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Abstract

Hoping to find genomic clues linked to COVID-19 and end the pandemic has driven scientists’ tremen-

dous efforts to try all kinds of research. Signs of progress have been achieved but are still limited. This

paper intends to prove the existence of at least three genomic signature patterns and at least seven

subtypes of COVID-19 driven by five critical genes (the smallest subset of genes). These signatures and

subtypes provide crucial genomic information in COVID-19 diagnosis (including ICU patients), research

focuses, and treatment methods. Unlike existing approaches focused on gene fold-changes and pathways,

gene-gene nonlinear and competing interactions are the driving forces in finding the signature patterns

and subtypes. Furthermore, the method leads to 100% accuracy, which shows biological and mathemat-

ical equivalences between COVID-19 status and the signature patterns and a methodological advantage

over other existing methods that cannot lead to 100% accuracy. As a result, as new biomarkers, the new

findings can be much more informative than other findings for interpreting biological mechanisms, devel-

oping the second (third) generation of vaccines, antiviral drugs, and treatment methods, and eventually

bringing new hopes to an end of the pandemic.

Keywords: Direct gene effects, indirect gene effects, COVID-19 detection, gene-gene interaction, competing

risks.

1 Introduction

Since the virus SARS-COV-2 was first reported in January 2020, numerous research results related to the

virus and COVID-19 disease have been published. Scientists have put tremendous effort into trying to find

genomic clues linked to COVID-19. However, knowledge of COVID-19 is still limited, and many problems

have remained unanswered1;2;3;4;5;6;7;8;9;10;11;12. Many published results cannot guarantee 100% accuracy.

With an exception, a data science study2 reported five critical genes and their combined effects can 100%

accurately classify COVID-19 patients and COVID-19 free patients into their respective groups and further

classify COVID-19 patients into seven subtypes.

The 100% accuracy enables scientists to focus on and further explore the biological mechanisms among

COVID-19 specific genes (note that many reported genes may not be COVID-19 specific). The data used

in the study2 came from an observational study1 in which all subjects from both treatment group and

control group were hospitalized patients, including non-ICU patients and ICU patients. As a result, the

genes identified can be classified as COVID-19 specific. These five critical genes are the smallest subset
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of genes reported ever in the literature. They describe nonlinear and competing interaction gene-gene

relationships, different from pathways that have been widely studied in the literature. These five genes

also form signature patterns as new biomarkers and classify COVID-19 patients into seven subgroups and

heterogeneous populations.

The 100% accuracy proves the biological equivalences between COVID-19 status and the signature pat-

terns and mathematically establishes the correspondences. Such a phenomenon is fundamentally meaningful

to conduct further focused research on these five genes and those highly correlated genes to these five, leading

to the second (third) generation of vaccines, antiviral drugs, and treatment methods.

The analytical method used in the study2 has been proven a powerful approach in the studies13;14;15

where breast cancer patients, colorectal cancer patients, and lung cancer patients are again classified into their

respective groups with the highest accuracy (100%) among eleven different study cohorts with thousands

of patients. These studies prove that the study method is a powerful and unique method that can be

particularly useful for COVID-19 and cancer studies.

This paper is going to advance further the signature patterns found in the study2 using a different

dataset generated by the study1 and compare the results from the study2 and this new work with a different

dataset collected using different measurements. This paper is completely new in its conceptual framework

in biological and mathematical equivalence compared with an earlier pure data analysis. This new study

conducted a competing risk analysis using the max-linear logistic regression model to analyze 126 blood

samples from COVID-19-positive and COVID-19-negative patients. The two groups are: the lab-confirmed

COVID-19 hospitalized patients, the control is other disease types of hospitalized patients, including ICU

cases. There are two types of datasets available. One type is TPM (Transcripts Per Million)2, while another

type is EC (expected counts), which are analyzed in this paper. Both datasets led to competing COVID-19

risk classifiers derived from 19,472 genes and their differential expression values. The final classifier model

only involves five critical genes, ABCB6, KIAA1614, MND1, SMG1, RIPK3, which led to 100% sensitivity

and 100% specificity of the 126 samples. Given their 100% accuracy in predicting COVID-19 positive or

negative status, these five genes can be critical in developing proper, focused, and accurate COVID-19 testing

procedures, guiding the second-generation vaccine development, studying antiviral drugs and treatments.

Furthermore, it is expected that these five genes can motivate numerous new COVID-19 researches.

Simultaneously observing the same set of five genes for two different datasets hasn’t been reported in

published literature papers. In our opinion, those published genes by many other studies are more like at

the surface level based on the analysis methods used, and the new set of five genes in this work is at the deep

level or the root level. Many reported key genes are based on their individualized expression value changes

and significance, i.e., not based on gene-gene interactions. As a result, treatments are palliative, and the

disease can hardly be cured. The findings in our new research are based on nonlinear and competing risk

factors interactions, which is an advanced gene-gene interaction mechanism. Our proposition is that the

biomedical discovery of new variants of COVID-19 is only the surface-level of the virus (diseases). There

are more profound, underlying “competing factors” of the virus that need to be studied. Metaphorically,

an expert in hydraulic engineering finds a dam with cracks and treats them on the surface. However, the

reservoir has an interconnected water dynamic below the surface that will further impact other points of the

dam. As a result, it will cause new cracks unless there is a fundamental treatment solution with the entire

structure in mind. Similarly, scientists may observe the variants (rather passive) and develop vaccines in

response to the variants. However, they don’t understand the virus’s deeper advanced genomic architecture

that will systematically cause other mutations. Traditional methods in statistics, machine learning, and AI

are limited to understanding COVID-19 from surface-level observations. However, our innovative method

has achieved significant results (100% accuracy) to identify and understand COVID-19 genomic signatures.
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Among these five genes, KIAA1614 is an uncharacterized protein gene, according to genecards.org. This

gene can be fundamental. SMG1 has the description: Nonsense Mediated mRNA Decay Associated PI3K

Related Kinase. It can be essential for developing second-generation mRNA vaccines. According to the

literature, Nonsense Mediated mRNA Decay plays a decisive role in monitoring and controlling protein

changes. The mRNA gene SMG1 showed two different signs (+,-) in two formulas and didn’t appear in the

third formula presented in Section 3, which suggests that we need three different types (both mRNA and

non mRNA) of vaccines to cover the entire possible spectrum of COVID-19 variants. Our proven classifiers

show that one particular vaccine may only be effective to one type of virus caused by one signature pattern

and one subtype among three signature patterns and seven subtypes, which can explain the high percentages

of breakthrough infections; see Sections 3.3 and 3.4 for detailed explanations.

Our findings can be used to develop precision test kits for testing COVID-19 and to evaluate the function

and performance of already implemented vaccines, i.e., used as new antibody indexes. Interpretable and

implementable formulas are given in the paper. After a COVID-19 case is confirmed, personalized treatments

can be implemented. For example, increasing or decreasing levels of critical genes based on the identified

COVID-19 subtype can be crucial to the patients’ recovery. Using the relationship determined in the findings,

antiviral drugs can be developed. Mathematically, the new objective function of equation (4) is a mixture

of combinatorial optimization and continuous optimization. It is a new type of classification benchmark

which contains logistic regression, probit link, and Gumbel link as its special cases. It is expected that

this new classification formula will motivate many research studies in statistics, computational mathematics,

computer science, and many applied sciences. The findings can motivate many new types of research in

COVID-19 studies and other studies, e.g., cancer studies. Many finished studies can re-start new looks using

the new methodology.

The newly identified genes and their combinations may be used as new biomarkers. In our opinion,

traditional methods (e.g., PCR, serology) are directly associated with the disease, i.e., they do not provide

pathological characteristics; they are onefold indicators. On the other hand, the new classifier is a multifold

indicator that can further divide the disease into subgroups (variants may be another word). In addition,

the new classifier shows gene-gene interactions and advanced (or root) structures.

This work has verified that when all component classifiers work, the patients are ICU patients, which

definitely points out the advanced genomic structure of COVID-19 disease.

In the literature and the current practice, tremendous efforts have been made to study COVID-19 genomic

sequences, variants and their impacts, and vaccine effectiveness. However, the progress on the pathological

causes of COVID-19 and the functional effects of genes is still limited. In terms of computational medicine,

our new work is the first to accurately define the functional effects of five critical genes and lead to the

mathematical and biological equivalence between five genes and COVID-19 status. Furthermore, this paper

introduces an advanced machine learning algorithm that identifies five essential genes, which further deter-

mine three genomic signature patterns and seven subtypes of COVID-19 with 100% accuracy. The final

classifiers are expressed by explicit mathematical equations which are interpretable and can guide medical

practice. In addition, new graphical diagnostic tools are introduced. Besides the strike advance of studying

genomic signature patterns of COVID-19, our work also sheds new light on computational medicine, genetic

studies, informatics, algorithm and machine learning, and statistics. The rest of the paper is organized

as follows. In Section 2, the methodology is briefly summarized. Section 3 presents the data, the derived

competing classifiers, and the interpretations. In Section 4, discussions on the findings, future directions and

limitations are discussed.
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2 Methodology

This methodological section briefly introduces max-linear competing factor classifiers for self-contained due to

different data structures used in this work compared with other researches whose details for data structures

can be found in the papers2;13;14;15. For continuous responses, we refer to max-linear computing factor

models and max-linear regressions with penalization in the literature16;17.

Suppose Yi is the ith individual patient’s COVID-19 status (Yi = 0 as not infected, Yi = 1 for infected)

and X
(k)
i = (X

(k)
i1 , X

(k)
i2 , . . . , X

(k)
ip ), k = 1, . . . ,K, being the gene expression values with p = 19472 genes in

this study. Here k stands for the kth type of gene expression levels drawn based on K different biological

sampling methodologies. Note that most published work set K = 1, and hence the supercript (k) can be

dropped from the predictors. In this research paper, K = 2. Using a logit link (or probit link, Gumbel link),

we can model the risk probability p
(k)
i of the ith person’s infection status as:

log
( p

(k)
i

1− p(k)i

)
= β

(k)
0 +X

(k)
i β(k) (1)

or alternatively, we write

p
(k)
i =

exp(β
(k)
0 +X

(k)
i β(k))

1 + exp(β
(k)
0 +X

(k)
i β(k))

where β
(k)
0 is an intercept, X

(k)
i is a 1 × p observed vector, and β(k) is a p × 1 coefficient vector which

characterizes the contribution of each predictor (gene in this study) to the risk.

Considering there have been several variants of SARS-COV-2 and multiple symptoms (subtypes) of

COVID-19 diseases, it is natural to assume that the genomic structures of all subtypes can be different.

Suppose that all subtypes of COVID-19 diseases may be related to G groups of genes

Φ
(k)
ij = (X

(k)
i,j1
, X

(k)
i,j2
, . . . , X

(k)
i,jgj

), j = 1, . . . , G, gj ≥ 0, k = 1, . . . ,K (2)

where i is the ith individual in the sample, gj is the number of genes in jth group. Note here, we do not

use the widely used gene pathways in our newly developed machine learning algorithm. It is possible that

blind pursuit of gene pathways may lead to wrong directions and lose chances of finding the scientific truth.

Instead, our methodological approach will automatically find the smallest numbers of G and gj and to reach

a 100% accuracy, and as a result, better or best interpretations can be achieved.

The competing (risk) factor classifier is defined as

log
( p

(k)
i

1− p(k)i

)
= max(β

(k)
01 + Φ

(k)
i1 β

(k)
1 , β

(k)
02 + Φ

(k)
i2 β

(k)
2 , . . . , β

(k)
0G + Φ

(k)
iG βG) (3)

where β
(k)
0j ’s are intercepts, Φ

(k)
ij is a 1×gj observed vector, β

(k)
j is a gj×1 coefficient vector which characterizes

the contribution of each predictor in the jth group to the risk.

Remark 1. In (3), p
(k)
i is mainly related to the largest component β

(k)
0j + Φ

(k)
ij β

(k)
j , j = 1, . . . , G, i.e., all

components compete to take the most significant effect.

Remark 2. Taking β
(k)
0j = −∞, j = 2, . . . , G, (3) is reduced to the classical logistic regression, i.e., the

classical logistic regression is a special case of the new classifier. Compared with blackbox machine learning

methods (e.g., random forest, deep learning (convolution) neural network (DNN, CNN)) and regression tree

methods, (3) shows clear patterns. Each competing risk factor forms a signature with the selected genes. The
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number of factors corresponds to the number of signatures, i.e., G. This model can be regarded as a bridge

between linear models and more advanced (blackbox) machine learning methods. However, (3) remains the

desired properties of interpretability, computability, predictability, and stability. Note that this remark is the

same as Remark 115.

In practice, we have to choose a threshold probability value to decide a patient’s class label. Following

the general trend in the literature, we set the threshold to be 0.5. As such, if p
(k)
i ≤ 0.5, the ith individual

is classified as disease free, otherwise the individual is classified to have the disease.

With the above established notations and the idea of quotient correlation coefficient18, Zhang (2021)15

introduces a new machine learning classifier, smallest subset and smallest number of signatures (S4), for

K = 1. We extend the S4 classifier from K = 1 to K = 2 as follows.

(β̂, Ŝ, Ĝ) = arg min
β, Sj⊂S, j=1,2,...,G

{
(1 + λ1 + |Su|)

∑K
k=1

∑n
i=1

(
I(p

(k)
i ≤0.5)I(Yi=1)+I(p

(k)
i >0.5)I(Yi=0)

)
(4)

+λ2

(
|Su| −

|Su|+G− 1

(|Su|+ 1)×G− 1

)}

where I(.) is an indicative function, p
(k)
i is defined in Equation (3), S = {1, 2, . . . , 19472} is the index set

of all genes, Sj = {jj1, . . . , jj,gj}, j = 1, . . . , G are index sets corresponding to (2), Su is the union of

{Sj , j = 1, . . . , G}, |Su| is the number of elements in Su, λ1 ≥ 0 and λ2 ≥ 0 are penalty parameters, and

Ŝ = {jj1, . . . , jj,gj , j = 1, . . . , Ĝ} and Ĝ are the final gene set selected in the final classifiers and the number

of final signatures.

Remark 3. The case of K = 1 corresponds to the classifier introduced in Zhang (2021)15. The case of

K = 1 and λ2 = 0 corresponds to the classifier introduced in Zhang (2021)2.

Remark 4. A perfect classifier (100% sensitivity and 100% specificity) will have
∑K
k=1

∑n
i=1

(
I(p

(k)
i ≤

0.5)I(Yi = 1) + I(p
(k)
i > 0.5)I(Yi = 0)

)
= 0 in Equation (4), which is the case in our study.

The following Proposition 2.1 mathematically guarantees the existence of desired solutions. The proof

follows the lines in the work15 by extending K = 1 to K = 2.

Proposition 2.1. Suppose the smallest number that
∑K
k=1

∑n
i=1

(
I(p

(k)
i ≤ 0.5)I(Yi = 1)+I(p

(k)
i > 0.5)I(Yi =

0)
)

can reach is m. Then for suitable choices of λ1 with λ1 + |Su| > 0 and λ2 ≥ 0, the new classifier S4

will lead to the smallest |Su| and the smallest number of G such that
∑K
k=1

∑n
i=1

(
I(p

(k)
i ≤ 0.5)I(Yi =

1) + I(p
(k)
i > 0.5)I(Yi = 0)

)
= m.

3 Data Descriptions, Results and Interpretations

3.1 The data

The COVID-19 data to be analyzed is publicly available as GSE157103: Large-scale Multi-omic Analysis

of COVID- 19 Severity1, Public on August 29, 2020. The experiment type is “Expression profiling by

high throughput sequencing.” One hundred twenty-six samples were analyzed in total, with 100 COVID-19

patients and 26 non-COVID-19. There are two types of datasets available. One type is TPM (Transcripts

Per Million), while another type is EC (expected counts). The prior analysis outcome of TPM data was

reported in Zhang (2021)2. This new study targets EC data and makes comparisons to TPM data. We note

that among 100 COVID-19 patients, 50 are ICU patients, and 50 are non-ICU hospitalized patients. Among
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26 COVID-19 free patients, 16 of them are ICU patients with other types (non-COVID-19) of disease, and

10 of them are non-ICU patients with other types of disease.

3.2 The competing factor classifiers and their resulting risk probabilities

Solving the optimization problem (4) among 19472 genes with K = 2 (k = 1 for TPM data, and k = 0
for EC data), we obtain the following classifiers with five critical genes (ABCB6 (ATP Binding Cassette
Subfamily B Member 6 - Langereis Blood Group), KIAA1614 (Uncharacterized Protein), MND1 (Meiotic
Nuclear Divisions 1), SMG1 (Nonsense Mediated mRNA Decay Associated PI3K Related Kinase), RIPK3
(Receptor Interacting Serine/Threonine Kinase 3)):

CF-I (TPM) : −0.330340967 + 3.415275789×KIAA1614− 0.124771579× SMG1 + 0.21769849×MND1,

CF-II (TPM) : −0.737841461− 0.462005922×ABCB6 + 0.0653607995× SMG1 + 0.909277249×MND1, (5)

CF-III (TPM) : 6.928277138− 0.392092650× RIPK3,

CF(TPM) = max
{
CF-I(TPM), CF-II (TPM), CF-III(TPM)

}
,

CF-I (EC) : −0.787677698 + 0.035112007×KIAA1614− 0.000803484× SMG1 + 0.018124674×MND1,

CF-II (EC) : −4.670090233− 0.040798783×ABCB6 + 0.001354362× SMG1 + 0.213423774×MND1, (6)

CF-III (EC) : 3.1584− 0.0042× RIPK3,

CF(EC) = max
{
CF-I(EC), CF-II (EC), CF-III(EC)

}
,

where Equations (5) are for TPM data which were first reported in Zhang (2021)2, while Equations (6)

are for EC data. In all equations, (TPM) stands for data being TPM, and (EC) means data are expected

counts. In Equations (5), CF-I (TPM) is the first component classifier derived from TPM data and three

critical genes KIAA1614, SMG1, and MND1. CF-II (TPM) is the second component classifier derived from

TPM data and three critical genes ABCB6, SMG1, and MND1. CF-III (TPM) is the third component

classifier derived from TPM data using one gene RIPK3 alone. CF (TPM) is the final combined classifier

with competing component classifiers (signatures) of CF-I (TPM), CF-II (TPM), and CF-III (TPM). Other

competing classifiers for EC are similarly defined.

The risk probabilities of each of three component classifiers based on TPM are

P-i-(TPM) =
exp

(
CF-i-(TPM)

)
1 + exp

(
CF-i-(TPM)

) , i = I, II, III (7)

and the risk probabilities based on all three component classifiers together are

P-(TPM) =
exp

(
CF(TPM)

)
1 + exp

(
CF(TPM)

) . (8)

Similarly, the risk probabilities calculated from EC are

P-i-(EC) =
exp

(
CF-i-(EC)

)
1 + exp

(
CF-i-(EC)

) , i = I, II, III (9)

and the risk probabilities based on all three component classifiers together are

P-(EC) =
exp

(
CF(EC)

)
1 + exp

(
CF(EC)

) . (10)

Tables 1 and 2 present some patients’ gene expression values, competing classifier factors, predicted

probabilities defined in equations (5-10). For full tables, we refer to tables in a supplementary Excel file.
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Table 1: TPM data: Expression values of the five critical genes, competing classifier factors, predicted
probabilities. C1,. . . ,C103 are hospitalized COVID-19 patient IDs, and NC1,. . . , NC26 are COVID-19 free
patient (also hospitalized) IDs.

#ID ABCB6 KIAA1614 MND1 RIPK3 SMG1 CF-I CF-II CF-III CF(TPM) P-I P-II P-III P-(TPM)

C1 2.77 0.78 0.6 39.22 30.2 -1.30 0.50 -8.45 0.50 0.21 0.62 0.00 0.62
C2 2.52 0.39 2.91 26.82 20.33 -0.90 2.07 -3.59 2.07 0.29 0.89 0.03 0.89
C3 3.14 1.07 1.26 40.13 16.16 1.58 0.01 -8.81 1.58 0.83 0.50 0.00 0.83
C4 2.11 0.59 1.99 25.49 23.33 -0.79 1.62 -3.07 1.62 0.31 0.84 0.04 0.84
C5 1.14 0.43 0.75 23.62 20.4 -1.24 0.75 -2.33 0.75 0.22 0.68 0.09 0.68

...
C103 3.37 0.54 0.7 27.31 5.43 0.99 -1.30 -3.78 0.99 0.73 0.21 0.02 0.73
NC1 2.17 0.15 0.16 18.89 3.57 -0.23 -1.36 -0.48 -0.23 0.44 0.20 0.38 0.44
NC2 1.83 0.25 0.25 25.77 8.24 -0.45 -0.82 -3.18 -0.45 0.39 0.31 0.04 0.39

...
NC26 1.36 0.06 1.36 19.9 1.47 -0.01 -0.03 -0.87 -0.01 0.50 0.49 0.29 0.50

Table 2: EC data: Expression values of the five critical genes, competing classifier factors, predicted proba-
bilities. C1,. . . ,C103 are hospitalized COVID-19 patient IDs, and NC1,. . . , NC26 are COVID-19 free patient
(also hospitalized) IDs.

#ID ABCB6 KIAA1614 MND1 RIPK3 SMG1 CF-I CF-II CF-III CF(EC) P-I P-II P-III P-(EC)

C1 143 141.2 8 1217 8951.6 -2.88 3.33 -0.47 3.33 0.05 0.97 0.39 0.97
C2 82 46.13 25 539 3913.32 -1.86 2.62 0.21 2.62 0.13 0.93 0.55 0.93
C3 159 195.76 17 1250 4803.49 2.53 -1.02 -0.50 2.53 0.93 0.26 0.38 0.93
C4 92 92.4 23 685 6001.07 -1.95 4.61 0.07 4.61 0.12 0.99 0.52 0.99
C5 58 78.36 10 734 6085.32 -2.74 3.34 0.02 3.34 0.06 0.97 0.50 0.97

...
C103 290 169.66 16 1451 2772.87 3.23 -9.33 -0.70 3.23 0.96 0.00 0.33 0.96
NC01 151 37.54 3 826 1479.41 -0.60 -8.19 -0.07 -0.07 0.35 0.00 0.48 0.48
NC02 140 67.34 5 1199 3688.33 -1.30 -4.32 -0.45 -0.45 0.21 0.01 0.39 0.39

...
NC26 126 22 35 1168 814.16 -0.04 -1.24 -0.42 -0.04 0.49 0.22 0.40 0.49
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Figure 1: COVID-19 classifiers using TPM data: Visualization of gene-gene relationship and gene-risk
probabilities. Note that 0.5 is the probability threshold.

Figure 2: COVID-19 classifiers using EC data: Visualization of gene-gene relationship and gene-risk proba-
bilities. Note that 0.5 is the probability threshold.

Figures 1 and 2 present critical gene expression levels and risk probabilities corresponding to different

measurement scales and different component competing factor classifiers. From Figures 1 and 2, we can

see clear patterns of how the patients are classified and how they are correlated with individual genes. For

example, some patients can be classified by one gene RIPK3 (the right panels in the figures), while some

patients are classified by the combined effects of linear combinations of three genes (the left and middle

panels). As a result, these observations justify the existence of three genomic signature patterns, i.e., the

three competing classifiers, of COVID-19.

We can also see similar patterns between Figures 1 and 2. This phenomenon is mainly due to that

the component genes and signs of coefficients in the classifiers CF-i-(TPM) and CF-i-(EC) are the same.

In addition, the linear correlation coefficients between TMP and EC data for genes ABCB6, KIAA1614,

MND1, RIPK3, SMG1, are 0.87, 0.94, 0.95, 0.68, 0.93, respectively, which supports the pattern similarity.
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ABCB6 KIAA1614 MND1 RIPK3 SMG1
ABCB6 – 0.6931 0.3448 -0.1204 0.2138

KIAA1614 0.5209 – 0.1609 0.1688 0.5948
MND1 0.4009 0.1163 – -0.1328 0.1276
RIPK3 -0.0727 -0.1608 -0.0769 – 0.2293
SMG1 -0.0955 0.4681 -0.0137 -0.1762 –

Table 3: Pairwise correlation coefficients: The upper triangle is for TPM data, and the lower triangle is for
EC data.

3.3 The combination effects and the competing factor effects

The same signs of coefficients in the classifiers CF-i-(TPM) and CF-i-(EC) reveal that these classifiers are

robust to nonlinear transformations and the five genes are critical and COVID-19 specific (recall that the

patients in the control group are also hospitalized patients with 16 of them being ICU patients.)

The pairwise correlation coefficients among these five genes are presented in Table 3. The table tells that

TPM data and EC data show different gene-gene correlations. Even so, they still lead to the same accuracy

(100%). As a result, they can be used as cross-validation of the proposed S4 model (4).

From Equations (5) and (6), we can see that increasing ABCB6 and RIPK3 expression levels (TPM) will

benefit the patients while decreasing KIAA1614 and MND1 expression levels will help the patients. However,

from Table 3, we see that ABCB6 is positively correlated with KIAA1614 and MND1, and then an increase

of ABCB6 expression level may result in an increase of MND1 expression level and KIAA1614 expression

level which increases the COVID-19 competing risk CF-I. As a result, any efficient treatments of COVID-19

must consider all the five genes together.

Note that RIPK3 does not appear in the classifiers CF-I and CF-II, and the signs of SMG1 in CF-I and

CF-II are different. As a result, a vaccine/antiviral drug/therapy which is based on the function of SMG1

(an mRNA gene) in the CF-I (CF-II) may benefit the patients classified in the CF-I (CF-II). However, it may

not have any effects on the patients in the CF-III. Furthermore, it may make the status of patients in the

CF-II (CF-I) worse. Analogously, a vaccine/antiviral drug/therapy which is based on the function of RIPK3

(CF-III) may not be effective to the patients caused by the effects of CF-I and CF-II. These observations

reveal that we may need at least three different types of vaccines against COVID-19 subtypes (variants).

Note that these five critical genes have not been reported in any literature papers except Zhang (2021)2.

They are not from any single gene pathway. Analogously, their functions may be described as a basketball

team’s player combination effects. First, in a basketball team, there are five positions: center (C), power

forward (PF), small forward (SF), point guard (PG), shooting guard (SG). A combination of ABCB6-MND1-

SMG1 (KIAA1614-MND1-SMG1) may be described as a driving force of a powerful PF-C-PG (SF-C-PG)

combination in scoring, and RIPK3 is like a powerful SG. Second, the expression levels are comparable to

the playing time of the players and their roles in the rotations competing against different opponents and

their playing combinations. Third, the driving forces of winning games can be either one or two or all of the

three combinations.

Note that the correlation coefficients among the five genes calculated from TPM (upper triangle) and EC

(lower triangle) in Table 3 are different. This phenomenon can be explained by the nonlinear relationship

between TPM and EC, within TPM and EC, and heterogeneous populations among patients, which is a

perfect scenario for the proposed model in Section 2. Also, note that due to 100% accuracy, metrics such

as ROC, Recall, and Precision are also with 100% accuracy.
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CF‐I (16)

CFs I‐II‐III (5)

CF‐III (2)
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Figure 3: Venn diagrams of COVID-19 subtypes. The left panel is based on TPM data, and the right panel
is based on expected counts data.

3.4 The existence of subtypes

In Section 3.2, we saw that each signature could be used as a classifier given its 100% specificity. However,

from Figures 1 and 2, we see that some patients can only be classified by one particular signature classifier;

some patients can only be classified by two competing classifiers, and some patients can be classified by

either of the three competing classifiers. This observation shows that COVID-19 patients are heterogeneous,

and their COVID-19 status can be further classified into subtypes using the classifier combinations.

Figure 3 uses Venn diagrams to plot classified seven subtypes of 100 COVID-19 patients. In the figure,

I-II means both CF-I and CF-II lead to the correct classification. All other combinations are interpreted

similarly.

We first state that the more intersections of subareas, the more complicated the disease in a Venn

diagram. For example, in the right panel of the figure, we see that seven patients satisfy the classification

conditions of all three competing classifiers. It turns out all of these seven patients are ICU COVID-19

patients. Using the right panel as an example, we identify the ICU patients have the following distribution:

CF-I (6), CF-II (8), CF-III (2), CFs-I-II (6), CFs-I-III (12), CFs-II-III (9), and CFs-I-II-III (7), and find

that the disease severity (ICU) is positively correlated with the number of classifiers used. Based on this

observation, we can conclude vaccines can benefit patients even if a particular type of vaccine only works for

one signature pattern related to COVID-19 subtypes. On the other hand, if one particular type of vaccine

can protect a particular COVID-19 subtype (or SARS-COV-2 virus), this vaccine may not be effective for

other COVID-19 subtypes (or SARS-COV-2 viruses.) As a result, a fully vaccinated individual still has

the risk of being infected. Furthermore, a recovered individual from an infected COVID-19 illness can

get breakthrough infections again with other COVID-19 subtypes. Two recent papers19;20 report concerns

of infection-enhancing anti-SARS-CoV-2 antibodies based on lab experiments. This phenomenon may be

explained by our new findings due to the existence of three genomic signature patterns and seven subtypes

of COVID-19. Taking the SMG1 gene as an example, an increase (or a decrease ) of SMG1 expression levels

is good for one signature pattern of COVID-19 but will be bad for another signature pattern.
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Note that the left panel and the right panel classify some patients into different subtypes. This phe-

nomenon can be explained. In Section 3.2, we calculated the linear correlation coefficients between TPM

and EC for each gene and saw there are nonlinear relationships, which lead to different classifications, but

still 100% accurate. Given that both TPM and EC lead to 100% accuracy, it is safe to say that the identified

five genes can be truly critical in studying COVID-19.

The identified subtype information opens a new research direction, new drug developments, and new

refined personalized therapies. For example, in the diagnosis stage, medical doctors can use the final model

to predict their patient’s COVID-19 status by calculating the risk and determine which of those seven groups

the patient belongs to. In the treatment stage, those signature patterns can be used to study the effectiveness

of drugs and treatments, i.e., conduct clinical trials based on classified groups. In the drug development stage,

pharmaceutical companies can use the findings of critical genes to study new drugs. Finally, it can be hoped

that mRNA-based therapies can be introduced using the critical genes’ information in the therapy stage.

3.5 A conceptual framework

From Section 3.2, we see that COVID-19 patients have higher combination expression values, COVID-19 free

patients have lower combination expression values. With 100% sensitivity and 100% specificity, the competing

classifiers derived in Section 3.2 have built a biological equivalence to COVID-19 status. Equations (5) and

(6) together with 100% sensitivity and 100% specificity reveal the hyperplanes formed by five genes and their

derived classifiers partition a five-dimension space into two subspaces (COVID-19 and COVID-19 free) in

which there is a mathematical equivalence between COVID-19 and COVID-19 free. Here the logic is from

the fact of 100% sensitivity and 100% specificity, i.e., if A implies B, then not B implies not A; and if not A

implies not B, then B implies A.

In the Introduction, we used hydraulic engineering of a reservoir dam with cracks to describe COVID-19

variants metaphorically. In Figure 4, we use the five genes identified in Section 3.2 and one additional gene

CDC6 (to be discussed in Section 4) to describe a conceptual framework for COVID-19 disease and variants

formation dynamics.

In Figure 4, there are four layers. The first (top) layer stands for SARS-COV-2 viruses enter a human’s

interior body. The second layer shows the lung will be affected. The third layer describes gene-gene inter-

action signature patterns of COVID-19. The bottom layer is a conceptual illustration of a human genome

sequence with the five critical genes placed on the sequence. In the figure, we use triangles to represent

signature patterns (competing factor classifiers) with the genes on the nodes and the classifier number inside

the center. RIPK3 is on its own as an absorbed triangle. There are two arrows to indicate the cause dy-

namics. With the triangles or RIPK3, the larger the triangle or the shape of RIPK3, the higher the severity

of the COVID-19. Our conceptual idea is that after being infected with COVID-19 (top-down direction),

the virus triggers the signature patterns to function, i.e., making the triangles (the shape) larger. However,

simultaneously, the human’s immune system starts to function (bottom-up direction), and the vaccine also

starts to function; therefore, the areas of triangles (shape) can be reduced, or the edges of the triangles can

be broken, i.e., two ways of fighting against the virus. Depending on which direction (infection or killing the

virus) is more effective, an infected individual may be fully recovered from COVID-19 disease or going to be

much severer COVID-19 symptoms.

On the other hand, the genomic signature patterns of a COVID-19 patient represent the advanced (deep

level) gene-gene interactions. A change of the size of the triangle may trigger new variants to form and

transmit to other individuals, i.e., an analog to the hydraulic engineering example in Introduction.
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Figure 4: COVID-19 formation: A conceptual visualization of gene-gene relationship. The author designed
the concept and flowchart. Jing Zhang completed drawing the figure.

4 Discussions

As discussed in Sections 1 and 3, the three signature patterns and seven subtypes maintain the most impor-

tant biological informatics of COVID-19. This set of genes is the only set that leads to 100% accuracy for

hospitalized COVID-19 patients, including ICU patients. Unless a different new discovery of other advanced

structures of genes other than these five genes will be obtained, and such a new discovery (if exists) can fully

explain the three signature patterns and seven subtypes discussed in this paper, these five critical genes and

their derived three signature patterns and seven subtypes remain the most informative findings.

When a model is fitted to the whole dataset and leads to 100% accuracy, it will uniformly work for

partitioned data as long as the partition is balanced to all heterogeneous subgroups. This is the case in our

analysis. On the other hand, we haven’t seen any published papers that used the “standard” procedure to

lead to accurate prediction.

We realized readers would ask about the model overfitting and robustness. Please note that our model

is fitted to two different datasets and reached the highest accuracy of 100%. Each dataset has its hetero-

geneous patterns (subgroups). Datasets are measured at different scales. It’s hard for the existing models

to simultaneously fit such datasets and get satisfactory accuracy, not even to mention the interpretability of

the fitted models. Using two such datasets naturally serves as cross-validation and robust checking. It turns

out our new approach is robust.

A 100% accuracy may be thought of as “too good to be true” in many scenarios. However, “too good to

be true” may also be dangerous to use to guide science discovery and innovation. In many applied sciences,

the truths can be simple but not straightforward. Complicating or aggravating the problem can mask the

nature of the problem. Blindly insisting on “too good to be true” may miss ample opportunities of finding

the truth. In contrast, we know it is hard to see the forest through the trees.
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One may argue that the dataset we used in this analysis is not large enough as it has only 126 samples

with 19472 predictors. It is, of course, preferred to have a large dataset. Nevertheless, we argue that the

conclusions and inferences are trustful with 100% accuracy on two different datasets that show nonlinear

and heterogeneous relationships.

On the other hand, if an approach can not gain a satisfactory performance with a small dataset, applying

it to a large dataset can be a wrong strategy as it may lead to wrong or suboptimal conclusions.

A natural question is whether or not the 100% accuracy is by chance. Note that each of our component

competing classifiers has reached 100% specificity, which may be true with a probability smaller than 1/226 =

1.0× 10−8 by chance. In addition, when all three signature patterns are satisfied, all classified patients are

lab-confirmed ICU patients, which indicates it can not be by chance.
We note that multiplying a constant to Equations (5-6) will not change the classification results and the

shapes in Figures 1-2 with a 100% accuracy being achieved. However, the color strengths will be changed.
Such a phenomenon justifies the use of signatures to describe the advanced gene-gene interaction structures.
Using this idea, we can express (6) into the following equivalent forms:

CF-I (EC) : −0.330340967 + 3.415275789×
KIAA1614

231.9296
− 0.124771579×

SMG1

370.2751
+ 0.21769849×

MND1

28.6399
,

CF-II (EC) : −0.737841461− 0.462005922×
ABCB6

71.6741
+ 0.0653607995×

SMG1

305.4532
+ 0.909277249×

MND1

26.9660
, (11)

CF-III (EC) : 6.928277138− 0.392092650×
RIPK3

42.5580
,

CF(EC) = max
{
CF-I(EC), CF-II (EC), CF-III(EC)

}
.

Equations (11), after applying scale changes, share similar signatures as in Equations (5). Considering

the nonlinear relationships between TPM data and EC data, this observation again proves our proposed

competing factor classifiers are robust.

We want to suggest that the discovered COVID-19 variants (alpha, beta, delta, lambda, mu, omicron

etc.) may be connected to different signature strengths in our discovered signature patterns. Mathemati-

cally, hyperplanes in geometry formed by Equations (5) and (11) contain a subspace which can be further

partitioned into subspaces. Our hypothesis is that these variants may fall into separable subspaces. After

obtaining new data with variants information, this hypothesis can be tested, or additional genes may be

involved. For example, in a breast cancer study13, triple-negative breast cancer was 100% accurately sep-

arated from other types of breast cancer using three genes identified by the S4 classifier. Furthermore, the

discovered genomic signature patterns and COVID-19 subtypes are intrinsic no matter what variants have

been identified or will be identified. Given our proven mathematical and biological equivalences, if these

innate signature patterns and subtypes cannot be treated and fully studied now, they will cause trouble in

the future again. In addition, with available data related to various variants, our study approach may be

able to reveal the causes of higher transmission or mortality of specific variants.

Finally, in our analyses, we also found the gene CDC6 (cell division cycle 6) can be informative. Its

combination to ZNF282 (Zinc Finger Protein 282) can lead to 97.62% accuracy (98% sensitivity, 96.15%

specificity), and its combination to both ZNF282 and CEP72 (Centrosomal Protein 72) can lead to 98.41%

accuracy (99% sensitivity, 96.15% specificity). We found the high expression level of CDC6 increases risk

while the high expression levels of ZNF282 and CEP72 decrease risk. Although they didn’t lead to 100%

accuracy as those five identified in Section 3 did, such a performance is already better than other published

gene combinations. From the literature, the gene CDC6 is a protein essential for the initiation of DNA

replication, while ZNF282 is known to bind U5RE (U5 repressive element) of HLTV-1 (human T cell leukemia

virus type 1) with a repressive effect but little is known of its expression and function otherwise. The gene

CEP72 coded protein is localized to the centrosome, a non-membraneous organelle that functions as the

major microtubule-organizing center in animal cells. Zhang21 hypothesizes that CDC6 is a protein essential
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for the initiation of RNA replication of COVID-19.
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Data used in this study are from hospitalized patients’ blood samples. We are not sure whether or not the

identified genes work for data sampled from those non-hospitalized COVID-19 patients or asymptomatic

patients. Solving optimization problems (4) involves combinatorial optimization, integer programming, and

continuous programming. The computational complexity is extremely high, and we haven’t figured out

how to define the complexity. We used an extensive Monte Carlo search method to find the best solution.

However, we cannot guarantee whether additional sets of genes can also be the optimal solutions even if

our finding of five genes is already the best (smallest) subset genes with 100% accuracy in the study of

COVID-19. Although we have established the mathematical and biological equivalences, we cannot tell our

findings are the causes or the results. Although we have identified functional effects by gene-gene interactions

and gene-subtype interactions of the five genes, we haven’t identified how gene-gene interacts each other and

their causal directions. We are working in this direction. Finally, due to the lack of available new blood

sampled data for new variants, it’s difficult to infer the risks of variants.
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