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ABSTRACT 
 

SARS-CoV-2 virus genomes are currently being sequenced at an unprecedented pace. The 

choice of sequences used in genetic and epidemiological analysis is important as it can induce 

biases that detract from the value of these rich datasets. This raises questions about how a set 

of sequences should be chosen for analysis, and which epidemiological parameters derived 

from genomic data are sensitive or robust to changes in sampling. We provide initial insights 

on these largely understudied problems using SARS-CoV-2 genomic sequences from Hong 

Kong and the Amazonas State, Brazil. We consider sampling schemes that select sequences 

uniformly, in proportion or reciprocally with case incidence and which simply use all 

available sequences (unsampled). We apply Birth-Death Skyline and Skygrowth methods to 

estimate the time-varying reproduction number (Rt) and growth rate (rt) under these strategies 

as well as related R0 and date of origin parameters. We compare these to estimates from case 

data derived from EpiFilter, which we use as a reference for assessing bias. We find that both 

Rt and rt are sensitive to changes in sampling whilst R0 and date of origin are relatively robust. 

Moreover, we find that the unsampled datasets (opportunistic sampling) provided, overall, the 

worst Rt and rt estimates for both Hong Kong and the Amazonas case studies. We highlight 

that sampling strategy may be an influential yet neglected component of sequencing analysis 

pipelines. More targeted attempts at genomic surveillance and epidemic analyses, particularly 

in resource-poor settings which have a limited genomic capability, are necessary to maximise 

the informativeness of virus genomic datasets.   
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INTRODUCTION 

 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped single-

stranded zoonotic RNA virus belonging to the Betacoronavirus genus and Coronaviridae 

family (Gorbalenya et al., 2020). It was first identified in late 2019 in a live food market in 

Wuhan City, Hubei Province, China (Zhu et al., 2020). Within a month, SARS-CoV-2 had 

disseminated globally through sustained human-to-human transmission. It was declared a 

public health emergency of international concern on the 30th of January 2020 by the World 

Health Organisation (World Health Organisation, 2020). Those infected with SARS-CoV-2 

have phenotypically diverse symptoms ranging from mild fever to multiple organ dysfunction 

syndromes and death (Verity et al., 2020).  

 

Despite the implementation of non-pharmaceutical interventions (NPIs) by many countries to 

control their epidemics, to date over 300 million SARS-CoV-2 cases and 5.4 million deaths 

have been reported worldwide (World Health Organisation, 2022). These NPIs can vary 

within and between countries and include restrictions on international and local travel, school 

closures, social distancing measures and the isolation of infected individuals and their 

contacts (European Centre for Disease Prevention and Control, 2020). The key aim of NPIs is 

to reduce epidemic transmission, often measured by epidemiological parameters such as the 

time-varying reproduction number (Rt at time t) and growth rate (rt) (Supplementary Table 1)  

(Anderson et al., 2020; UK Health Security Agency, 2022). However, there is currently great 

difficulty in estimating and comparing epidemiological parameters derived from case and 

death data globally due to disparities in molecular diagnostic surveillance and notification 

systems between countries. Further, even if data are directly comparable, the choice of 

epidemiological parameter can implicitly shape insights into how NPIs influence 

transmission potential (Dushoff and Park, 2021; Parag, Thompson and Donnelly, 2021). As 

such, there is a need to use alternative data sources, such as genomic data (World Health 

Organisation, 2021a), to gain improved insights into viral transmission dynamics (Jombart et 

al., 2014; Duchene et al., 2020). 

 

Phylodynamic analysis of virus genome sequences have increasingly been used for studying 

emerging infectious diseases, as seen during the current SARS-CoV-2 pandemic (Faria et al., 

2021; Nadeau et al., 2021; Romano and Melo, 2021; Volz et al., 2021), recent Ebola virus 

outbreaks in Western Africa (Dudas et al., 2017) and Zika outbreaks in Brazil and the 
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Americas (Faria et al., 2017; Grubaugh et al., 2017). Transmissibility estimates such as the 

basic reproduction number (R0), Rt and rt can be directly inferred from genomic sequencing 

data in addition to other epidemiological parameters like the date of origin of a given viral 

variant which can only be inferred from genomic data. This is of particular importance for 

variants of concern (VOC), genetic variants with evidence of increased transmissibility, more 

severe disease, and/ or immune evasion. VOC are typically detected through virus genome 

sequencing and there is often a limited understanding of their epidemiological characteristics 

from epidemiological data alone (Harvey et al., 2021). To maximise the use of additional 

epidemiological information from genomic data, clear guidelines on sampling need to be 

provided (Lesley et al., 2021).  

 

Currently, SARS-CoV-2 virus genomes from COVID-19 cases are being sequenced at an 

unprecedented pace providing a wealth of virus genomic datasets (Rambaut et al., 2020). 

There are currently over 7.4 million genomic sequences available on GISAID, an open-

source repository for influenza and SARS-CoV-2 genomic sequences (Shu and McCauley, 

2017). These rich datasets can be used to provide an independent perspective and can help 

validate or challenge parameters derived from epidemiological data. Moreover, the use of 

genomic data can overcome some of the limitations and biases of using epidemiological data 

alone. For example, it is less susceptible to changes at the government level such as 

alterations to the definition of a confirmed case and changes to notification systems (de Souza 

et al., 2020; Tsang et al., 2020). Inferences from virus genomic data improve our 

understanding of underlying epidemic spread and can facilitate better-informed infection 

control decisions (Dolan, Whitfield and Andino, 2018). 

 

The most popular approaches used to investigate changes in virus population dynamics 

include the Bayesian Skyline Plot (Drummond et al., 2005) and Skygrid (Gill et al., 2013) 

models and the birth-death skyline (BDSKY) (Stadler et al., 2013). These integrate Markov 

Chain Monte Carlo (MCMC) procedures and often converge slowly on large datasets (Hall, 

Woolhouse and Rambaut, 2016). As such, currently available SARS-CoV-2 datasets 

containing thousands of sequences become computationally impractical to analyse and sub-

sampling is necessary. Although there have been some previous studies (Stack et al., 2010; 

de Silva, Ferguson and Fraser, 2012; Hall, Woolhouse and Rambaut, 2016; Karcher et al., 

2016; Parag, du Plessis and Pybus, 2020), the effects of sampling strategies on phylogenetic 

and phylodynamic inferences of pathogens is currently a neglected area of study (Frost et al., 
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2015), particularly concerning SARS-CoV-2. To our knowledge, there are no published 

studies concerning SARS-CoV-2 which explore the effect that sampling strategies have on 

the phylodynamic reconstruction of key transmission parameters. This is important as 

incorrectly implementing a sampling scheme or ignoring its importance can mislead 

inferences and introduce biases (Hall, Woolhouse and Rambaut, 2016; Hidano and Gates, 

2019). This raises the important question of how a set of sequences should be selected for 

analysis and which parameters are sensitive or robust to changes in sampling.  

 

Here we aim to explore how diverse sampling strategies in genomic sequencing may affect 

the estimation of key epidemiological parameters from genomic data. To do this, we estimate 

R0, Rt, and rt from genomic sequencing data under different sampling strategies from a 

location with high genomic coverage represented by Hong Kong, and a location with low 

genomic coverage represented by the Amazonas region, Brazil. Moreover, we compare 

epidemiological parameters derived from genomic data to those estimated from 

corresponding epidemiological data which we considered here as our gold standard. By 

getting genomic inferences close to the case data we can then draw better inferences of 

transmission estimates and parameters that cannot be derived from case data alone. This will 

help us to understand the impact that sampling strategies have on phylodynamic inference 

and aid in the interpretation of epidemiological parameters from areas with differing genomic 

coverage. 
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METHODS 
 
Empirical Estimation of the Reproduction Number, Time-varying Effective 

Reproduction Number, and Growth Rate 

 
Epidemiological Datasets 

Two sources of data from the Amazonas region, Brazil and one source of data from Hong 

Kong were used in calculating empirical epidemiological parameters. For the Amazonas 

region, mortality, and case data from the SIVEP-Gripe (Sistema de Informação de Vigilância 

Epidemiológica da Gripe) SARI (severe acute respiratory infections) database, including both 

class 4 and 5 death records (corresponding to confirmed and suspected COVID-19 deaths), 

from the 30th of November 2020 up to 7th of February 2021, were used. Here we were 

interested in cases caused by the P.1/Gamma VOC first detected in Manaus, the number of 

P.1 cases was calculated by using the proportion of P.1/Gamma viral sequences uploaded to 

GISAID within each week (Supplementary Figure 1). For Hong Kong, all case and mortality 

data were extracted from the Centre of Health Protection, Department of Health, the 

Government of the Hong Kong Special Administrative region up to the 7th of May 2020. Due 

to lags in the development of detectable viral loads, symptom onset and subsequent testing 

(Gostic et al., 2020); the date in which each case was recorded was left shifted by 5 days 

within our models (Pullano et al., 2021) to account for these delays in both datasets.  

 

Basic Reproduction Number  

The R0 was estimated using a time series of confirmed SARS-CoV-2 cases from both Hong 

Kong and the Amazonas region. To avoid the impact of NPIs on R0 estimates, only data up to 

the banning of mass gathering in Hong Kong (27th March 2020) and up to the imposition of 

strict restrictions in the Amazonas region (12th January 2021) were used. Weekly counts of 

confirmed cases were modelled using maximum likelihood methods. The weekly case counts 

were assumed to be Poisson distributed and were fitted to a deterministic closed Susceptible-

Exposed-Infectious-Recovered (SEIR) model (Equation 1) by maximising the likelihood of 

observing the data given the model parameters (Table 1). 

 

Equation 1: 

𝜆 = 	
𝛽(𝐼)
𝑁

𝑑𝑆
𝑑𝑡 = −𝜆𝑆

𝑑𝐸
𝑑𝑡 = 𝜆𝑆 − 	𝛾𝐸

𝑑𝐼
𝑑𝑡 = 	𝛾𝐸	 − 	𝜎𝐼

𝑑𝑅
𝑑𝑡 = 	𝜎𝐼 
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Subsequently, the log-likelihood was used to calculate the R0 by fitting β, the effective 

contact rate (Equation 2). 

 

Equation 2: 

𝑅! = 𝛽𝛼 
 

To generate approximate confidence intervals for R0, bootstrapping was used with 1000 

iterations.  

 

Table 1: This shows the parameter estimates used within the deterministic SEIR model. 
 

Parameter Description Value (source) 

R0 
Basic Reproduction 

Number 
Estimated 

N 

Population of Hong 

Kong 

7,481,800 persons  

(The World Bank, 

2021) 

Population of 

Amazonas Region 

4,207,714 persons  

(IBGE, 2020) 

𝛽 
Effective Contact 

Rate 
Estimated 

α Infectious Period 
0.07 (Byrne et al., 

2020)  

𝜆 Force of Infection  Estimated  

𝛾 
Progression from E to 

I 

5.26 day-1  (McAloon 

et al., 2020)   

δ 
Progression from I to 

R 
14.3 day-1 (Byrne et 

al., 2020) 

S 
Susceptible 

compartment  
Estimated 
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E 
Exposed 

Compartment 
Estimated 

I 
Infectious 

Compartment 
Estimated 

R 
Recovered 

Compartment  
Estimated 

 

Time-varying Effective Reproduction Number 

To estimate the Rt from empirical line list data the EpiFilter model (Parag, 2021) was used. 

To estimate Rt, EpiFilter uses a renewal transmission model; a general and popular 

framework used in the modelling of infectious diseases (Fraser, 2007). This model describes 

how the number of new cases (incidence) at time t depends on the Rt at that specified time 

point and the past incidence, which is summarised by the cumulative number of cases up to 

each time point weighted by the generation time distribution. Moreover, EpiFliter integrates 

both Bayesian forward and backward recursive smoothing. This improves Rt estimates by 

leveraging the benefits of two of the most popular Rt estimation approaches: EpiEstim (Cori 

et al., 2013) and the Wallinga-Teunis equation (Wallinga and Teunis, 2004). Both methods 

only utilise a proportion of the information available with either past or future incidence 

being informative. EpiFilter combines both past and future information and consequently 

minimises the mean squared error in estimation and reduces dependence on prior 

assumptions. We assume the generation time distribution is well approximated by the serial 

interval (SI) distribution (Flaxman et al., 2020). EpiFilter was used as a reference for 

parameters estimated from genomic data. 

 

Growth Rate  

After the Rt has been inferred, its relationship with rt as described by the Wallinga-Lipsitch 

equation for a gamma distributed generation time (Equation 3) was used to estimate rt 

(Wallinga and Lipsitch, 2007). The SI and variance for Hong Kong were derived from a 

systematic review and meta-analysis exploring these values (Rai, Shukla and Dwivedi, 2021) 

and a study exploring SI in Brazil was used for the Amazonas datasets (Prete et al., 2021). 

The SI was assumed to be gamma distributed. The gamma distribution is represented by 

gamma = (𝜀, 𝛾). 
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Equation 3: 

 

𝑟" = 	𝜀(𝑅"
#$%& − 1)	

 

SARS-CoV-2 Brazilian Gamma VOC and Hong Kong datasets 

All high-quality, complete SARS-CoV-2 genomes were downloaded from GISAID (Shu and 

McCauley, 2017) for Hong Kong (up to 7th May 2020) and the Amazonas state, Brazil (from 

30th November 2020 up to 7th February 2021). Using the Accession ID of each sequence, all 

sequences were screened and only sequences previously analysed and published in PubMed, 

MedRxiv, BioRxiv, virological or Preprint repositories were selected for subsequent analysis. 

For both datasets, sequence alignment was conducted using MAFFTV.7 (Katoh et al., 2002). 

The first 130 base pairs (bp) and last 50 bps of the aligned sequences were trimmed to 

remove potential sequencing artefacts in line with the Nextstrain protocol (Hadfield et al., 

2018). Both datasets were then processed using the Nextclade pipeline for quality control 

(https://clades.nextstrain.org/). Briefly, the Nextclade pipeline examines the completeness, 

divergence, and ambiguity of bases in each genetic sequence. Only sequences deemed ‘good’ 

by the Nextclade pipeline were selected for. Subsequently, all sequences were screened for 

identity and in the case of identical sequences, for those with the same location, collection 

date, only one such isolate was used. Moreover, PANGO lineage classification was 

conducted using the Pangolin (Rambaut et al., 2020) software tool (http://pangolin.cog-uk.io) 

on sequences from the Amazonas region and only those with the designated P.1/Gamma 

lineage were selected for (Supplementary Figure 1).  

 

Maximum Likelihood tree reconstruction 

Maximum likelihood phylogenetic trees were reconstructed using IQTREE2 (Minh et al., 

2020) for both datasets. A TIM2 model of nucleotide substitution with empirical base 

frequencies and a proportion of invariant sites was used as selected for by the ModelFinder 

application (Kalyaanamoorthy et al., 2017) for the Hong Kong dataset. For the Brazilian 

dataset, a TN model of nucleotide substitution (Tamura and Nei, 1993) with empirical base 

frequencies was selected for. To assess branch support, the approximate likelihood-ratio test 

based on the Shimodaira–Hasegawa-like procedure with 1,000 replicates (Anisimova et al., 

2011), was used. 
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Root-to-tip regression 

To explore the temporal structure of both the Brazilian and Hong Kong dataset, TempEst 

v.1.5.3 (Rambaut et al., 2016) was used to regress the root-to-tip genetic distances against 

sampling dates (yyyy-mm-dd). The ‘best-fitting’ root for the phylogeny was found by 

maximising the R2 value of the root-to-tip regression. Several sequences showed incongruent 

genetic diversity and were discarded from subsequent analyses. This resulted in a final 

dataset of N = 117 Hong Kong sequences and N = 196 Brazilian sequences. The gradient of 

the slopes (clock rates) provided by TempEst were used to inform the clock prior in the 

phylodynamic analysis.   

 

Subsampling for analysis  

Four retrospective sampling schemes were used to select a subsample of Amazonas and Hong 

Kong sequences. Each sampling period was broken up into weeks with each week being used 

as an interval according to a temporal sampling scheme (without replacement). This temporal 

sampling scheme was based on the number of reported cases of SARS-CoV-2. 

Temporal sampling schemes explored were: 

● Uniform sampling: All weeks have equal probability. 

● Proportional sampling: Weeks are chosen with a probability proportional to the 

value of the number of cases in each epi-week. 

● Reciprocal-proportional sampling: Weeks are chosen with a probability 

proportional to the reciprocal of the number of cases in each epi-week. 

● No sampling strategy applied: All sequences were included without a sampling 

strategy applied.  

These sampling schemes were inspired by those recommended by the WHO for practical use 

in different settings and scenarios (World Health Organisation, 2021b). Proportional 

sampling is equivalent to representative sampling, uniform sampling is equivalent to fixed 

sampling whilst the unsampled data includes all sampling strategies. Reciprocal-proportional 

sampling is not commonly used in practice as was used as a control within this study. 

 

Bayesian Evolutionary Analysis  

Date molecular clock phylogenies were inferred for all sampling strategies applied to the 

Amazonas and Hong Kong dataset using BEAST v1.10.4 (Suchard et al., 2018) with 
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BEAGLE library v3.1.0 (Ayres et al., 2019) for accelerated likelihood evaluation. For both 

the Amazonas and Hong Kong datasets, a HKY substitution model with gamma-distributed 

rate variation among sites and four rate categories was used to account for among-site rate 

variation (Hasegawa, Kishino and Yano, 1985). A strict clock molecular clock model was 

chosen. Both the Amazonas and Hong Kong dataset were analysed under a flexible non-

parametric skygrid tree prior (Hill and Baele, 2019). Four independent MCMC chains were 

run for both datasets. For the Amazonas dataset, each MCMC chain consisted of 250,000,000 

steps with sampling every 50,000 steps. Meanwhile, for the Hong Kong dataset, each MCMC 

chain consisted of 200,000,000 steps with sampling every 40,000 steps. For both datasets, the 

four independent MCMC runs were combined using LogCombiner v1.10.4 (Suchard et al., 

2018). Subsequently, 10% of all trees were discarded as burn in, and the effective sample size 

of parameter estimates were evaluated using TRACER v1.7.2 (Rambaut et al., 2018). An 

effective sample size of over 200 was obtained for all parameters. Maximum clade credibility 

(MCC) trees were summarised using Tree Annotator (Suchard et al., 2018). 

 

Phylodynamic Reconstruction  

Estimation of the Reproduction Number and Time-varying Effective Reproduction Number 

The Bayesian birth-death skyline (BDSKY) model (Stadler et al., 2013) implemented within 

BEAST 2 v2.6.5  (Bouckaert et al., 2019) was used to estimate time-varying rates of 

epidemic transmission, measured as changes in Rt (Table 2). A HKY substitution model with 

a gamma-distributed rate variation among sites and four rate categories (Hasegawa, Kishino 

and Yano, 1985) was used alongside a strict molecular clock model. A lognormal distribution 

was used for Rt. The selected number of intervals for both datasets was 5, representing Rt 

changing every 2.5 weeks for the Hong Kong datasets and every 2 weeks for the Brazilian 

datasets, with equidistant intervals per step. An exponential distribution was used with a 

mean of 36.5y-1 for the rate of becoming infectious, assuming a mean duration of infection of 

10 days (Nadeau et al., 2021). A uniform distribution was used for the sampling proportion. 

Four independent MCMC chains were run for 50 million MCMC steps with sampling every 

5000 steps for each dataset. The four independent MCMC runs were combined using 

LogCombiner v2.6.5. (Bouckaert et al., 2019) and the effective sample size of parameter 

estimates were evaluated using TRACER v1.7.2 (Rambaut et al., 2018). An effective sample 

size of over 200 was obtained for all parameters. The bdskytools R package 

(https://github.com/laduplessis/bdskytools) was used to plot the BDSKY results. 
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Table 2: Values and priors for the parameters of the BDSKY model 
 

Parameter Dataset Value or prior Rationale/Assumption 

Clock rate 

Brazil 
4.0x10-4 

(subs/site/year) Informed by root-to-tip 

regression 
Hong Kong 

1.0x10-4 

(subs/site/year) 

Death rate 
Brazil and Hong 

Kong 
36.5 y-1 

The period between 

infection and becoming 

uninfectious assumed an 

exponential distribution 

with a mean of 10 d  

(Nadeau et al., 2021) 

Reproductive number 
Brazil and Hong 

Kong 

Lognormal (0.8, 

0.5) 

Median 2.2, 95% IQR 0.8 

to 5.9 

Time of origin 

Brazil 

Lognormal (-1.50, 

0.4) y before 

present 

Median 4th December 

2020, 95% IQR 25th 

September 2020 to 12th 

January, 2021 

Hong Kong 

Lognormal (-1.75, 

0.4) y before 

present 

Median 18th January 

2020, 95% IQR 17th 

November 2019 to 15th 

February 2020 

Sampling proportion Brazil Uniform (0, 0.024) 

196 sequences from 8246 

suspected P.1 cases as of 

7th February, 2021 
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Hong Kong Uniform (0, 0.116) 

117 sequences from 1012 

confirmed cases as of 7th 

May, 2020 

 

Estimation of Growth Rates 

For each dataset, a scaled proxy for rt was estimated through time using the skygrowth model  

(Volz and Didelot, 2018) within R. Skygrowth uses MCMC to apply a first-order 

autoregressive stochastic process, founded on a non-parametric Bayesian approach, on the 

growth rate of the effective population size. The MCMC chains were run for one million 

iterations for each dataset on their MCC tree with an Exponential (10-5) prior on the 

smoothing parameter. The skygrowth model was parameterised assuming that the effective 

population size of SARS-COV-2 could change every two weeks. To enable comparisons of rt 

estimated by skygrowth and rt estimated by EpiFilter, the rt provided by the skygrowth model 

was converted to the exponential growth rate. To do this, the Rt was calculated from rt by 

adding a gamma rate variable which assumed a mean duration of infection of 10 days 

(Nadeau et al., 2021). Subsequently, the Wallinga-Lipsitch equation (Equation 3) was used to 

convert Rt into the exponential growth rate (Wallinga and Lipsitch, 2007). 

 

Comparing Parameters Estimates from Genetic and Epidemiological Data 

To compare parameters estimates from epidemiological and genetic data the Jensen-Shannon 

divergence (DJS) (Lin, 1991), which measures the similarity between two probability mass 

functions (PMFs), was applied. The DJS offers a formal information theoretic evaluation of 

distributions and is more robust than comparing Bayesian credible intervals (BCIs) since it 

considers both the shape and spread of a given distribution. The DJS is essentially a 

symmetric and smoothed version of the Kullback-Leibler divergence (DKL) and is commonly 

used in the fields of machine learning and bioinformatics. The DKL between two PMFs, P and 

Q, is defined as DKL in Equation 4 below (Kullback and Leibler, 1951). 

Equation 4:  

 

𝐷'(	(𝑃	||	𝑀) = 	:
)∈+

𝑃(𝑥)𝑙𝑜𝑔(
𝑃(𝑥)
𝑄(𝑥))	
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To calculate the PMF for each epidemiological parameter, the cumulative probability density 

function (PDF) was extracted for each model, converted to a probability density function 

(PDF), and a discretisation procedure then applied (Equation 5). τ represents the PDF and is 

discretized via Equation 4, where s = 0.05, 0.01….and  𝜏(𝜐) is the cumulative probability 

density of τ. 

Equation 5:  

𝜏,",.",,! = B
/0!.!23

/4!.!23
𝜏(𝜐)	

 

The Jensen-Shannon distance (JSD) metric quantifies the square-root of the total DJS to the 

average probability distribution and is the metric that we used to compare parameter 

estimations from differing sampling strategies. The DJS can be calculated using Equation 6 

with P and Q representing the two probability distributions and DKL as the KL divergence. A 

smaller JSD metric indicates that P and Q are more similar with a Jensen-Shannon distance of 

0 indicating equivalence of the two distributions. The mean JSD was taken over all intervals 

for the BDSKY and Skygrowth models to obtain an overall measure of the level of estimated 

similarity.  

 

Equation 6: 

 

𝐷56	(𝑃	||	𝑄	) = 	
1
2𝐷'((𝑃	||	𝑀) +	

1
2𝐷'((𝑄	||	𝑀)	𝑤ℎ𝑒𝑟𝑒	𝑀	 = 	

1
2 	(𝑃 + 𝑄) 
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RESULTS  

Sampling Schemes 

Hong Kong 

Hong Kong reacted rapidly upon learning of the emergence of SARS-CoV-2 in Wuhan, 

Hubei province, China by declaring a state of emergency on the 25th of January 2020 and by 

mobilising intensive surveillance schemes in response to initial cases (Cowling et al., 2020). 

This appeared to be successful in controlling the first wave of cases. However, due to 

imported cases from Europe and North America, a second wave of SARS-CoV-2 infections 

emerged prompting stricter NPIs such as the closure of borders and restrictions on gatherings 

(Cowling et al., 2020). Following these measures, the incidence of SARS-CoV-2 rapidly 

decreased (Figure 1). Hong Kong has a high sampling intensity with 11.6% of confirmed 

cases sequenced during our study period. 

  

Figure 1: Confirmed SARS-CoV-2 cases from Hong Kong until 7th of May 2020. The 
dashed lines represent policy change-times (Cowling et al., 2020).   
 

The number of cases within Hong Kong for each week was used to inform the sampling 

schemes used within this study. This resulted in the unsampled scheme having N = 117 

sequences, the proportional sampling scheme having N = 54 sequences, the uniform sampling 
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scheme having N = 79 and the reciprocal-proportional sampling scheme having N = 84 

sequences (Supplementary Figure 2).  

Amazonas  

The Amazonas state of Brazil had its first laboratory confirmed case of SARS-CoV-2 in 

March 2020 in a traveller returning from Europe (Nascimento et al., 2020). The first wave of 

SARS-CoV-2 infections within the state peaked in early May 2020 (Figure 2). From then, the 

epidemic waned, cases dropped, remaining stable until mid-December 2020. The number of 

cases then started growing exponentially, ushering in a second epidemic wave. This second 

wave peaked in January 2021 (Figure 2) and was caused by the emergence of a new SARS-

CoV-2 VOC, designated P.1/Gamma (Faria et al., 2021).  

To combat this second wave, the Government of the Amazonas state suspended all non-

essential commercial activities on the 23rd of December 2020 

(http://www.pge.am.gov.br/legislacao-covid-19/). However, in response to protests, these 

restrictions were reversed, and cases continued to climb. On the 12th of January, NPIs were 

re-introduced (http://www.pge.am.gov.br/legislacao-covid-19/) which seemed to be 

successful in reducing the case incidence in the state. However, cases remain comparatively 

high (Figure 2). Amazonas has a low sampling intensity with 2.4% of suspected P.1/gamma 

cases sequenced during our study period.  
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Figure 2: Confirmed SARS-CoV-2 cases from Amazonas state, north Brazil until 7th of 
February 2021. The dashed lines represent policy change-times (Sabino et al., 2021).   
 

The number of cases within the Amazonas region informed the sampling schemes used 

within this study. This resulted in the unsampled scheme having N = 196 sequences, the 

proportional sampling scheme having N = 168 sequences, the uniform sampling scheme 

having N = 150 and the reciprocal-proportional sampling scheme having N = 67 sequences 

(Supplementary Figure 3).  

Root-to-tip Regression 

The correlation (R2) between genetic divergence and sampling dates for the Hong Kong 

datasets ranged between 0.36 and 0.52 and between 0.13 and 0.20 for the Amazonas datasets. 

This implies that the Hong Kong datasets have a stronger temporal signal. This is likely due 

to the Hong Kong datasets have a wider sampling interval (106 days) compared to the 

Amazonas datasets (69 days). A wider sampling interval can lead to a stronger temporal 

signal (Drummond et al., 2003). No association between the number of sequences in each 

sampling scheme and the R2 was found. This implies that the data has a high degree of non-

independence which is an unexpected finding as more independent data should reduce the 

effects of stochasticity. The gradient (rate) of the regression ranged from 1.24x10-3 to 

1.72x10-3 s/s/y for the Hong Kong datasets and 4.41x10-4 to 5.28x10-4 s/s/y for the Amazonas 

datasets.  
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Estimation of Evolutionary Parameters 

The mean substitution rate (measured in units of number of substitutions per site per year, 

s/s/y) and the time to most common recent ancestor (TMRCA) was estimated in BEAST, for 

both datasets, and the estimation from all sampling schemes was compared.   

 

Hong Kong 

  

For Hong Kong, the mean substitution rate per site per year ranged from 9.16x10-4 to 

2.09x10-3 with sampling schemes all having overlapped BCI (Supplementary table 2; 

Supplementary Figure 4A). This indicates that the sampling scheme did not have a significant 

impact on the estimation of the clock rate. Moreover, the clock rate is comparable to 

estimations from the root-to-tip regression and to early estimations of the mean substitution 

rate per site per year of SARS-CoV-2 (Duchene et al., 2020).  

 
Molecular clock dating of the Hong Kong dataset indicates that the estimated time of the 

most common recent ancestor was mid-November 2019 and early January 2020 (mean, 10th 

December 2019; 95% BCI interval, 14th November 2019 – 1st January 2020, Figure 3B; 

Supplementary Table 2). This is around 5 weeks before the first confirmed case which was 

reported on the 18th of January 2021. Once again, all sampling strategies have overlapped 

BCIs suggesting that the sampling scheme does not significantly impact the estimation of the 

TMRCA. 

 
Brazil 

 
For the P.1 lineage in the Amazonas region, the mean substitution rate ranged from 4.00 x 

10-4 to 5.56 x 10-4 with all sampling schemes having overlapped BCIs (Figure 3D, 

Supplementary Table 2; Supplementary Figure 4B). This indicates that sampling strategy 

does not impact the estimation of the clock rate, supporting findings from the Hong Kong 

dataset. This supports estimations from the root-to-tip analysis. 
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Molecular clock dating estimated a TMRCA between mid-September and mid-November 

(mean, 23rd October 2020; 95% BCI interval, 16th September 2020 – 18th November 2020, 

Figure 3D; Supplementary Table 2). This is around five weeks before the date of the first P.1 

case identified in Manaus used in our study. All sampling schemes have overlapping BCI 

supporting the inference form the Hong Kong datasets that TMRCA is robust to sampling. 

 
Estimation of Basic Reproduction Number  

We found that Hong Kong had a significantly lower R0 of 2.17 (95% credible interval (CI) = 

1.43 - 2.83) when compared to Amazonas which had a R0 of 3.67 (95% CI = 2.83 – 4.48).  

All sampling schemes for both datasets were characterised by similar R0 values (Figure 3) 

indicating that the estimation of R0 is robust to changes in sampling scheme. 

 
Figure 3: R0 estimated from BDSKY and TMRCA for Hong Kong and Brazil. Figure 1A 
and B represent Hong Kong and Figure 1C and D represent the Amazonas.   
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Time-varying Reproduction number and Growth rate 

 
We examine the Rt and rt estimated for local SARS-CoV-2 epidemics in Hong Kong and 

Amazonas, Brazil. Our main results showing these two parameters and JSD are in figures 4-

8. 

 

Hong Kong 

The BDSKY model was used alongside the EpiFilter model to estimate the Rt for each dataset 

subsampled according to the different sampling strategies (Figure 4). Based on the 

proportional sampling scheme, which had the lowest JSD (Figure 4E), we initially infer a 

super-critical Rt value, with a mean around an Rt value of 2, that appears to fall swiftly in 

response to the state of emergency and the rapid implementation of NPIs. A steady 

transmission rate subsequently persisted throughout the following weeks around the critical 

threshold (Rt = 1). This period is succeeded by a sharp increase in Rt, peaking at a mean Rt 

value of 2.6. This is likely due to imported cases from North America and Europe (Cowling et 

al., 2020). This led to a ban on international travel resulting in a sharp decline in Rt (Figure 2). 

However, this decline lasted around a week with the mean Rt briefly increasing until more 

stringent NPIs such as the banning of major gatherings were implemented. Following this, 

the Rt continued its sharp decline falling below the critical threshold, with transmission 

becoming sub-critical (Figure 4).  
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Figure 4: Rt estimated from both the BDSKY and EpiFilter models and Jensen Shannon 
Distance for Hong Kong. The bold writing represents the sampling scheme used in figure 
A-D. The light-shaded area represents the 95% HPDI with the darker-shaded area 
presenting where the BDSKY and EpiFilter models overlap. The solid line represents the 
mean Rt with EpiFilter being represented by a red line and BDSKY a blue line. The dashed 
lines represent policy change-times. The Jensen Shannon Distance is ordered from best to 
worse.   

These results were mirrored in the estimation of rt. (Figure 5) for which the uniform and 

proportional sampling schemes showed the least divergence (Figure 5E). There was an initial 

decline in the rt, which steadied at a value of ~ 0, indicating that epidemic stabilisation has 

occurred. This stable period is followed by an increase in rt peaking at around a 5% increase 

in case incidence per day (Figure 5). In response to NPIs, the rt starts to decrease, falling 

below 0, indicating a receding epidemic. The rate of this decline peaks at around a 7.5% 

reduction in case incidence per day (Figure 5). 
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Figure 5: rt estimated from both the Skygrowth and EpiFilter models and Jensen Shannon 
Distance for Hong Kong. The bold writing represents the sampling scheme used. The light-
shaded area represents the 95% HPDI with the darker-shaded area presenting where the 
Skygrowth and EpiFilter models overlap. The solid line represents the mean rt with 
EpiFilter being represented by a red line and Skygrowth a blue line. The dashed lines 
represent policy change-times. The Jensen Shannon Distance is ordered from best to worse.   

Brazil 

Based on the uniform sampling scheme, which had the lowest JSD (Figure 6E), we initially 

infer a super-critical Rt (Rt > 1) value with a mean value of Rt = 3 (Figure 6). From this point, 

the Rt declines, although it remains above the critical threshold (Rt = 1) for much of the study 

period. Sub-critical (Rt < 1) transmission was only reached after the re-imposition of NPIs. 

This implies that initial restrictions, such as the suspension of commercial activities, were 

ineffective in lowering the Rt below its critical threshold. Only after more stringent 
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restrictions were imposed did Rt become sub-critical. However, there is no evidence of a 

sharp decrease in Rt once restrictions were re-imposed, indicating they may have not had a 

significant impact on Rt. 

 

Figure 6: Rt estimated from both the BDSKY and EpiFilter models and Jensen Shannon 
Distance for Amazonas, Brazil. The bold writing represents the sampling scheme used. The 
light-shaded area represents the 95% HPDI with the darker-shaded area presenting where 
the BDSKY and EpiFilter models overlap. The solid line represents the mean Rt with 
EpiFilter being represented by a blue line and BDSKY a red line. The dashed lines 
represent policy change-times. The Jensen Shannon Distance is ordered from best to worse.   

Based on the uniform sampling which had the lowest JSD (Figure 7E) we infer a steady 

decline in rt which matches the pattern seen with the Rt value (Figure 7). The initial rt implied 

a 23% mean increase in case incidence per day. Subsequently, the rt falls over the study 

period. rt falls below 0 after the re-imposition of NPIs with a 3% reduction in mean case 

incidence per day by the end of the study period. There is no evidence of any noticeable 

declines in rt when interventions were introduced indicating that they may have had a 

minimal impact on the growth rate of P.1/gamma.  
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Figure 7: rt estimated from both the Skygrowth and EpiFilter models and Jensen Shannon 
Distance for Amazonas, Brazil. The bold writing represents the sampling scheme used. The 
light-shaded area represents the 95% HPDI with the darker-shaded area presenting where 
the EpiFilter and Skygrowth models overlap. The solid line represents the mean rt with 
EpiFilter being represented by a red line and Skygrowth a blue line. The dashed lines 
represent policy change-times. The Jensen Shannon Distance is ordered from best to worse.  
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Discussion  

In this study, phylodynamic methods have been applied to available SARS-CoV-2 sequences 

from Hong Kong and the Amazonas region of Brazil to infer their relevant epidemiological 

parameters and to compare the impact that various sampling strategies have on the 

phylodynamic reconstruction of these parameters. 

We estimated the basic reproductive number of SARS-CoV-2 in Hong Kong to be 2.17 (95% 

CI = 1.43-2.83). This supports previous estimates of the initial R0 in Hong Kong (Cowling et 

al., 2020; Zhao et al., 2020) which estimates R0 to be 2.23 (95% CI = 1.47-3.42). For the 

Amazonas region in Brazil, we estimated the R0 to be 3.67 (95% CI = 2.83 – 4.48). Whilst the 

population of Amazonas State may not be fully susceptible to P.1/gamma (Faria et al., 2021), 

this shouldn’t affect the comparison between sampling schemes. Comparisons of different 

sampling schemes have revealed the R0 is robust to changes in sampling schemes (Figure 3A 

and C). 

For the Hong Kong dataset, the proportional sampling scheme was superior to all other 

sampling schemes in estimating Rt. It successfully predicted the initial super-critical Rt, its 

decline in response to rapid NPIs, and subsequent increase and decline during the second 

wave of infections (Figure 4B). This was in comparison to the reciprocal-proportional that 

provided the worst JSD (Figure 4D) and in which the Rt remained relatively constant 

throughout the period. In addition, the proportional sampling scheme, alongside the uniform 

sampling scheme, best estimated rt (Figure 5B and C). In contrast, for the Amazonas dataset, 

the uniform sampling scheme best estimated the Rt and was joint best for rt (Figure 6C and 

Figure 7C). It captured both its initial super-critical Rt and high rt alongside their subsequent 

decline. Our estimations for Rt are consistent with previous estimates of P.1 in Amazonas 

state (Faria et al., 2021). This contrasted with the unsampled data in which the rt increased at 

the end of the period (Figure 7A). This highlights that unlike R0, both Rt and rt are sensitive to 

changes in sampling and that even related epidemiological parameters like Rt and rt may 

require different sampling strategies to optimise inferences. 

 

Molecular clock dating of the Hong Kong and Amazonas dataset has revealed that the date of 

origin is robust to changes in sampling schemes. For Hong Kong, SARS-CoV-2 likely 

emerged in mid-December 2019 around 5 weeks before the first reported case on the 22nd of 

January 2020 (Cowling et al., 2020). The Amazonas dataset revealed that the date of the 
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common ancestor of the P.1 lineage emerged around late October 2020, around 5 weeks 

before the first reported case on the 6th of December (Faria et al., 2021), with all BCI’s 

overlapping for each sampling strategy. Like the molecular clock dating, we found that the 

molecular clock rate was robust to changes in sampling strategies in both datasets with all 

sampling strategies having overlapped BCI’s (Supplementary Table 2 and Supplementary 

Figure 4). For the Hong Kong dataset, its clock rate is comparable to early estimations of the 

mean substitution rate per site per year of SARS-CoV-2 (Duchene et al., 2020). However, the 

clock rate estimated for the Brazilian dataset is lower than initial 8.00x10-4 s/s/y which is 

used in investigating SARS-CoV-2 (Andersen et al., 2020) and that has been used in previous 

analyses of P.1 (Naveca et al., 2021). This initial estimation of evolutionary rate was 

estimated from genomic data taken over a short time span at the beginning of the pandemic 

introducing a time dependency bias (Ghafari et al., 2022). By using a more appropriate clock 

rate it can improve tree height and rooting resulting in more robust parameter estimations 

(Boskova, Stadler and Magnus, 2018).  

Treating sampling times as uninformative has been shown to be inferior to including them as 

dependent on effective population size and other parameters by several previous studies 

(Hall, Woolhouse and Rambaut, 2016; Karcher et al., 2016; Liu et al., 2020; Parag, du Plessis 

and Pybus, 2020). Whilst these studies did not consider the estimation of epidemiological 

parameters, they highlight the potential of systematic biases being introduced into the 

phylodynamic reconstruction by not using a sampling scheme or by assuming an incorrect 

model for how sampling schemes introduce information. This was supported by our results as 

phylodynamic inferences with no sampling strategy applied had the poorest performance for 

both Hong Kong and the Amazonas region. This implies that sampling has a significant 

impact on phylodynamic reconstruction, and that exploration of sampling strategies is needed 

to obtain the most robust parameter estimates.  

 

While our results provide a rigorous underpinning and insight into the dynamics of SARS-

CoV-2 and the impact of sampling strategies in the Amazonas region and Hong Kong, there 

are limitations. The Skygrowth and BDSKY models do not explicitly consider imports into 

their respective regions. This is particularly relevant for Hong Kong as most initial sequences 

from the region were sequenced from importation events (Adam et al., 2020) which can 

introduce error into parameter estimation. However, as the epidemic expanded, more 
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infections were attributable to autochthonous transmission (Adam et al., 2020), and the risk 

of error introduced by importation events decreased. Moreover, while sampling strategies can 

account for temporal variations in genomic sampling fractions there is currently no way to 

account for non-random sampling approaches in either the BDSKY or Skygrowth models 

(Vasylyeva et al., 2020). It is unclear how network-based sampling may affect parameter 

estimates obtained through these models (Volz, Koelle and Bedford, 2013) presenting a key 

challenge in molecular and genetic epidemiology. Spatial heterogeneities were also not 

explored within this work. This represents the next key step in understanding the impact of 

sampling as spatial sampling schemes would allow the reconstruction of the dispersal 

dynamics and estimation of epidemic overdispersion (k), a key epidemiological parameter. 

 

This work has highlighted the impact and importance that applying temporal sampling 

strategies can have on phylodynamic reconstruction. Whilst more genomic datasets from a 

variety of countries and regions with different sampling intensities and proportions are 

needed to create a more generalisable sampling framework and to dissect any potential 

cofounders, it has been shown that genomic datasets with no sampling strategy applied can 

introduce significant uncertainty and biases in the estimation of epidemiological parameters. 

This finding identifies the need for more targeted attempts at performing genomic 

surveillance and epidemic analyses particularly in resource-poor settings which have a 

limited genomic capability.  
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Supplementary Figures and Tables  

 

Supplementary Table 1: Key parameters and definitions for SARS-CoV-2 

Parameter Definition 

Basic reproduction number 

(R0) 

Average number of individuals infected by a single infected 

person in a fully susceptible population 

Time-varying or effective 

reproduction number (Rt) 

Average number of secondary infections generated per 

effective primary case at a certain time point and in the 

presence of susceptible depletion or interventions  

Growth rate (rt) 
Rate of change of the logarithm of the number of new cases 

per unit of time 

Incubation period Time between infection and symptom onset 

Infectious period 
Period in which an infectious host can transmit infectious 

agents to a susceptible individual 

Generation interval Time between infection events in an infector–infectee pair 

Date of origin Date in which viral variant is thought to have emerged 

Serial Interval Time between symptom onsets in an infector–infectee pair 
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Supplementary Figure 1: The proportion of P.1 sequences compared to non-P.1 

sequences found on GISaid (Shu and McCauley, 2017). 

 

Supplementary Figure 2: Number of sequences for each week and sampling scheme for 
Hong Kong dataset.  
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Supplementary Figure 3: Number of sequences for each week and sampling scheme for 
Amazonas dataset.  

 

Supplementary Table 2: TMRCA and mean substitution rate both with 95% BCI for each 
sampling strategy for Hong Kong and Amazonas datasets alongside the Jensen-Shannon 
distance. Full posterior distribution of the TMRCA and substitution rates obtained under the 
different sampling strategies can be found in Figure 3B and D and Supplementary Figure 4. 

Sampling 

Strategy 

Dataset TMRCA (95% BCI) Mean 

Substitution 

Rate (95% BCI, 

subs/site/year, 

s/s/y) 

Unsampled 

Hong Kong  2nd December 2019 (10th 

November 2019 – 24th 

December 2019) 

1.12x10-3 

(9.16x10-4 – 

1.35x10-3) 

Brazil 
30th October 2020 (8th October 

2020 – 13th December 2020) 

4.58x10-4 

(3.69x10-4 – 

5.56x10-4) 
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Proportional 

Hong Kong 24th December 2019 (21st 

November 2019 – 11th January 

2020) 

1.39x10-3 

(9.28x10-4 – 

2.48x10-3) 

Brazil 
30th October 2020 (25th August  

2020 – 29th November 2020) 

4.60x10-4 

(3.70x10-4 – 

5.56x10-4) 

Uniform 

Hong Kong 13th December 2019 (18th 

November 2019 – 4th January 

2020) 

1.64x10-3 

(1.22x10-3 – 

2.09x10-3) 

Brazil 
27th October 2020 (5th October 

2020 – 25th November 2020) 

4.60x10-4 

(3.70x10-4 – 

5.56x10-4) 

Reciprocal-

proportional 

Hong Kong  6th December 2019 (10th 

November 2019 – 28th December 

2019) 

1.30x10-3 

(1.03x10-3 – 

1.59x10-3) 

Brazil 30th October 2020 (27th 

September 2020 – 25th November 

2020) 

4.00x10-4 

(2.56x10-4 – 

5.55x10-4) 
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Supplementary Figure 4: Mean substitution rate (s/s/y) for Hong Kong and Brazil. Figure 

1A represents Hong Kong with Figure 1B representing the Amazonas.   

Supplementary Table 3: Accession ID of each Hong Kong sequence for each sampling 
strategy used within this study 

 

Unsampled Proportional Uniform Reciprocal-
proportional 

EPI_ISL_ 412028 EPI_ISL_ 414517 EPI_ISL_ 412029 EPI_ISL_ 412028 

EPI_ISL_ 412029 EPI_ISL_ 414519 EPI_ISL_ 414517 EPI_ISL_ 412029 

EPI_ISL_ 412030 EPI_ISL_ 414527 EPI_ISL_ 414519 EPI_ISL_ 412030 

EPI_ISL_ 414517 EPI_ISL_ 418815 EPI_ISL_ 414527 EPI_ISL_ 414517 

EPI_ISL_ 414519 EPI_ISL_ 419224 EPI_ISL_ 414569 EPI_ISL_ 414519 

EPI_ISL_ 414527 EPI_ISL_ 419229 EPI_ISL_ 414571 EPI_ISL_ 414527 

EPI_ISL_ 414528 EPI_ISL_ 419232 EPI_ISL_ 416314 EPI_ISL_ 414528 

EPI_ISL_ 414569 EPI_ISL_ 450404 EPI_ISL_ 417064 EPI_ISL_ 414569 

EPI_ISL_ 414571 EPI_ISL_ 450405 EPI_ISL_ 417443 EPI_ISL_ 414571 

EPI_ISL_ 416314 EPI_ISL_ 450410 EPI_ISL_ 419214 EPI_ISL_ 416314 
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EPI_ISL_ 417064 EPI_ISL_ 476801 EPI_ISL_ 419215 EPI_ISL_ 417064 

EPI_ISL_ 417176 EPI_ISL_ 476802 EPI_ISL_ 419217 EPI_ISL_ 417176 

EPI_ISL_ 417178 EPI_ISL_ 476803 EPI_ISL_ 419224 EPI_ISL_ 417178 

EPI_ISL_ 417181 EPI_ISL_ 497769 EPI_ISL_ 419225 EPI_ISL_ 417181 

EPI_ISL_ 417185 EPI_ISL_ 497773 EPI_ISL_ 419227 EPI_ISL_ 417185 

EPI_ISL_ 417187 EPI_ISL_ 497775 EPI_ISL_ 419228 EPI_ISL_ 417187 

EPI_ISL_ 417188 EPI_ISL_ 497784 EPI_ISL_ 419229 EPI_ISL_ 417188 

EPI_ISL_ 417193 EPI_ISL_ 497786 EPI_ISL_ 419231 EPI_ISL_ 417193 

EPI_ISL_ 417197 EPI_ISL_ 497791 EPI_ISL_ 419232 EPI_ISL_ 417197 

EPI_ISL_ 417443 EPI_ISL_ 497796 EPI_ISL_ 419245 EPI_ISL_ 417443 

EPI_ISL_ 418815 EPI_ISL_ 497799 EPI_ISL_ 419247 EPI_ISL_ 418815 

EPI_ISL_ 419214 EPI_ISL_ 497806 EPI_ISL_ 419250 EPI_ISL_ 419214 

EPI_ISL_ 419215 EPI_ISL_ 497808 EPI_ISL_ 419252 EPI_ISL_ 419215 

EPI_ISL_ 419216 EPI_ISL_ 497810 EPI_ISL_ 434564 EPI_ISL_ 419216 

EPI_ISL_ 419217 EPI_ISL_ 497811 EPI_ISL_ 434565 EPI_ISL_ 419217 

EPI_ISL_ 419219 EPI_ISL_ 497818 EPI_ISL_ 434567 EPI_ISL_ 419219 

EPI_ISL_ 419221 EPI_ISL_ 497819 EPI_ISL_ 434568 EPI_ISL_ 419221 

EPI_ISL_ 419222 EPI_ISL_ 497821 EPI_ISL_ 434569 EPI_ISL_ 419222 

EPI_ISL_ 419224 EPI_ISL_ 497823 EPI_ISL_ 434570 EPI_ISL_ 419224 

EPI_ISL_ 419225 EPI_ISL_ 497824 EPI_ISL_ 434571 EPI_ISL_ 419225 

EPI_ISL_ 419226 EPI_ISL_ 497840 EPI_ISL_ 450405 EPI_ISL_ 419226 

EPI_ISL_ 419227 EPI_ISL_ 497845 EPI_ISL_ 450408 EPI_ISL_ 419227 

EPI_ISL_ 419228 EPI_ISL_ 497846 EPI_ISL_ 450409 EPI_ISL_ 419228 

EPI_ISL_ 419229 EPI_ISL_ 497847 EPI_ISL_ 450410 EPI_ISL_ 419229 

EPI_ISL_ 419231 EPI_ISL_ 497850 EPI_ISL_ 450411 EPI_ISL_ 419231 

EPI_ISL_ 419232 EPI_ISL_ 497856 EPI_ISL_ 476801 EPI_ISL_ 419232 

EPI_ISL_ 419245 EPI_ISL_ 497865 EPI_ISL_ 476802 EPI_ISL_ 419245 

EPI_ISL_ 419247 EPI_ISL_ 497870 EPI_ISL_ 476804 EPI_ISL_ 419247 

EPI_ISL_ 419250 EPI_ISL_ 516798 EPI_ISL_ 497769 EPI_ISL_ 419250 

EPI_ISL_ 419252 EPI_ISL_ 539820 EPI_ISL_ 497771 EPI_ISL_ 419252 

EPI_ISL_ 434560 EPI_ISL_ 539850 EPI_ISL_ 497783 EPI_ISL_ 434563 

EPI_ISL_ 434563 EPI_ISL_ 539851 EPI_ISL_ 497784 EPI_ISL_ 434564 
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EPI_ISL_ 434564 EPI_ISL_ 610167 EPI_ISL_ 497791 EPI_ISL_ 434565 

EPI_ISL_ 434565 EPI_ISL_ 610168 EPI_ISL_ 497806 EPI_ISL_ 434566 

EPI_ISL_ 434566 EPI_ISL_ 610169 EPI_ISL_ 497810 EPI_ISL_ 434567 

EPI_ISL_ 434567 EPI_ISL_ 610170 EPI_ISL_ 497811 EPI_ISL_ 434568 

EPI_ISL_ 434568 EPI_ISL_ 610171 EPI_ISL_ 497813 EPI_ISL_ 434569 

EPI_ISL_ 434569 EPI_ISL_ 610172 EPI_ISL_ 497818 EPI_ISL_ 434570 

EPI_ISL_ 434570 EPI_ISL_ 610173 EPI_ISL_ 497821 EPI_ISL_ 434571 

EPI_ISL_ 434571 EPI_ISL_ 610174 EPI_ISL_ 497823 EPI_ISL_ 450405 

EPI_ISL_ 450404 EPI_ISL_ 610175 EPI_ISL_ 497824 EPI_ISL_ 450408 

EPI_ISL_ 450405 EPI_ISL_ 610177 EPI_ISL_ 497826 EPI_ISL_ 450409 

EPI_ISL_ 450408  EPI_ISL_ 497827 EPI_ISL_ 450410 

EPI_ISL_ 450409  EPI_ISL_ 497831 EPI_ISL_ 450411 

EPI_ISL_ 450410  EPI_ISL_ 497832 EPI_ISL_ 450412 

EPI_ISL_ 450411  EPI_ISL_ 497846 EPI_ISL_ 476802 

EPI_ISL_ 450412  EPI_ISL_ 497847 EPI_ISL_ 476804 

EPI_ISL_ 476801  EPI_ISL_ 497848 EPI_ISL_ 497769 

EPI_ISL_ 476802  EPI_ISL_ 497856 EPI_ISL_ 497771 

EPI_ISL_ 476803  EPI_ISL_ 497860 EPI_ISL_ 497773 

EPI_ISL_ 476804  EPI_ISL_ 497865 EPI_ISL_ 497783 

EPI_ISL_ 497769  EPI_ISL_ 539820 EPI_ISL_ 497784 

EPI_ISL_ 497771  EPI_ISL_ 539850 EPI_ISL_ 497791 

EPI_ISL_ 497773  EPI_ISL_ 539851 EPI_ISL_ 497797 

EPI_ISL_ 497775  EPI_ISL_ 610165 EPI_ISL_ 497811 

EPI_ISL_ 497783  EPI_ISL_ 610166 EPI_ISL_ 497812 

EPI_ISL_ 497784  EPI_ISL_ 610167 EPI_ISL_ 497818 

EPI_ISL_ 497786  EPI_ISL_ 610168 EPI_ISL_ 497819 

EPI_ISL_ 497791  EPI_ISL_ 610169 EPI_ISL_ 497823 

EPI_ISL_ 497796  EPI_ISL_ 610171 EPI_ISL_ 497824 
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EPI_ISL_ 497797  EPI_ISL_ 610173 EPI_ISL_ 497827 

EPI_ISL_ 497798  EPI_ISL_ 610174 EPI_ISL_ 497831 

EPI_ISL_ 497799  EPI_ISL_ 610175 EPI_ISL_ 497833 

EPI_ISL_ 497806  EPI_ISL_ 610177 EPI_ISL_ 497848 

EPI_ISL_ 497808   EPI_ISL_ 497850 

EPI_ISL_ 497810   EPI_ISL_ 497856 

EPI_ISL_ 497811   EPI_ISL_ 497860 

EPI_ISL_ 497812   EPI_ISL_ 497864 

EPI_ISL_ 497813   EPI_ISL_ 497865 

EPI_ISL_ 497818   EPI_ISL_ 539850 

EPI_ISL_ 497819   EPI_ISL_ 539851 

EPI_ISL_ 497820   EPI_ISL_ 610165 

EPI_ISL_ 497821   EPI_ISL_ 610166 

EPI_ISL_ 497823   EPI_ISL_ 610172 

EPI_ISL_ 497824   EPI_ISL_ 610177 

EPI_ISL_ 497826    

EPI_ISL_ 497827    

EPI_ISL_ 497831    

EPI_ISL_ 497832    

EPI_ISL_ 497833    

EPI_ISL_ 497840    

EPI_ISL_ 497845    

EPI_ISL_ 497846    

EPI_ISL_ 497847    

EPI_ISL_ 497848    

EPI_ISL_ 497850    

EPI_ISL_ 497856    
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EPI_ISL_ 497860    

EPI_ISL_ 497864    

EPI_ISL_ 497865    

EPI_ISL_ 497870    

EPI_ISL_ 516798    

EPI_ISL_ 539820    

EPI_ISL_ 539850    

EPI_ISL_ 539851    

EPI_ISL_ 610165    

EPI_ISL_ 610166    

EPI_ISL_ 610167    

EPI_ISL_ 610168    

EPI_ISL_ 610169    

EPI_ISL_ 610170    

EPI_ISL_ 610171    

EPI_ISL_ 610172    

EPI_ISL_ 610173    

EPI_ISL_ 610174    

EPI_ISL_ 610175    

EPI_ISL_ 610177    
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Supplementary Table 4: Accession ID of each Amazonas State, Brazil sequence for each 
sampling strategy used within this study 
 

Unsampled Proportional Uniform Reciprocal-
proportional 

EPI_ISL_ 1034306 EPI_ISL_ 1034304 EPI_ISL_ 1034304 EPI_ISL_ 1034306 

EPI_ISL_ 1060876 EPI_ISL_ 1034306 EPI_ISL_ 1034306 EPI_ISL_ 1060913 

EPI_ISL_ 1060877 EPI_ISL_ 1060877 EPI_ISL_ 1060877 EPI_ISL_ 1060914 

EPI_ISL_ 1060881 EPI_ISL_ 1060881 EPI_ISL_ 1060881 EPI_ISL_ 1068149 

EPI_ISL_ 1060888 EPI_ISL_ 1060897 EPI_ISL_ 1060888 EPI_ISL_ 1068150 

EPI_ISL_ 1060889 EPI_ISL_ 1060900 EPI_ISL_ 1060889 EPI_ISL_ 1068156 

EPI_ISL_ 1060894 EPI_ISL_ 1060902 EPI_ISL_ 1060897 EPI_ISL_ 1068198 

EPI_ISL_ 1060897 EPI_ISL_ 1060904 EPI_ISL_ 1060900 EPI_ISL_ 1068258 

EPI_ISL_ 1060900 EPI_ISL_ 1060906 EPI_ISL_ 1060912 EPI_ISL_ 1068260 

EPI_ISL_ 1060902 EPI_ISL_ 1060912 EPI_ISL_ 1060913 EPI_ISL_ 1068262 

EPI_ISL_ 1060904 EPI_ISL_ 1060913 EPI_ISL_ 1060956 EPI_ISL_ 1068263 

EPI_ISL_ 1060906 EPI_ISL_ 1060914 EPI_ISL_ 1061026 EPI_ISL_ 1068264 

EPI_ISL_ 1060911 EPI_ISL_ 1060918 EPI_ISL_ 1068111 EPI_ISL_ 1068278 

EPI_ISL_ 1060912 EPI_ISL_ 1060956 EPI_ISL_ 1068149 EPI_ISL_ 1068286 

EPI_ISL_ 1060913 EPI_ISL_ 1061026 EPI_ISL_ 1068150 EPI_ISL_ 1068288 

EPI_ISL_ 1060914 EPI_ISL_ 1068110 EPI_ISL_ 1068154 EPI_ISL_ 1166615 

EPI_ISL_ 1060918 EPI_ISL_ 1068111 EPI_ISL_ 1068158 EPI_ISL_ 1213190 

EPI_ISL_ 1060956 EPI_ISL_ 1068112 EPI_ISL_ 1068160 EPI_ISL_ 1261690 

EPI_ISL_ 1061026 EPI_ISL_ 1068114 EPI_ISL_ 1068169 EPI_ISL_ 1261694 

EPI_ISL_ 1068110 EPI_ISL_ 1068149 EPI_ISL_ 1068198 EPI_ISL_ 2777236 

EPI_ISL_ 1068111 EPI_ISL_ 1068150 EPI_ISL_ 1068222 EPI_ISL_ 2777320 

EPI_ISL_ 1068112 EPI_ISL_ 1068151 EPI_ISL_ 1068225 EPI_ISL_ 2777363 

EPI_ISL_ 1068114 EPI_ISL_ 1068154 EPI_ISL_ 1068226 EPI_ISL_ 2777375 

EPI_ISL_ 1068149 EPI_ISL_ 1068156 EPI_ISL_ 1068243 EPI_ISL_ 2777376 

EPI_ISL_ 1068150 EPI_ISL_ 1068158 EPI_ISL_ 1068248 EPI_ISL_ 2777384 

EPI_ISL_ 1068151 EPI_ISL_ 1068160 EPI_ISL_ 1068249 EPI_ISL_ 2777388 

EPI_ISL_ 1068154 EPI_ISL_ 1068169 EPI_ISL_ 1068260 EPI_ISL_ 2777397 
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EPI_ISL_ 1068156 EPI_ISL_ 1068198 EPI_ISL_ 1068261 EPI_ISL_ 2777399 

EPI_ISL_ 1068158 EPI_ISL_ 1068221 EPI_ISL_ 1068262 EPI_ISL_ 2777401 

EPI_ISL_ 1068160 EPI_ISL_ 1068222 EPI_ISL_ 1068263 EPI_ISL_ 2777403 

EPI_ISL_ 1068169 EPI_ISL_ 1068225 EPI_ISL_ 1068264 EPI_ISL_ 2777404 

EPI_ISL_ 1068198 EPI_ISL_ 1068248 EPI_ISL_ 1068266 EPI_ISL_ 2777409 

EPI_ISL_ 1068221 EPI_ISL_ 1068249 EPI_ISL_ 1068268 EPI_ISL_ 2777410 

EPI_ISL_ 1068222 EPI_ISL_ 1068258 EPI_ISL_ 1068269 EPI_ISL_ 2777414 

EPI_ISL_ 1068225 EPI_ISL_ 1068260 EPI_ISL_ 1068270 EPI_ISL_ 2777415 

EPI_ISL_ 1068226 EPI_ISL_ 1068261 EPI_ISL_ 1068271 EPI_ISL_ 2777465 

EPI_ISL_ 1068243 EPI_ISL_ 1068262 EPI_ISL_ 1068272 EPI_ISL_ 2777466 

EPI_ISL_ 1068248 EPI_ISL_ 1068263 EPI_ISL_ 1068273 EPI_ISL_ 2777467 

EPI_ISL_ 1068249 EPI_ISL_ 1068264 EPI_ISL_ 1068274 EPI_ISL_ 2777469 

EPI_ISL_ 1068258 EPI_ISL_ 1068266 EPI_ISL_ 1068279 EPI_ISL_ 2777470 

EPI_ISL_ 1068260 EPI_ISL_ 1068268 EPI_ISL_ 1068282 EPI_ISL_ 2777472 

EPI_ISL_ 1068261 EPI_ISL_ 1068269 EPI_ISL_ 1068283 EPI_ISL_ 2777473 

EPI_ISL_ 1068262 EPI_ISL_ 1068270 EPI_ISL_ 1068284 EPI_ISL_ 2777474 

EPI_ISL_ 1068263 EPI_ISL_ 1068271 EPI_ISL_ 1068285 EPI_ISL_ 2777475 

EPI_ISL_ 1068264 EPI_ISL_ 1068272 EPI_ISL_ 1068286 EPI_ISL_ 2777482 

EPI_ISL_ 1068266 EPI_ISL_ 1068273 EPI_ISL_ 1068287 EPI_ISL_ 2777483 

EPI_ISL_ 1068268 EPI_ISL_ 1068274 EPI_ISL_ 1068288 EPI_ISL_ 2777485 

EPI_ISL_ 1068269 EPI_ISL_ 1068275 EPI_ISL_ 1068290 EPI_ISL_ 2777503 

EPI_ISL_ 1068270 EPI_ISL_ 1068276 EPI_ISL_ 1068291 EPI_ISL_ 2777508 

EPI_ISL_ 1068271 EPI_ISL_ 1068278 EPI_ISL_ 1068292 EPI_ISL_ 2777509 

EPI_ISL_ 1068272 EPI_ISL_ 1068279 EPI_ISL_ 1166615 EPI_ISL_ 2777516 

EPI_ISL_ 1068273 EPI_ISL_ 1068280 EPI_ISL_ 1213190 EPI_ISL_ 2777599 

EPI_ISL_ 1068274 EPI_ISL_ 1068281 EPI_ISL_ 1213204 EPI_ISL_ 2777698 

EPI_ISL_ 1068275 EPI_ISL_ 1068282 EPI_ISL_ 1261683 EPI_ISL_ 2777986 

EPI_ISL_ 1068276 EPI_ISL_ 1068283 EPI_ISL_ 1261685 EPI_ISL_ 2777987 

EPI_ISL_ 1068278 EPI_ISL_ 1068284 EPI_ISL_ 1261690 EPI_ISL_ 2777993 

EPI_ISL_ 1068279 EPI_ISL_ 1068285 EPI_ISL_ 1261694 EPI_ISL_ 2777999 

EPI_ISL_ 1068280 EPI_ISL_ 1068286 EPI_ISL_ 2777236 EPI_ISL_ 2778002 

EPI_ISL_ 1068281 EPI_ISL_ 1068287 EPI_ISL_ 2777248 EPI_ISL_ 2778004 
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EPI_ISL_ 1068282 EPI_ISL_ 1068288 EPI_ISL_ 2777249 EPI_ISL_ 2778005 

EPI_ISL_ 1068283 EPI_ISL_ 1068289 EPI_ISL_ 2777250 EPI_ISL_ 833138 

EPI_ISL_ 1068284 EPI_ISL_ 1068290 EPI_ISL_ 2777320 EPI_ISL_ 833140 

EPI_ISL_ 1068285 EPI_ISL_ 1068291 EPI_ISL_ 2777363 EPI_ISL_ 906071 

EPI_ISL_ 1068286 EPI_ISL_ 1068292 EPI_ISL_ 2777364 EPI_ISL_ 918505 

EPI_ISL_ 1068287 EPI_ISL_ 1166615 EPI_ISL_ 2777373 EPI_ISL_ 918506 

EPI_ISL_ 1068288 EPI_ISL_ 1213190 EPI_ISL_ 2777374 EPI_ISL_ 918508 

EPI_ISL_ 1068289 EPI_ISL_ 1213204 EPI_ISL_ 2777375 EPI_ISL_ 918509 

EPI_ISL_ 1068290 EPI_ISL_ 1261683 EPI_ISL_ 2777376  

EPI_ISL_ 1068291 EPI_ISL_ 1261685 EPI_ISL_ 2777377  

EPI_ISL_ 1068292 EPI_ISL_ 1261690 EPI_ISL_ 2777378  

EPI_ISL_ 1166615 EPI_ISL_ 1261694 EPI_ISL_ 2777380  

EPI_ISL_ 1213190 EPI_ISL_ 2777236 EPI_ISL_ 2777383  

EPI_ISL_ 1213204 EPI_ISL_ 2777238 EPI_ISL_ 2777384  

EPI_ISL_ 1261683 EPI_ISL_ 2777248 EPI_ISL_ 2777385  

EPI_ISL_ 1261685 EPI_ISL_ 2777249 EPI_ISL_ 2777388  

EPI_ISL_ 1261690 EPI_ISL_ 2777250 EPI_ISL_ 2777397  

EPI_ISL_ 1261694 EPI_ISL_ 2777251 EPI_ISL_ 2777398  

EPI_ISL_ 2777236 EPI_ISL_ 2777320 EPI_ISL_ 2777399  

EPI_ISL_ 2777238 EPI_ISL_ 2777363 EPI_ISL_ 2777400  

EPI_ISL_ 2777248 EPI_ISL_ 2777364 EPI_ISL_ 2777401  

EPI_ISL_ 2777249 EPI_ISL_ 2777373 EPI_ISL_ 2777402  

EPI_ISL_ 2777250 EPI_ISL_ 2777374 EPI_ISL_ 2777403  

EPI_ISL_ 2777251 EPI_ISL_ 2777375 EPI_ISL_ 2777404  

EPI_ISL_ 2777320 EPI_ISL_ 2777376 EPI_ISL_ 2777405  

EPI_ISL_ 2777363 EPI_ISL_ 2777377 EPI_ISL_ 2777406  

EPI_ISL_ 2777364 EPI_ISL_ 2777378 EPI_ISL_ 2777407  

EPI_ISL_ 2777373 EPI_ISL_ 2777380 EPI_ISL_ 2777408  

EPI_ISL_ 2777374 EPI_ISL_ 2777382 EPI_ISL_ 2777410  

EPI_ISL_ 2777375 EPI_ISL_ 2777383 EPI_ISL_ 2777412  

EPI_ISL_ 2777376 EPI_ISL_ 2777384 EPI_ISL_ 2777413  

EPI_ISL_ 2777377 EPI_ISL_ 2777385 EPI_ISL_ 2777414  
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EPI_ISL_ 2777378 EPI_ISL_ 2777388 EPI_ISL_ 2777415  

EPI_ISL_ 2777380 EPI_ISL_ 2777397 EPI_ISL_ 2777417  

EPI_ISL_ 2777382 EPI_ISL_ 2777398 EPI_ISL_ 2777418  

EPI_ISL_ 2777383 EPI_ISL_ 2777399 EPI_ISL_ 2777419  

EPI_ISL_ 2777384 EPI_ISL_ 2777400 EPI_ISL_ 2777454  

EPI_ISL_ 2777385 EPI_ISL_ 2777401 EPI_ISL_ 2777461  

EPI_ISL_ 2777388 EPI_ISL_ 2777402 EPI_ISL_ 2777462  

EPI_ISL_ 2777397 EPI_ISL_ 2777403 EPI_ISL_ 2777465  

EPI_ISL_ 2777398 EPI_ISL_ 2777404 EPI_ISL_ 2777466  

EPI_ISL_ 2777399 EPI_ISL_ 2777405 EPI_ISL_ 2777467  

EPI_ISL_ 2777400 EPI_ISL_ 2777406 EPI_ISL_ 2777469  

EPI_ISL_ 2777401 EPI_ISL_ 2777407 EPI_ISL_ 2777470  

EPI_ISL_ 2777402 EPI_ISL_ 2777408 EPI_ISL_ 2777472  

EPI_ISL_ 2777403 EPI_ISL_ 2777409 EPI_ISL_ 2777473  

EPI_ISL_ 2777404 EPI_ISL_ 2777410 EPI_ISL_ 2777474  
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