
Share high education .180 .164 .138 .07 
Share of COVID-19 deaths .00104 .00101 .000838 .06 
Share vaccinated (18–29 y)  .07676 .07325 .07360 .19 

Notes: The period for each predictor is 2020, except for Share vaccinated (18–29 y), which 
refers to the mean share for all pre-intervention weeks. Variable importance weights (V) 
were determined by regressing the mean of the post-intervention outcomes among all con-
trols on the covariates. 

 
Table 2. Region weights in synthetic Uppsala 

Region Weight Region Weight 
Stockholm .205 Västra Götaland 0 
Södermanland 0 Värmland 0 
Östergötland .795 Örebro 0 
Jönköping 0 Västmanland 0 
Kronoberg 0 Dalarna 0 
Kalmar 0 Gävleborg 0 
Gotland 0 Västernorrland 0 
Blekinge 0 Jämtland 0 
Skåne 0 Västerbotten 0 
Halland 0 Norrbotten 0 
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The left panel in Figure 2 shows the difference in the share of first-dose 
vaccinations between Uppsala and synthetic Uppsala for the treated age 
group (16–17 years old). There is a clear difference in the share vaccinated 
between Uppsala and synthetic Uppsala in the post-treatment period, which 
peaks in week 32 at 30.6 percentage points. In week 46, the final week of 
measurements, the difference is 12.0 percentage points (72.4 in synthetic 
Uppsala and 84.5 in actual Uppsala). In the middle panel in Figure 2, we 
compare the effect estimated for Uppsala with the effect of placebo inter-
ventions implemented in the other 20 regions. Reassuringly, we can see that 
no other region has an effect estimate close to the one in Uppsala. However, 
we can see considerable variations, especially regarding the time point when 
vaccinations shares started to increase rapidly. The right panel in Figure 2 
ranks the post-intervention effect sizes across all regions, showing that Upp-
sala has by far the largest estimated effect (with a placebo-based p-value of 
1/21=0.0472). Overall, the analysis implies a large and persistent effect of 
the intervention. 

 

 
Figure 2. Effect (left), placebo (middle), and post-intervention effect size (right) 
plots. The left panel shows the share of first-dose vaccination by week in Uppsala 
(black) and synthetic Uppsala (dashed) among 16–17-year-olds. The middle panel 
shows effects estimated by assessing the vaccination share gaps between Uppsala 
and its synthetic counterpart (black) and equivalently defined placebo gaps in all 
20 control regions (gray). The right panel shows the post-intervention root mean 
squared error (RMSE) in vaccination uptake from the synthetic control analysis in 
Uppsala and all other regions. 

                                                           
2 Abadie et al. (2010) suggest using the ratio between the post-to-pre-intervention root 
mean squared error (RMSE) in the outcome variable (vaccination uptake) to handle dif-
ferences in pre-intervention fit across the placebo analyses when assessing significance, 
which is neither feasible nor necessary with our data given that the RMSE in the pre-in-
tervention period is zero in almost all analyses. 



9 
 

There are three regions with vaccination shares among 16- and 17-year-
olds that are very close to the Uppsala vaccination rate toward the end of 
the study period: Gotland, Norrbotten, and Västerbotten. These three re-
gions reached the Uppsala vaccination shares several weeks later but still 
stand out compared to the rest of Sweden. All three regions are small and 
remote (Gotland is an island in the Baltic Sea, and the others are the two 
northernmost regions). They are also among the five regions with the lowest 
share of foreign-born individuals and about average with regard to education 
levels. Even so, their effect estimates are considerably smaller than the esti-
mated effect in Uppsala (Figure 2, right panel). 

To further scrutinize the findings, we assess the vaccination share for the 
age group 18–29 years in the Uppsala region. Since they were not treated 
with pre-booked appointments, we do not expect them to have a higher 
vaccination rate than the same age group in synthetic Uppsala. However, 
there may be spillovers in the treatment; increased vaccinations in the 
treated age group may increase vaccinations among friends and relatives in 
the older age group. Appendix Figure A1 shows the results for the age group 
18–29 years. In the final week, the difference is 5 percentage points (79.4 in 
synthetic Uppsala and 84.9 in actual Uppsala). With a placebo-based p-
value of 0.286, we interpret this difference as a chance finding. In Appendix 
Figure A2, we estimate the effect on second-dose vaccinations for 16–17-
year-olds, which yields similar results as in our main analysis (placebo-based 
p-value: 0.047). Sensitivity analyses in which we give equal importance to 
all predictors and use the variable optimization algorithm suggested by Ab-
adie and Gardeazabal (2003) also show similar results (Appendix Figures 
A3–A4). 

 
3.2 Municipal analyses 

Figure 3 shows vaccination shares for 16–17-year-olds in the treated munic-
ipalities (Enköping, Heby, Håbo, Knivsta, Tierp, Uppsala, Älvkarleby, and 
Östhammar) and untreated neighboring municipalities (Avesta, Gävle, 
Norrtälje, Sala, Sandviken, Sigtuna, Upplands-Bro, and Västerås) for the 
final available data (week 49). The share of vaccinated people was 85.1 (95% 
confidence interval [CI]: 83.2, 87.0) percent in the treated municipalities 
compared with 72.2 (95% CI: 68.3, 76.1) percent in the neighboring un-
treated municipalities, a difference of 12.9 percentage points (95% CI: 9.0, 
16.8). 
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Figure 3. Share of vaccinated 16-17-year-olds in the treated and neighboring 

municipalities 
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Figure 4 plots the trends in the share of first-dose vaccinations among 16–
17-year-olds in the treated municipalities and the neighboring municipalities. 
The vertical line indicates when Region Uppsala sent out letters with pre-
booked vaccination times to all 16–17-year-olds (week 28). As in the regional 
analysis, the share of vaccinated individuals is considerably higher in the 
treated municipalities compared to their untreated neighbors.  

Appendix Table A1 compares summary statistics for the observed covari-
ates between each treated municipality and their neighbors. We find mean-
ingful differences in some neighbor groups, indicating that it is important to 
adjust the municipal comparisons for observables even within neighbor 
groups. In Table 3, we present the results from ordinary least squares (OLS) 
regressions, with the cumulative vaccination share in week 49 among 16–17-
year-olds as the dependent variable. In column 1, we include only a treat-
ment dummy; in column 2, we include three control variables (share foreign-
born, share high education, and COVID-19 deaths); in column 3, we include 
neighbor indicators (a dummy variable for each treated municipality, indi-
cating its neighbors); and in column 4, we include all of the above. The 
treatment estimate is not statistically different from zero in column 4 
(p=0.11), but the point estimate is still considerable, and we must consider 
the limited degrees of freedom in a model with 16 observations and 12 con-
trol variables. The estimated treatment effect varies from 8.1 to 12.9 per-
centage points. As in the regional analysis, we find no evidence of an effect 
on vaccine uptake among 18-29-year-olds after adjusting for observable con-
founders (Appendix Table A2). This result suggests that the residual con-
founding within neighbor groups is small after adjusting for observables, 
assuming the same sources of bias are present in both age groups (see e.g. 
Lipsitch et al., 2010). 

A difference-in-differences estimation (without control variables) suggests 
an average effect in the post-treatment period of 15.6 percentage points (95% 
CI: 11.6, 20.0; CI computed using wild cluster bootstrap (Cameron et al., 
2008)). Figure 5 contains time-specific effect estimates and 95 percent CIs 
(i.e., an event study difference-in-differences estimation), showing how the 
effect changes over time according to the municipality-level data. Like the 
regional analysis, we can see that the treatment effect is massive early on, 
and although it decreases over time, the vaccination share in the treated 
municipalities is considerably higher in the final time period. 
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Figure 4. First-dose vaccinations in treated municipalities (located in Upp-

sala) and in their neighboring municipalities (outside Uppsala). 
 

Table 3. Determinants of share of vaccinated 16-17-year-olds in treated and 
neighboring municipalities 

 (1) (2) (3) (4) 
Treatment 0.129*** 

(0.018) 
0.094*** 
(0.014) 

0.115*** 
(0.026) 

0.081 
(0.036) 

Neighbor indicators No No Yes Yes 
Share foreign-born No -0.531*** 

(0.114) 
No -0.354 

(0.331) 
Share high education No 0.215** 

(0.084) 
No 0.134 

(0.232) 
COVID-19 deaths No 6.375 

(5.195) 
No -7.534 

(21.964) 
Constant 0.722*** 

(0.013) 
0.774*** 
(0.027) 

0.748*** 
(0.039) 

0.826*** 
(0.101) 

R2 0.782 0.900 0.928 0.967 
Notes: The dependent variable is the share of 16–17-year-olds vaccinated in week 49 in the 
16 included municipalities. Ordinary least squares regressions controlling for Treatment 
(pre-booked appointments), Neighbor indicators (one dummy variable for each treated mu-
nicipality, indicating its neighbors), as well as the control variables Share foreign-born, 
Share high education, and COVID-19 deaths. * p<0.1, ** p<0.05, *** p<0.01. 
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Figure 5. Time-specific coefficients and 95% wild cluster bootstrap confidence 

intervals from the difference-in-differences estimation 

 

4 Discussion and conclusion 

Our regional analysis suggests that pre-booked vaccination appointments 
increased vaccination uptake among 16–17-year-olds in the Uppsala region 
by about 10.3 percentage points, compared to a counterfactual uptake of 
74.2 percent (in week 46). The municipal analyses also suggest an effect of 
8.1–12.9 percentage points (in week 49).  Although our estimates may be 
biased due to unobserved confounding, they are substantial, robust, and 
specific to the treated age range over two identification methods and da-
tasets. They are also theoretically plausible. The effect we find is considera-
bly higher than the effects found for modest monetary payments or condi-
tional cash lotteries to increase COVID-19 vaccinations. Campos-Mercade 
et al. (2021) find that a monetary payment of 200 Swedish kronor (about 
$24) increased vaccinations by 4.2 percentage points (from a baseline of 71.6 
percent) in a random sample of Swedes aged 18–49 years. Barber and West 
(2021) report that a conditional cash lottery in Ohio increased the vaccina-
tion share in the state population by 1.5 percent. In a study on nudges to 
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increase COVID-19 vaccination uptake, Dai et al. (2021) find that text-based 
reminders can effectively increase vaccination uptake from low initial vac-
cination levels in the overall population, at least in the early stages of the 
vaccination rollout. Conversely, Campos-Mercade et al. (2021) find no effects 
of three different nudges on COVID-19 vaccination uptake when vaccination 
uptake is already above 70 percent. 

It may be that the effect is more pronounced in younger age groups. 
Löfgren and Nordblom (2020) argue that nudges should be more effective 
for choices that are considered unimportant by the individuals making them. 
Since 16–17-year-olds are unlikely to suffer from severe illness or death in 
case of a COVID-19 infection, whereas the risk is considerably higher for 
older individuals (Kolk et al., 2021), we should not expect the effect of the 
pre-booked vaccination appointments to be as large in the general popula-
tion. Additionally, while previous studies consider lighter nudges, we study 
the impact of a nudge that changes the default alternative, something that 
has been shown to be impactful when considering choices in other domains 
(e.g., Madrian and Shea, 2001; Pichert and Katsikopoulos, 2008; Li et al., 
2013). 

In summary, pre-booked appointments seem to provide a simple and ef-
fective nudge that could be used more broadly to increase vaccine uptake in 
the future (e.g., for COVID-19 booster doses or vaccinations for other vi-
ruses). 
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Appendix 

 
Figure A1. Effect (left), placebo (middle) and post-intervention effect size (right) 
plots for first-dose vaccinations among 18-29-year-olds. The left panel shows the 
share of first-dose vaccinations by week in Uppsala (black) and synthetic Uppsala 
(dashed). The middle panel shows effects estimated by assessing the vaccination 
share gaps between Uppsala and its synthetic counterpart (black) and equivalently 
defined placebo gaps in all 20 control regions (gray). The right panel shows the 
ratio between post-intervention root mean squared error (RMSE) to the pre-inter-
vention RMSE from the synthetic control analysis in Uppsala and all other regions. 
The specification in this analysis differs from our main analysis in two ways: (i) 
since we can exploit variation in the pre-intervention outcomes to determine varia-
ble importance, we rely on the standard original variable importance optimization 
from Abadie and Gardeazabal (2003), and (ii) for the same reason, we also stand-
ardize the effect sizes in the right panel by the pre-intervention RMSE to account 
for the fact that the pre-intervention fit can vary across regions, as suggested by 
Abadie et al. (2010). 

 

 
Figure A2. Effect (left), placebo (middle) and post-intervention effect size (right) 
plots for second-dose vaccinations among 16-17-year-olds. The left panel shows the 
share of second-dose vaccinations by week in Uppsala (black) and synthetic Uppsala 
(dashed). The middle panel shows effects estimated by assessing the vaccination 
share gaps between Uppsala and its synthetic counterpart (black) and equivalently 



18 
 

defined placebo gaps in all 20 control regions (gray). The right panel shows the 
post-intervention root mean squared error (RMSE) from the synthetic control anal-
ysis in Uppsala and all other regions. 

 

 
Figure A3. Effect (left), placebo (middle) and post-intervention effect size (right) 
plots, using the equal weights for the included covariates. The left panel shows the 
share of first-dose vaccination by week in Uppsala (black) and synthetic Uppsala 
(dashed) among 16-17-year-olds. The middle panel shows effects estimated by as-
sessing the vaccination share gaps between Uppsala and its synthetic counterpart 
(black) and equivalently defined placebo gaps in all 20 control regions (gray). The 
right panel shows the post-intervention root mean squared error (RMSE) from the 
synthetic control analysis in Uppsala and all other regions. 

 

 
Figure A4. Effect (left), placebo (middle) and post-intervention effect size (right) 
plots, using the algorithm suggested by Abadie et al. (2010). The left panel shows 
the share of first-dose vaccination by week in Uppsala (black) and synthetic Upp-
sala (dashed) among 16-17-year-olds. The middle panel shows effects estimated by 
assessing the vaccination share gaps between Uppsala and its synthetic counterpart 
(black) and equivalently defined placebo gaps in all 20 control regions (gray). The 
right panel shows the post-intervention root mean squared error (RMSE) from the 
synthetic control analysis in Uppsala and all other regions. 
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Table A1. Control variable comparison between treated municipalities 
and their neighboring municipalities 

 Treated munici-
pality 

Average of neighboring municipali-
ties 

 Enköping Sala, Västerås, Upplands-Bro 
Share foreign-born 0.161 0.225 
Share high education 0.208 0.230 
Share of Covid-19 
deaths 

0.00256 0.00272 

 Håbo Sigtuna, Uppsala 
Share foreign-born 0.157 0.326 
Share high education 0.193 0.218 
Share of Covid-19 
deaths 

0.00107 0.00270 

 Knivsta Norrtälje, Sigtuna 
Share foreign-born 0.144 0.245 
Share high education 0.369 0.178 
Share of Covid-19 
deaths 

0.00112 0.00263 

 Uppsala Norrtälje 
Share foreign-born 0.221 0.135 
Share high education 0.423 0.168 
Share of Covid-19 
deaths 

0.00187 0.00254 

 Östhammar Norrtälje 
Share foreign-born 0.096 0.135 
Share high education 0.149 0.168 
Share of Covid-19 
deaths 

0.00230 0.00254 

 Tierp Gävle 
Share foreign-born 0.131 0.159 
Share high education 0.151 0.216 
Share of Covid-19 
deaths 

0.00107 0.00217 

 Älvkarleby Gävle 
Share foreign-born 0.149 0.159 
Share high education 0.155 0.216 
Share of Covid-19 
deaths 

0.00630 0.00217 

 Heby Avesta, Gävle, Sala, Sandviken 
Share foreign-born 0.126 0.165 
Share high education 0.145 0.178 
Share of Covid-19 
deaths 

0.00161 0.00227 
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Table A2. Determinants of share of vaccinated 18-29-year-olds in treated and 
neighboring municipalities 

 (1) (2) (3) (4) 
Treatment 0.063** 

(0.023) 
0.020 

(0.012) 
0.047 

(0.038) 
0.013 

(0.028) 
Neighbor indicators No No Yes Yes 
Share foreign-born No -0.552*** 

(0.100) 
No -0.331 

(0.256) 
Share high education No 0.485*** 

(0.074) 
No 0.312 

(0.180) 
COVID-19 deaths No -2.883 

(4.555) 
No -16.042 

(16.973) 
Constant 0.745*** 

(0.016) 
0.768*** 
(0.024) 

0.769*** 
(0.057) 

0.821*** 
(0.078) 

R2 0.344 0.897 0.723 0.964 
Notes: The dependent variable is the share of 18-29-year-olds vaccinated in week 49 in the 
16 included municipalities. Ordinary least squares regressions controlling for Treatment 
(pre-booked appointments), Neighbor indicators (one dummy variable for each treated mu-
nicipality, indicating its neighbors), as well as the control variables Share foreign-born, 
Share high education, and COVID-19 deaths. * p<0.1, ** p<0.05, *** p<0.01. 

 

 


