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ABSTRACT 

Nucleic acid technologies with designed delivery systems have surged as one the most 

promising therapies of the future, due to their contribution in combating SARS-CoV-2 severe 

disease. Nevertheless, the emergence of new variants of concern still represents a real threat in 

the years to come. It is here that the use of small interfering RNA sequences to inhibit gene 

expression and, thus, protein synthesis, may complement the already developed vaccines, with 

faster design and production. Here, we have designed new sequences targeting COVID-19 

variants and other related viral diseases through bioinformatics, while also addressing the 

limited number of delivery peptides by a deep learning approach. Two sequences databases 

were produced, from which 62 were able to target the virus mRNA, and ten displayed properties 

present in delivery peptides, which we compared to the broad use TAT delivery peptide.  

 

INTRODUCTION 

The current severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a 

virus that caused the 2019 outbreak of coronavirus disease (COVID-19) pandemic, with origin in 

Wuhan, China [1]. The success of the new rapidly developed vaccines has propelled the 

interest in nucleic acids-based therapies as an approach to treat several systemic disorders, 

with an underlined interest in ribonucleic acids (RNA) [1]. However, new variants of concern 

have emerged, such as B.1.617.2 (Delta) and, more recently, the B.1.1.529 (Omicron) variants, 
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which have become dominant in an international setting, with higher transmissibility rates and 

consequently higher affluence of patients to health systems [2]. Given that, new approaches to 

reduce viral charge in infected individuals are needed to diminish infection rates and, possibly, 

symptoms. In that concern, small interfering RNA (siRNA) have been extensively studied and 

are becoming an accepted modality of pharmacotherapy [3]. These short strands of RNA induce 

selective gene suppression by binding to sequence-specific messenger RNAs (mRNA) leading 

to their cleavage and degradation, thus preventing protein synthesis [4]. 

Nevertheless, the delivery of nucleic acids imposes challenges like efficient cell delivery. 

New delivery methods focus on the design of nanoparticles that will protect the RNA from 

degradation and allowing the crossing of the cell membranes for intracellular delivery, such as 

lipid nanoparticles, polymer-based nanocarriers (nanoparticles, micelles-based) and carbon-

based nanostructures [5]. Nevertheless, protein transduction domains, most commonly known 

as cell penetrating peptides (CPP), are small peptides (6 to around 30 amino acids) that are 

able to carry cargos across the cellular membranes in an intact and functional fashion [6]. They 

have been used complementary to the aforementioned methods, allowing an enhanced 

endosomal escape by conjugation on the surface of those structures (nanoparticles, polymeric 

micelles, or liposomes). These complex constructs need a thorough design and assembly, 

which may hinder the development of stable RNA therapies and delivery. 

Nucleic acids have been successfully delivered to cells by CPPs [7], but how this occurs 

remain unclear among researchers. They are mainly cationic in nature but can also have 

amphiphilic properties [8], though no clear rules to distinguish if a peptide is a CPP or not are 

clearly established, limiting the number of described peptides. Even for the same CPP, the 

transduction mechanism varies depending on the cargo, cell environment and peptide 

concentration. Given that, CPPs have been described to be mostly internalized by endocytosis 

even if different results have made it difficult to indicate with precision which endocytic pathway 

is involved [9,10]. The most used CPPs: trans-activator of transcription (TAT) protein of HIV-1, 

penetratin and transportan [9], have been used in preclinical and clinical studies on Alzheimer’s 

disease, cancer, or cerebral ischemia for the delivery of therapeutics, but caution due to 

cytotoxic effects must be ensured [11]. Notwithstanding, even if their mechanism is not clear, 

CPPs seem to be a great approach for the delivery of therapeutics, namely siRNAs, due to their 

smaller size [3]. 

Here, we have designed siRNA sequences for COVID-19, considering the new variants 

of concern that have been spreading worldwide. We have also addressed the limited number of 
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CPPs by applying a deep learning approach for the design of new peptides capable of 

delivering siRNAs to inhibit RNA activity, thus reducing viral replication. Moreover, insights in 

the absorption, distribution, metabolism, and excretion (ADME)/toxicity of the peptides were 

accessed, comparatively to the most used TAT delivery peptide. 

 

METHODS 

siRNA sequence library 

An siRNA sequence library was constructed from the the SARS-CoV-2 reference 

genome (NCBI, NC_045512), based on the protocol proposed by Medeiros et al. [12]. A 21-

array sliding window approach with steps of 1 was implemented to obtain sequences with 21 

nucleotides (nt). These sense sequences were then transcribed to their antisense counterpart 

via shell scripting to allow proper targeting, followed by filtering steps. As our purpose was to 

obtain sequences with siRNA features, a proper selection was necessary. Biological activity was 

controlled by restricting GC-content to 30-50%, and by removing sequences able to form 

hairpins and of self-annealing, whereas toxicity was evaluated by analyzing the presence of 

poly(U/T/A) and GCCA motifs [13]. We wanted these sequences to be able to target SARS-

CoV-2 and its Delta and Omicron variants, but also to other related viral diseases, such as 

SARS-CoV, Middle East Respiratory Syndrome-related coronavirus (MERS-CoV), and influenza 

(H1N1), with no off-target effects in humans. To do that, we retrieved the following genomes in 

FASTA format: 1) the human genome, coding and non-coding transcriptome (GRCh38, from 

NCBI and ENSEMBL, respectively); 2) the reference genomes of SARS-CoV-2 (NC_045512.2), 

SARS-CoV (NC_004718.3), MERS-CoV (NC_038294.1), and influenza (GCF_001343785.1); 

and 3) different SARS-CoV-2 variants (original 2019 variant and the currently dominant Delta 

and Omicron) from USA (Texas, California and New York), Brazil, Portugal, Spain, England, 

Germany, Russia, China (without Wuhan), and Wuhan strains, obtained from the Global 

Initiative on Sharing Avian Influenza Data (GISAID) [14]. Alignment to those genomes was 

performed using the short-reads aligner Bowtie v1.1.0 [15], reporting all valid alignments per 

read, with the following parameters: maximum number of attempts to match an alignment = 4, 

and maximum number of mismatches in the “seed” = 3, with “seed” length = 7. The analysis of 

these features allowed for the selection of the most promising sequences capable of targeting 

different genes of interest in COVID-19, acting as siRNAs, while being able to target related viral 

diseases, enhancing the targeting scope of these sequences. 
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Delivery peptides design 

The design of CPPs was performed according to the protocol on antimicrobial peptides 

described by Tucs et al. [16]. This method relies on deep learning generative adversarial 

networks (GAN), which control the probability distribution of the newly generated sequences, 

ranking them into positive and negative classes. The underlined criteria include physicochemical 

descriptors such as charge, hydrophobicity, and molecular weight. Data was retrieved from the 

publicly available databases CPPsite 2.0 [17], a webserver with deposited and curated CPPs 

(data available as of 1st October 2021), and machine learning CPP (MLCPP) [18], a two-layer 

prediction framework for machine-learning-based prediction of cell penetrating peptides. 

Additionally, as the work by Tucs and colleagues [16] on antimicrobial peptides showed that 

most of their new peptides were cationic and amphiphilic, which are features found on CPPs, 

and to enrich the training sets for GAN, sequences from their datasets (retrieved from APD, 

CAMP, LAMP and DBAASP databases) were also collected. Sequences with up to 52 amino 

acids were used for training. Redundant sequences were removed. The final dataset contained 

14,778 positive sequences (CPP and antimicrobial peptides), and 6,664 negative sequences 

(non-CPPs). All the sequences were used during the training of the model (for activity 

prediction) followed by GAN of the positive dataset.  

 

ADME/Toxicity 

Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME-Tox) studies were 

conducted using the variable nearest neighbor (vNN) webserver for ADME prediction [19], 

which allows for the retrieval of a range of properties, such as cardio- and cytotoxicity, and the 

likelihood of causing liver injury. This in silico method permits for a first scan of compounds 

before taking new molecules to the lab, concomitantly having a great potential as its learning 

algorithms rely on available experimental data. 

 

RESULTS AND DISCUSSION 

Small interfering RNAs  

Before the outcome of RNA vaccines, the regulatory mechanism achieved by RNA 

interference (RNAi) was already known and used for RNAi-based therapies [3]. These usually 

short RNA strands, such as siRNA, caused sequence-specific gene suppression with several 
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advantages over other therapies: the sequence specificity allows for targeting of oncogenes and 

growth factors, and even to target single nucleotide polymorphisms [20]. Furthermore, upon 

proper delivery, siRNAs can be delivered to the brain, enhancing the scope of RNA interference 

to treat neurodegenerative pathologies, and to viral targets such as HIV and Hepatitis C, by 

inhibition of the viral RNA [21]. The vast potential of this technology to target viral diseases is of 

most importance in the current worldwide COVID-19 pandemic, and a great opportunity to 

further development of therapies for diseases that are based on differential gene expression. It 

is noteworthy that RNA technologies allow for a faster development compared to classical viral 

vaccines and are more easily modified to follow new variants.  

The sliding window of one-step approach allowed to produce 29,880 21 nt-long 

sequences that could target some or most of the targeted genomes under study (available upon 

request). The alignment of those sequences to the genome of SARS-CoV-2 allowed for the 

annotation of 29,197 sequences to several genes of interest (Figure 2 and Supplementary 

Information Table S1).  

  

Figure 2. Distribution of annotated genes that the produced 21-nt sequences are able to target. Pp, polyprotein; nsp, non-structural 

protein; ExoN, exoribonuclease; Pol, polymerase; Hel, helicase. Genes with less than 3.5% representation were pooled in the 

“others” group and are described in Supplementary Information (Table S1).  

 

SARS-CoV-2 

annotated 

genes 
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SARS-CoV-2 genome is similar to other coronaviruses. It is a ssRNA that encodes 27 

proteins from 14 open reading frames. Eight accessory proteins and the four main domains 

(nucleocapsid, envelope, membrane, and spike proteins) are encoded by the 3’-terminus, while 

polyproteins (pp) 1ab and 1a (upon cleavage of pp1ab) are encoded by the 5’-terminus. These 

are responsible for coding non-structural proteins (nsp) 1 to 10, whereas nsp11 is exclusively 

encoded by pp1a, and nsp13-16 from pp1ab [22]. 

Most of the produced siRNA sequences (≈ 20.0%) target the pp1ab gene and those it 

encodes (pp1a and nsp3). Other than spike proteins, most of the generated sequences target 

this 790 kDA polyprotein, as it is present in most gene sets (73.12%). Pp1ab and pp1a are 

replicases processed by two viral proteases (papain-like and 3C-like protease), important in viral 

replication and transcription, which makes them a vital target to inhibit viral activity [23]. On the 

other hand, only around 7.0% of the sequences aimed at the spike glycoprotein S1, and 6.0% to 

S2, totaling 13.0% of sequences to the spike protein. This protein is responsible for the binding 

to the host cell receptor and for the induction of membrane fusion, which made it a vital player in 

the host invasion process, mainly through the high affinity to the angiotensin converting enzyme 

(ACE) 2 receptor [24]. This is an interesting finding, as most current approaches to treat COVID-

19 relied on targeting the latter, highly mutagenic protein, while it seems that pp1ab gene offers 

more targeting capability while ensuring the inhibition of the replication and transcription, without 

which no host invasion is possible.  

To make sure that the designed siRNAs would have an activity close to those retrieved 

from experimental settings, we applied several filters to the obtained sequences. GC-content is 

an important factor to biological activity, and it has been found that a GC-content ranging from 

30.0 to 50.0% enables better activity [25]. We have applied that scheme and came up with 

19,731 sequences with GC-content of 33.0 to 48.0%, targeting the same annotated genes. 

Next, poly(T/U) and poly(A) with more than four nucleotide repeats should be avoided, 

as these tags can act as termination signals to RNA polymerase III [26]. Thus, we excluded 

sequences with 4 or more of these repeats, ending up with 15,681 siRNA sequences. 

Toxicity is also a major concern regarding new therapeutics, being them drug or nucleic 

acids-like therapeutics. According to Fedorov et al. [27], to limit toxicity, these sequences must 

have at least three mismatches compared to the human genome, and they should not possess 

poly(T/U) and GCCA tags (the first one has been resolved in the previous filtering step). We 

proceeded then to the removal of sequences with GCCA motifs and those that had less than 
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three mismatches when aligned to the human genome and human coding and non-coding 

transcriptome. These filtering steps were performed by shell scripting and spreadsheets 

conditionals, and highly allowed for an 87.0% reduction on the number of siRNA sequences 

(1,993).  

Apart from GC-content, effectivity was also assessed by removing 614 palindromic 

sequences, those capable of forming hairpin structures and of self-annealing, which would 

difficult or hinder the oligonucleotide’s binding to the RNA target. A final cleaning step was 

performed according to effectiveness prediction. To this aim, sequences were scanned in the si-

shRNA selector program [28], after which only 68 siRNA sequences remained. This program 

identifies features associated with silencing efficiency, scoring the sequences through statistical 

structure-activity relationships based on thermodynamic parameters. 

Finally, the 68 sequences respected all the filtering that we thought would make them 

more effective to our purpose. Nevertheless, we wanted those sequences to have a broad 

effect, by being capable to target all the strains of different countries and variants (original, Delta 

and Omicron), while also targeting other viral diseases related to SARS-CoV-2, such as SARS-

CoV, MERS-CoV, and H1N1, which have similar genomes. Therefore, we looked at the number 

of alignments to each of these genomes against the siRNA sequences and removed those with 

no alignments at all. In total, out of the initial 29,880 sequences, we came up with 62 21-nt long 

sequences that could act as siRNA for those viral infectious diseases and variants 

(Supplementary Information, table S2). This last filtering removal was highly influenced by the 

number of matches to COVID-19 Omicron variant of concern, as there were not as much 

completed sequences with high coverage deposited in the GISAID platform, hence a total 

binding to the 21-nt sequences was lower. Despite the significant removal of the original siRNA 

sequences, the relative targeting to the genes of interest remains the same as in the original 

data set (around 20.0% for pp1ab, pp1a and nsp3 cluster, Figure 3). It is important to note that a 

general first step of siRNA sequences generation without filtering enables researchers to apply 

their own designed filters to select those sequences that would better fit their needs. 
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Figure 3. Distribution of annotated genes that the produced 21-nt sequences are able to target, after screening of promising siRNA 

sequences. Pp, polyprotein; nsp, non-structural protein; 3CL-PRO, 3C-like protease; ORF, open reading frame; ns, accessory 

proteins. 

 

Cell Penetrating Peptides 

The delivery of therapeutics to cells is a major focus in today’s therapy research, as to 

ensure the proper localized activity of those moieties without raising off-target effects. In that 

regard, several nanostructures have been suggested to protect the carried drug cargos; 

however, nucleic acids-like therapies focus on base pairing rather than structural features, such 

as those that are screened for drug repurposing. In that sense, it is possible to use simpler but 

effective transporters to deliver them. CPPs have the ability to cross membranes in a non-

invasive manner, allowing for the maintenance of cells’ integrity while also being considered 

safe and highly efficient, showing low cytotoxicity and no immunological responses [8,11]. 

However, the number of described CPPs in the literature is scarce, and cell delivery is usually 

achieved with the broad CPPs TAT, penetratin and transportan [9]. Thus, we have here delved 

into deep learning methods to design new delivery peptides.  

By controlling the probability distribution of the new peptide sequences, the deep 

learning GAN method allowed for the sorting of those sequences into positive (CPP) and 

negative (non-CPP) classes, considering physicochemical descriptors such as charge, 

hydrophobicity, and molecular weight of the data from which it learned.  

New sequences were created, in a total of 9,984 (data available upon request), ranging 

from 5 to 52 aa. From those, we removed four sequences that contained the Asx (B) unnatural 
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amino acid (either aspartic acid or asparagine were possible in those positions), totaling 9,980 

new sequences. This step facilitated the use of the following servers, as they only accept 

natural amino acids sequences. 

Despite the learning capability of these methods, we wanted to further filter our data. As 

a result, we have resorted to the server Machine Learning CPP (MLCPP), from which we initially 

extracted data for our learning datasets. This tool enables the discrimination of CPP and non-

CPPs, scoring the sequences based on their amino acids’ composition. It classified 3,866 

sequences as CPP and 6,114 as non-CPP. Alongside the probability score of being a CPP or 

not, which we used as classifier, the server also provides a probability score regarding uptake 

efficiency. Both are important parameters for the determination of effective delivery peptides, so 

we organized the sequences according to both conditions. Interestingly, at least up to the 15 

best scored of each classifier, there was no sequences present in both. This highly suggests 

that being positively scored as a CPP, due to physicochemical properties, does not imply a high 

uptake efficiency score. 

For further analysis, we have selected the top 5 sequences from each score classifier 

and performed a BLAST alignment to evaluate if these sequences were already deposited 

elsewhere in any genome. As no match was found, we assumed these sequences as new 

potential CPPs, and compared them to the results of the most used CPP, the TAT peptide, first 

by sequence alignment (Clustal Omega, Figure S1) [29] and by score analysis (Table 1). 

 

Table 1. Uptake and CPP probability scores of the top 10 new sequences. Values in parenthesis concern to comparison to TAT. 

 Sequence Length (aa) CPP score Uptake score 

TAT GRKKRRQRRRPQ 12 0.9927 0.5971 

seq1 GICRWWPWIDRWRRRRRRRRRGKEPFSMP 29 0.8843 (-10.84%) 0.8427 (+24.56%) 

seq2 RRLFPRRPRIRRRRRRFKGICVCVC 25 0.9080 (-8.47%) 0.8307 (+23.36%) 

seq3 ACRRWWPFRRVRVYWPFSRK 20 0.9338 (-5.89%) 0.8231 (+22.60%) 

seq4 RRGIWWLPPIGRRRRKRRRRFREYG 25 0.9488 (-4.39%) 0.8389 (+24.18%) 

seq5 RRKFFRLRWPWLWRRRRRRCWNRIQKRFGGA 31 0.9649 (-2.78%) 0.8764 (+27.93%) 

seq6 WLWRRLAPSWYRRGRRRRRGRRRRR 25 0.9944 (+0.17%) 0.7832 (+18.61%) 

seq7 RGLLLPSLRLRVRRRRRRR 19 0.9946 (+0.19%) 0.5737 (-2.34%) 

seq8 RRRPPRKLRRRRRRRRNR 18 0.9967 (+0.40%) 0.6093 (+1.22%) 

seq9 LRARRALARGGRRARRRRRA 20 0.9981 (+0.54%) 0.4745 (-12.26%) 

seq10 KWKSFLHVVKALTKVGKAVFSGVFDMIKCKISGGC 35 0.9984 (+0.57%) 0.6722 (+7.51%) 
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Out of the 10 sequences, five displayed a slightly higher CPP score compared to TAT 

peptide (99.27% versus the higher 99.84%), while most of them scored higher than TAT 

regarding uptake efficiency, with only two sequences scoring lower (seq9 47.45% and seq7 

57.37% versus TAT’s 59.71%). The sequence with highest uptake score (seq10) is up to 1.5-

fold better than TAT. These scores, however, do not seem to be related with the length of the 

sequences, as no pattern could be found. They may rely, more than on sequence size, on 

amino acid composition and physicochemical features. The latter were then calculated using 

HeliQuest server [30] (Supplementary Information, Table S3), from which it was also possible to 

retrieve the peptides helical wheel representations (Figure 4).  

 

Figure 4. Helical wheel representation of the new peptides. 
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None of the sequences, including TAT, present highly amphipathic helices, with 

hydrophobicity inferior to 0.6. TAT is the peptide with higher polar residues content (91.67%), 

while the new peptides averaged at 61.07%. However, five of the new sequences (seq2, seq3, 

seq7, seq9, and seq10) have hydrophobic faces, which are said to be features of biologically 

active peptides, as these hydrophobic residues may insert between the membranes’ lipid acyl 

chains, allowing for binding and crossing the membrane [31].  

 
Citotoxicity 

To obtain new effective and safe drugs to be used in clinical settings, the compounds 

need to be screened and characterized regarding their cytotoxicity. One of the most common 

studies performed to obtain this information is the ADME-Tox assay, which allows for the 

prediction of what will occur after administration in the human body. Despite being a highly in 

vitro process, several in silico pipelines have been created based on experimental results to 

more easily help researchers developing and characterize new products. Such an example is 

the variable nearest neighbor (vNN) webserver for ADME prediction [19], which allows for the 

retrieval of a range of properties, as cardiotoxicity, cytotoxicity, and the likelihood of causing 

liver injury. We have scanned our new sequences and the TAT control in the server, to observe 

how they compared to the latter, a broadly accepted delivery peptide (Table 2). 

 
 

Table 2. ADME/Toxicity results for the top 10 new CPP sequences. MRTD, maximum recommended therapeutic dose (in mg/day, 

for an averaged adult weighting 60 kg). In parenthesis, fold-change compared to TAT.  

 

Cytotoxicity Liver injury Metabolism 
CYP3A4 
inhibitor 

MRTD 

TAT # No Yes ≤ 30’ No 16 

Seq1 §,¥ No No ≥ 30’ Yes 
1445 (90.31) 

 

seq2 No Yes ≤ 30’ No 
1791 (111.94) 

 

seq3 § No No ≥ 30’ Yes 
1112 (69.50) 

 

seq4 § No No ≥ 30’ Yes 
1362 (85.13) 

 

seq5 No No ≥ 30’ Yes 
1747 (109.19) 

 

seq6 No No ≥ 30’ Yes 
1525 (95.31) 

 

seq7 No No ≤ 30’ No 
1817 (113.56) 

 

seq8 # No Yes ≤ 30’ No 
391 (24.44) 

 

seq9 * No No ≤ 30’ No 
2994 (187.13) 

 

seq10 § No No ≥ 30’ No 1596 (99.75) 
* Cross blood-brain barrier; # P-glycoprotein inhibitor; § P-glycoprotein substrate; ¥ Ether-à-go-go-Related 
(hERG) gene (cardiotoxicity). 
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Regarding cytotoxicity, none of the new sequences were predicted to cause damage to 

cells, considering an IC50 ≤ 10.0 µM. However, three sequences, seq2, seq8 and TAT, have a 

high risk of inducing liver injury, which would withdraw the use of these peptides. These same 

peptides, plus seq9 and seq7, were predicted to be rapidly metabolized by the liver (half-life 

lower than 30 minutes). All the others, on the other hand, may be CYP3A4 inhibitors, which may 

justify their half-life being superior to 30 minutes, as they may be able to circumvent xenobiotics 

metabolism by this CYP enzyme. TAT and seq8 may be inhibitors of P-glycoprotein, while 

peptides seq1, seq4, seq3 and seq10 may be substrates. This protein is an essential membrane 

protein with the role of transporting foreign compounds from the cell to the outside. Given that, 

the latter set of peptides may not be ideal for cell delivery, as they could be extracted from 

inside the cell through the P-glycoprotein pathway – nonetheless being able to cross the cellular 

membranes. Interestingly, the TAT peptide has been assigned as capable of crossing the blood-

brain barrier in several studies [32], but the server could not correctly predict this feature when 

stronger filters were applied, only when weaker filters were used. Furthermore, the peptide seq1 

appears to have some cardiotoxicity (hERG). According to the server’s training data for this 

feature, this sequence must present an IC50 ≤ 10.0 µM. This peptide should then be avoided to 

prevent the blockage of a gene coding for a potassium ion channel involved in normal cardiac 

repolarization. None of the sequences showed mitochondrial toxicity or mutagenicity (through 

mitochondrial membrane potential and mutagenicity probability (Ames test), respectively). At 

last, it was important to verify the maximum recommended therapeutic dose (MRTD), this is, the 

daily dose that is considered safe to patients to take. Remarkably, TAT peptide has the smallest 

MRTD value of 16 mg/day, while seq9 has the highest MRTD of 2,994 mg/day, 188-fold better 

than the control. 

This data suggests that seq7 and seq5 peptides may be the safest ones to cell delivery 

purposes. While the first may have a half-life prediction of up to 30 minutes, it respects all the 

other parameters, concomitantly being the second with highest MRTD (1,817 mg/day), which 

could make up for the shorter half-life. This peptide has a higher probability score of being a 

CPP (99.46% versus TAT’s 99.27%) and its probability score on uptake efficiency is close to 

that of TAT (57.37% versus TAT’s 59.71%). Seq5 also passes all the parameters except for the 

CYP3A4 inhibitor prediction. This parameter should be taken into account, as the inhibition of 

CYP3A4 activity may lead to increased concentration of the compound in the liver and the 

intestine, which could cause toxicity [33]. Nevertheless, no cito- or cardiotoxicity were predicted 

for this peptide, and it has the third higher MRTD value (1,747 mg/day), which could point to its 

general safety.  
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CONCLUSIONS  

The emergence of the viral COVID-19 disease has propelled the way to develop better 

and more personalized medicines, with the highlight to RNA therapeutics. This is a great time 

for delving into these new technologies and broad their scope to other pathologies.  

Nevertheless, the design of therapeutics directed to nucleic acids sequences requires 

careful design in order to enhance their efficiency and also assure their safety and the lack of 

off-target effects that may interfere with other genes expression and, consequently, protein 

synthesis and function. In that sense, computational tools ranging from bioinformatics analysis 

to the more computationally expensive machine and deep learning have paved their way into 

the routine of researchers prior to the extensive and comprehensive experimental evaluations. 

Here, we have explored the genomics of SARS-CoV-2 to produce sequences able to bind to its 

genes to produce inhibitory effects, further preventing protein synthesis by the RNA interference 

pathway, leading to RNA degradation. The availability of data, in part caused by the huge 

demand of COVID-19 data, allowed us to define sequences with a broad general use. These 

new methodologies allow for the quick discovery of sequences targeting the recently emerged 

variants (Delta and Omicron), while still maintaining their capability to bind and act upon the 

original variant as well as other coronavirus-related viral diseases (SARS-CoV, MERS-CoV and 

H1N1). Given the promising state of RNA technologies, exploring siRNAs as therapeutics would 

open the door to easily accessed personalized medicine, even to the individual level.  

Also, despite current focus on nanostructures, delivery peptides are a promising delivery 

system, albeit the few number of described delivery peptides have restricted their use to the 

most common CPPs. Here, we have resorted to the power of deep learning to design new 

potential cell delivery peptides and explored the physicochemical properties to assign their 

activity prediction. The emergence of in silico tools and servers for these analyses are the way 

to go to enthusiasm researchers to better select and design peptide and nucleic acids 

sequences that could have better results in wet lab experiments, while helping reduce the cost 

of those tests via previous screening and selection. Thus, we designed 62 siRNA sequences 

targeting the most important SARS-CoV-2 genes, mainly to pp1ab and spike proteins, which are 

proteins with vital roles in the replication and host invasion, respectively. Additionally, we came 

up with 10 new putative delivery sequence systems that could be able to cross the cellular 

membrane. Some of these sequences displayed better features than the TAT control peptide, 

especially regarding the maximum recommended dose, which could point to a better safety and 

lower toxicity when compared to this control. The emergence of new variants and diseases may 
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push the need to new therapies, but RNA and data analysis may lead the way to answer these 

needs. 
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Figure S1. Sequence alignment of the new peptides sequence to TAT cell penetrating peptide. 
 

Table S1. Distribution of annotated genes that the produced 21-nt sequences can target. Pp, polyprotein; nsp, non-

structural protein; 3CL-PRO, 3C-like protease (main protease); ORF, open reading frame; ns, accessory protein. 

Gene/set of genes Number of targets 
 

Gene/set of genes 
Number of 

targets 

pp1ab, pp1a, nsp3 5811  Envelope protein 249 

pp1ab, polymerase 2732  Nucleocapside, ORF14 243 

Spike protein S1 2019  pp1ab, pp1a, nsp7 225 

pp1ab, pp1a, nsp2 1890  ns6 196 

pp1ab, helicase 1779  ns7b 128 

pp1ab, exoribonuclease 1557  pp1ab, pp1a, polimerase, nsp11 39 

pp1ab, pp1a, nsp4 1476  nsp1, pp1ab, pp1a, nsp2 24 

Spike protein S2 1751  pp1ab, pp1a, nsp2, nsp3 24 

pp1ab, nsp15 1014  pp1ab, pp1a, nsp4, 3CL-PRO 24 

pp1ab, pp1a, 3CL-PRO 894  pp1ab, pp1a, 3CL-PRO, nsp6 24 

pp1ab, nsp16 894  pp1ab, pp1a, nsp6, nsp7 24 

pp1ab, pp1a, nsp6 846  pp1ab, pp1a, nsp8, nsp9 24 

ORF3a 836  pp1ab, pp1a, nsp9, nsp10 24 

Nucleocapside 716 
 pp1ab, pp1a, nsp10, polymerase, 

nsp11 
24 

Membrane protein 679  pp1ab, polymerase, helicase 24 

pp1ab, pp1a, nsp8 570  pp1ab, helicase, exoribonuclease 24 

nsp1, pp1ab, pp1a 540  pp1ab, exoribonuclease, nsp15 24 

pp1ab, pp1a, nsp10 393  pp1ab, nsp15, nsp16 24 

ns8 335  Spike protein S2, ORF3a 13 

ORF7a 317  Membrane protein, ns6 11 

pp1ab, pp1a, nsp9 315  ns8, nucleocapside 7 

Nucleocapside, ORF-9b 315    
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Table S2. List of curated siRNAs targeting important viral genome genes. Pp, polyprotein; nsp, non-structural protein; 

3CL-PRO, 3C-like protease (main protease); ORF, open reading frame; ns, accessory protein. 

Target genes Target sequence Antisense sequence 

Envelope protein 5'-TGGTATTCTTGCTAGTTACACTA-3' 3'-ACCAUAAGAACGAUCAAUGUG-5' 

Membrane protein 5'-AGAAAGTGAACTCGTAATCGGAG-3' 3'-UCUUUCACUUGAGCAUUAGCC-5' 

ns7b 5'-ATCATAATGAAACTTGTCACGCC-3' 3'-UAGUAUUACUUUGAACAGUGC-5' 

 5'-TCATAATGAAACTTGTCACGCCT-3' 3'-AGUAUUACUUUGAACAGUGCG-5' 

ns8 5'-GGTATATTAGAGTAGGAGCTAGA-3' 3'-CCAUAUAAUCUCAUCCUCGAU-5' 

nsp1, pp1ab, pp1a 
 

5'-CCTCAACTTGAACAGCCCTATGT-3' 3'-GGAGUUGAACUUGUCGGGAUA-5' 

 5'-TAAGAACGGTAATAAAGGAGCTG-3' 3'-AUUCUUGCCAUUAUUUCCUCG-5' 

ORF3a 5'-AATTTATGATGAACCGACGACGA-3' 3'-UUAAAUACUACUUGGCUGCUG-5' 

 5'-GGCATACTAATTGTTACGACTAT-3' 3'-CCGUAUGAUUAACAAUGCUGA-5' 

pp1ab, exoribonuclease 5'-TTTGATTACGTCTATAATCCGTT-3' 3'-AAACUAAUGCAGAUAUUAGGC-5' 

 5'-TTGATTACGTCTATAATCCGTTT-3' 3'-AACUAAUGCAGAUAUUAGGCA-5' 

 5'-AGATTATGTACCACTAAAGTCTG-3' 3'-UCUAAUACAUGGUGAUUUCAG-5' 

 5'-GATTATGTACCACTAAAGTCTGC-3' 3'-CUAAUACAUGGUGAUUUCAGA-5' 

 5'-TGTAGATTTGACACTAGAGTGCT-3' 3'-ACAUCUAAACUGUGAUCUCAC-5' 

 5'-AGATTTGACACTAGAGTGCTATC-3' 3'-UCUAAACUGUGAUCUCACGAU-5' 

pp1ab, helicase 5'-CCGAAATTATGTCTTTACTGGTT-3' 3'-GGCUUUAAUACAGAAAUGACC-5' 

 5'-GTAAATGCTGTTACGACCATGTC-3' 3'-CAUUUACGACAAUGCUGGUAC-5' 

 5'-GGTATTGCTACTGTACGTGAAGT-3' 3'-CCAUAACGAUGACAUGCACUU-5' 

pp1ab, nsp15 5'-TGTTAAAGGTTTACAACCATCTG-3' 3'-ACAAUUUCCAAAUGUUGGUAG-5' 

 5'-TGTAAATAAGGGACACTTTGATG-3' 3'-ACAUUUAUUCCCUGUGAAACU-5' 

 5'-GACTTATTTAGAAATGCCCGTAA-3' 3'-CUGAAUAAAUCUUUACGGGCA-5' 

pp1ab, nsp16 5'-TGTTACTAATGTGAATGCGTCAT-3' 3'-ACAAUGAUUACACUUACGCAG-5' 

pp1ab, polymerase 
 

5'-CTTTAAGTTTAGAATAGACGGTG-3' 3'-GAAAUUCAAAUCUUAUCUGCC-5' 

 5'-TTAAGTTTAGAATAGACGGTGAC-3' 3'-AAUUCAAAUCUUAUCUGCCAC-5' 

 5'-CGATTATGACTACTATCGTTATA-3' 3'-GCUAAUACUGAUGAUAGCAAU-5' 

 5'-TAAGTTTAGAATAGACGGTGACA-3' 3'-AUUCAAAUCUUAUCUGCCACU-5' 

 5'-GCGATTATGACTACTATCGTTAT-3' 3'-CGCUAAUACUGAUGAUAGCAA-5' 

 5'-AAGTTTAGAATAGACGGTGACAT-3' 3'-UUCAAAUCUUAUCUGCCACUG-5' 

 5'-AAACTAATTGTTGTCGCTTCCAA-3' 3'-UUUGAUUAACAACAGCGAAGG-5' 

 5'-TTATTGAAATCAATAGCCGCCAC-3' 3'-AAUAACUUUAGUUAUCGGCGG-5' 

 5'-GTGATTTCATACAAACCACGCCA-3' 3'-CACUAAAGUAUGUUUGGUGCG-5' 

 5'-GGTAACTGGTATGATTTCGGTGA-3' 3'-CCAUUGACCAUACUAAAGCCA-5' 

pp1ab, pp1a, 3CL-PRO 5'-AGTATAAGTTTGTTCGCATTCAA-3' 3'-UCAUAUUCAAACAAGCGUAAG-5' 

 5'-AGATTTACTCATTCGTAAGTCTA-3' 3'-UCUAAAUGAGUAAGCAUUCAG-5' 

 5'-GATTTACTCATTCGTAAGTCTAA-3' 3'-CUAAAUGAGUAAGCAUUCAGA-5' 

 5'-TAAGTTTGTTCGCATTCAACCAG-3' 3'-AUUCAAACAAGCGUAAGUUGG-5' 

 5'-GTGTTAGCTTGTTACAATGGTTC-3' 3'-CACAAUCGAACAAUGUUACCA-5' 

 5'-GGTACAAGTAACTTGTGGTACAA-3' 3'-CCAUGUUCAUUGAACACCAUG-5' 

 5'-GGTACAACTACACTTAACGGTCT-3' 3'-CCAUGUUGAUGUGAAUUGCCA-5' 
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pp1ab, pp1a, nsp2 5'-CGCTATAACAATACTAGATGGAA-3' 3'-GCGAUAUUGUUAUGAUCUACC-5' 

 5'-GGTGAAACATTTGTCACGCACTC-3' 3'-CCACUUUGUAAACAGUGCGUG-5' 

pp1ab, pp1a, nsp3 5'-TCAAATTCGTTTGATGTACTGAA-3' 3'-AGUUUAAGCAAACUACAUGAC-5' 

 5'-AGCTAATAACACTAAAGGTTCAT-3' 3'-UCGAUUAUUGUGAUUUCCAAG-5' 

 5'-GCTAATAACACTAAAGGTTCATT-3' 3'-CGAUUAUUGUGAUUUCCAAGU-5' 

 5'-TAGTTTCAACTATACAGCGTAAA-3' 3'-AUCAAAGUUGAUAUGUCGCAU-5' 

 5'-AATACAAAGGTCCTATTACGGAT-3' 3'-UUAUGUUUCCAGGAUAAUGCC-5' 

 5'-AACTTTGTATTGCATAGACGGTG-3' 3'-UUGAAACAUAACGUAUCUGCC-5' 

 5'-TATTAGTGATGAAGTTGCGAGAG-3' 3'-AUAAUCACUACUUCAACGCUC-5' 

 5'-AGTTGAAGTTTAATCCACCTGCT-3' 3'-UCAACUUCAAAUUAGGUGGAC-5' 

 5'-GGAATTTGCGAGAAATGCTTGCA-3' 3'-CCUUAAACGCUCUUUACGAAC-5' 

 5'-GAATACTGTTAAGAGTGTCGGTA-3' 3'-CUUAUGACAAUUCUCACAGCC-5' 

 5'-GTAATAGAGCAACAAGAGTCGAA-3' 3'-CAUUAUCUCGUUGUUCUCAGC-5' 

 5'-GAATTTGCGAGAAATGCTTGCAC-3' 3'-CUUAAACGCUCUUUACGAACG-5' 

pp1ab, pp1a, nsp4 5'-GATATTACGCACAACTAATGGTG-3' 3'-CUAUAAUGCGUGUUGAUUACC-5' 

 5'-ATCTAAAGTTGCGTAGTGATGTG-3' 3'-UAGAUUUCAACGCAUCACUAC-5' 

 5'-TTGCTTATGAAAGTTTACGCCCT-3' 3'-AACGAAUACUUUCAAAUGCGG-5' 

 5'-TATTACGCACAACTAATGGTGAC-3' 3'-AUAAUGCGUGUUGAUUACCAC-5' 

 5'-TGCTATTACCTCTTACGCAATAT-3' 3'-ACGAUAAUGGAGAAUGCGUUA-5' 

pp1ab, pp1a, nsp6 5'-TTATGAATGTCTTGACACTCGTT-3' 3'-AAUACUUACAGAACUGUGAGC-5' 

Spike protein S1 5'-GGAACAAATACTTCTAACCAGGT-3' 3'-CCUUGUUUAUGAAGAUUGGUC-5' 

 5'-GGTATATGCGCTAGTTATCAGAC-3' 3'-CCAUAUACGCGAUCAAUAGUC-5' 

Spike protein S2 5'-GGTTTAATGGTATTGGAGTTACA-3' 3'-CCAAAUUACCAUAACCUCAAU-5' 

 

 

Table S3. Physicochemical features of the top 10 new CPP sequences, compared to the TAT CPP. 

 Length 
(aa) 

Hydrophobicity 
Hydrophobic 

moment 
Polar 

residues (%) 
Nonpolar 

residues (%) 
Net charge 

(pH 7.4) 

TAT 12 -0.647 0.200 91.67 8.33 8 

Seq1 29 0.199 0.180 58.62 41.38 10 

Seq2 25 0.211 0.219 52.00 48.00 12 

Seq3 20 0.497 0.058 50.00 60.00 7 

Seq4 25 0.05 0.240 64.00 36.00 11 

Seq5 31 0.233 0.217 58.06 41.94 14 

Seq6 25 -0.082 0.201 68.00 32.00 14 

Seq7 19 0.016 0.024 63.16 36.84 10 

Seq8 18 -0.643 0.250 83.33 16.67 14 

Seq9 20 -0.308 0.235 65.00 35.00 11 

Seq10 35 0.521 0.368 48.57 51.43 6 
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