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Abstract

n this paper, we develop a fractional-order differential model for the dynamics of immune responses
to SARS-CoV-2 viral load in one host. In the model, a fractional-order derivative is incorporated to
represent the effects of temporal long-run memory on immune cells and tissues for any age group of
patients. The population of cytotoxic T-cells (CD8+), natural killer (NK) cells and infected viruses
are unknown in this model. Some interesting sufficient conditions that ensure the asymptotic stability
of the steady states are obtained.
This model indicates some complex phenomena in COVID-19 such as ”immune exhaustion” and
”Long COVID”. Sensitivity analysis is also investigated for model parameters to determine the
parameters that are effective in determining of the long COVID duration, disease control and future
treatment as well as vaccine design. The model is verified with clinical and experimental data of 5
patients with COVID-19.
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1 Introduction

The ongoing pandemic coronavirus (CoV) disease outbreak (COVID-19) started in Wuhan, China, in
December 2019, and has spread to more than 197 countries. Rapid spread of this disease threatens the
health of a large number of people. As a result, immediate measures must be taken to prevent the disease
in the community. It is the seventh member of the Coronavirus (CoV) family, along with MERS-CoV and
SARS-CoV [1]. The virus is very serious and spread through respiratory droplets and close contact [2].
Scientists and researchers are therefore interested in how to develop treatment methods for such infectious
diseases. Those methods are useful in understanding the dynamics/interactions between pathogens and
their hosts. For years, mathematical modelers have been addressing specific aspects of infectious diseases
[3, 4]. The majority of these efforts have been focused on multi-level diseases and have adopted quite
different computational approaches [5, 6, 7, 8, 9].

Humans may develop upper-respiratory-tract infections as a result of COVID-19 transmission at the
cellular level. Human cells have healthy, infected, virus cells and antibodies that are input parameters,
and the output will be infected lung cells. The transmission of CoV among groups has been discussed in
many research papers [10, 11, 12]. Despite this, the dynamics of CoV infection in an individual (organism)
[22] are not extensively explored in the literature, which we analyze in the present paper.

In epidemiology and immunology, mathematical models are used to understand the dynamics of
infectious diseases. In general, the coronavirus model depends on the initial conditions, and the classical
order model cannot explain the virus perfectly because of its local nature.
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Fractional-order derivatives are non-local in nature and are also dependent on the initial values.
Furthermore, the fractional-order model has more advantages in terms of best fitting data, information
about its memory, and hereditary properties. Furthermore, the hereditary properties increase the utility
of the models constructed in fractional-order derivatives to describe the real phenomenon (see [13, 14]). In
[15] studied the transmission dynamics of fractional-order coronavirus models and compared our results
with some real data against confirmed infection and death cases per day for the first 67 days in Wuhan.
According to [16], the authors compared the results of integer and fractional-order coronavirus (SEIRD)
models, using real data from Italy, reported by the WHO. The results proved that the fractional-order
case has a less root-mean-square error of fitting the model to the real data than the classical one and
the fractional model has a closer estimation of the reality. Singh et al. [17] discussed the discretization
computational techniques to solve numerically a fractional-order coronavirus model and this technique
are effective to show the behavior of the solution in a very long time period which is helpful to predict
the coronavirus model accurately. Most of the authors studied the coronavirus dynamics in the sense
of fractional-order derivatives ([18, 19, 20, 21]). In cells level, the authors in [22] studied the dynamics
of a fractional-order delay differential model for coronavirus (CoV) infection to give us best understand
what causes the intensity of symptoms and illness of contaminated lung and respiratory system; See also
[23, 24, 25].

As a result of the above motivation, in this paper, we propose a fractional-order model for coronaviruses
with three compartments, such as SARS-CoV-2 density, cytotoxic T-cells, and natural killer cells. The
Caputo fractional derivative has a power-law kernel, where its decaying rate depends directly on the
fractional-orders. For the considered model, we derive the positiveness of the solution and examine the
local stability of existing equilibrium points. By using the important sensitive parameters, we study
the model qualitatively to demonstrate the eradication of the disease. As graphs, we can show more
interesting results and their theoretical and numerical justifications.

This paper is organized as follows: In Section 2, we propose a virus infection model and study the
positivity solution and local stability results. In Section 3, we discuss parameter estimation. Section 4
provides numerical simulations to validate the obtained theoretical results. Section 5 provides sensitivity
analyses. The conclusion is in Section 6.

2 The Mathematical Model

Herein, we develop a fractional order mathematical model for the immune system response to SARS-
CoV-2 virus in COVID-19 patients. We consider the RNA SARS-CoV-2 viral load (S), a cell population
of the innate immune system: natural killer (NK) cells, and a cell population of the adaptive immune
system: cytotoxic (CD8+) T-cells (T). Also, we assume that t represents the variable time (day). The
assumptions of the model are:

• The populatin of infected cells and the SARS-CoV-2 virus concetration are assumed same.

• The SARS-CoV-2 virus in the absence of an immune response grows logistically. That is based on
fitting of the data in [26].

• The infected virus can be cleared by both NK and CD8+ cells [26, 27].

• The virus promotes an initial activation of NK and CD8+ cells in the beginning of the disease
[28, 30].

• The total number of NK cells was decreased in patients after some number of encounters with with
SARS-CoV-2 infection [30].

2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2022. ; https://doi.org/10.1101/2022.01.13.476252doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Based on above assumptions, the system of fractional differential equations for representing interac-
tions of SARS-CoV-2 virus and immune system is given by:

DαS(t) = a1S(t)(1− bS(t))− dstS(t)F(S, T )− dsnS(t)N(t)− d1S(t)

DαT (t) = bt + rG(S)T (t) + e1N(t)S(t)− qT (t)S(t)− dtT (t)

DαN(t) = bn + kG(S)N(t)− dnsN(t)S(t)− dnN(t)

(1)

where Dα =
dα

dtα
, defined in Caputo sense. In the equations, three cell population are denoted by:

S(t) = density of SARS-CoV-2 (copies/ml),
T(t) = total cytotoxic T-cells population (cell/ml),
N(t) = total natural killer cells (cell/ml).

The term F(S, T ) =
(T/S)α

z + (T/S)α
is fractional viral clearance rate of rational form by activated

cytotoxic T-cells which is based on de Pillis–Radunskaya Law [36]. However, G(S) =
Sn

cn1 + Sn
is

a modified Michaelis-Menten term for T-cells activation and NK cell recruitment by SARS-CoV-2.
S(0) = S0 > 0, T (0) = T0 > 0, N(0) = N0 > 0 are initial conditions of the system (1) and 0 < α ≤ 1 is
derivative order.

The dynamics of the SARS-CoV-2 is represented by the first equation of system (1). Infected virus
growth is logistically with replication rate a1 and carrying capacity b. Virus lysis by CD8+T-cells is shown
by dstSF , the term dsnSN represents the virus death by NK cells. Viral clearance rate is presented by
d1.

The second equation shows the dynamic of the CD8+ T-cells against infected virus. Birth and death
of CD8+ T-cells are represent by bt and dtT terms [31]. The term rRT shows amount of CD8+ T-cells
activation by infected virus. The term e1NS represents recruitment of CD8+T-cells by the debris from
virus lysed by NK cells [32]. Inactivation of CD8+ T-cells by infected virus is shown by qTS term.
Behaviar of NK cells are represented by third equation. NK cells activation by SARS-CoV-2 is shown by
kRN . The term dnsNS is inactivation terms of NK cells by infected cells. Natural death of NK cells is
represented by dnN term.

Definition 2.1. [14] Caputo derivative of fractional-order α for a function f(t) is described as

Dαf(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1fn(τ)dτ,

where n− 1 < α < n ∈ Z+, Γ(·) is the Gamma function.

The Laplace transform of Caputo derivative is described as:

L{Dαf(t); s} = sαF (s)−
n−1∑
i=1

sα−i−1f (i)(0)

where F (s) = L{f(t)}. In particular, when f (i)(0) = 0, i = 1, 2, . . . , n− 1, then L{Dαf(t); s} = sαF (s).
The basic reproductive rate/ratio,R0 is defined as the expected number of secondary infections arising

from a single individual during his or her entire infectious period, in a population of susceptibles. Epi-
demiology and pathogen dynamics within hosts are both based on this concept. Furthermore, R0 is used
as a threshold parameter that predicts whether an infection will spread. However, related parameters
that share this threshold behavior may or may not give the true value of R0. It also denotes as the
number of secondary infection due to a single infection in a completely susceptible population. We derive
the expression of R0, allied to the disease-free equilibrium E0(S0 = 0, T0 = 0, N0 = 0). The recovery rate
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from the virus, and transmission rate of the virus from infected individuals to susceptible individuals are
described by the following matrices

D =

d1 0 0
0 0 0
0 0 0

 and B =

a1 0 0
0 −dt 0
0 0 −dn

 .

Thus, the basic reproduction number R0 = ρ(D−1B), calculated as the spectral radius of the next
generation matrix [33], is then defined by

R0 =
a1dtdn
d1

.

The disease is eradicated if R0 ≤ 1 and will persist as t goes to infinity if R0 > 1; See [34].

2.1 Non-negativity of the model solutions

Herein, we investigate the non-negativity of the model solutions.

Lemma 2.2. (Generalized Mean Value Theorem [35]) Let the function f(t) ∈ C[a, b] and its fractional
derivative Dαf(t) ∈ C(a, b] for 0 < α ≤ 1 and a, b ∈ R then we have

f(t) = f(a) +
1

Γ(α)
Dαf(ξ)(t− a)α, 0 ≤ ξ ≤ t, for every t ∈ (a, b].

Remark 2.3. Assume that the function f(t) is α-differentiable on (a, b) then we have the following results
[14]:

• If Dαf(t) < 0 for all t ∈ (a, b) then f(t) is decreasing on (a, b).

• If Dαf(t) > 0 for all t ∈ (a, b) then f(t) is increasing on (a, b).

• If Dαf(t) = 0 for all t ∈ (a, b) then f(t) is constant on (a, b).

Lemma 2.4. The solutions of model (1) with nonnegative initial values are non-negative.

Proof. To show this Lemma, we ought to consider that the domain Ω = {(S, T,N) ∈ R3 : S ≥ 0, T ≥
0, N ≥ 0} is positively invariant region. Then, on the hyperplanes of region Ω we have

DαS(t)|S=0 = 0,

DαT (t)|T=0 = bt + e1NS ≥ 0,

DαN(t)|N=0 = bn ≥ 0.

(2)

If {S(0), T (0), N(0)} ∈ Ω according to Lemma 2.2 and Remark 2.3, the solution (S(t), T(t), N(t)) can not
escape from the hyperplanes Ω. Thus, the solutions of the fractional-order model (1) are non-negative if
the initial conditions are non-negative for all t > 0.

2.2 Stability of the steady states

The underlying model (1) has the following equilibrium points: i) Decease free with immunity equilib-
rium E1(S1, T1, N1) = (0, bt

dt
, bn
dn

), ii) Endemic equilibrium point E2(S2, T2, N2), if they exist, satisfy the
following equalities:

F(S2, T2) =
a1(1− bS2)− dsnN2 − d1

dst
,

kN2T2(qS2 + dt) + bnrT2 = rT2N2(dnsS2 + dn) + kN2(e1N2S2 + bt).

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 18, 2022. ; https://doi.org/10.1101/2022.01.13.476252doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.13.476252
http://creativecommons.org/licenses/by-nc-nd/4.0/


The corresponding linearized system of model (1) at any steady state (S∗, T ∗, N∗) is calculated as
follows

DαS(t) =
(
a1 − 2a1bS

∗ − d1 − dsnN
∗ − dst

(
F(S∗, T ∗) + S∗ ∂F

∂S
(S∗, T ∗)

))
S(t)

−
(
dstS

∗ ∂F
∂T

(S∗, T ∗)
)
T (t)− dsnS

∗N(t),

DαT (t) =
(
rT ∗ ∂G

∂S
(S∗) + e1N

∗ − qT ∗
)
S(t) +

(
rG(S∗)− qS∗ − dt

)
T (t) + e1S

∗N(t),

DαN(t) =
(
kN∗ ∂G

∂S
(S∗)− dnsN

∗
)
S(t) +

(
kG(S∗)− dnsS

∗ − dn

)
N(t). (3)

Applying Laplace transform on both sides of (3), we can get

sαS(s)− sα−1S(0) =
(
a1 − 2a1bS

∗ − d1 − dsnN
∗ − dst

(
F(S∗, T ∗) + S∗ ∂F

∂S
(S∗, T ∗)

))
S(s)

−
(
dstS

∗ ∂F
∂T

(S∗, T ∗)
)
T (s)− dsnS

∗N (s),

sαT (s)− sα−1T (0) =
(
rT ∗ ∂G

∂S
(S∗) + e1N

∗ − qT ∗
)
S(s) +

(
rG(S∗)− qS∗ − dt

)
T (s) + e1S

∗N (s),

sαN (s)− sα−1N(0) =
(
kN∗ ∂G

∂S
(S∗)− dnsN

∗
)
S(s) +

(
kG(S∗)− dnsS

∗ − dn

)
N (s). (4)

Here, S(s), T (s),N (s) are Laplace transform of S(t), T (t) and N(t) with S(s) = L(S(t)), T (s) = L(T (t))
and N (s) = L(N(t)). The above equations (4) can be written as

∆(s) ⋆

S(s)
T (s)
N (s)

 =

h1(s)
h2(s)
h3(s)


where

h1(s) = sα−1S(0), h2(s) = sα−1T (0), h3(s) = sα−1N(0),

and

∆(s) =

sα + a2 a3 a4
a5 sα + a6 a7
a8 0 sα + a9

 ,

∆(s) is the characteristic matrix for the system (3) at (S∗, T ∗, N∗) and

a2 = 2a1bS
∗ + d1 + dsnN

∗ + dst

(
F(S∗, T ∗) + S∗ ∂F

∂S
(S∗, T ∗)

)
− a1, a3 = dstS

∗ ∂F
∂T

(S∗, T ∗), a4 = dsnS
∗,

a5 = qT ∗ − rT ∗ ∂G
∂S

(S∗)− e1N
∗, a6 = qS∗ + dt − rG(S∗), a7 = −e1S

∗,

a8 = dnsN
∗ − kN∗ ∂G

∂S
(S∗), a9 = dnsS

∗ + dn − kG(S∗).

Clearly, the eigenvalues of ∆(s) at E0 and E1 are −dt,−dn, d1 − a1 and −dt,−dn, d1 + dsnN1 − a1,
respectively, and assume that d1 < a1, d1 + dsnN1 < a1, which confirm that the model (1) around the
equilibrium points E0 and E1 are stable.

Lemma 2.5. The endemic equilibrium point E2 is locally asymptotically stable if p1 > 0, p3 > 0, p1p2 > p3.

Proof. The characteristic equation at E2 is described by

s3α + p1s
2α + p2s

α + p3 = 0,

where p1 = a2 + a6 + a9, p2 = a6a9 + a2(a6 + a9)− a3a5 − a4a8,

p3 = a8(a3a7 − a4a6) + a9(a2a6 − a3a5).
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By using the Routh-Hurwitz criterion, the endemic equilibrium E2 is locally asymptotically stable if
p1 > 0, p3 > 0, p1p2 > p3.

3 Parameter Estimation

The study of Wölfel et al. [26] was done a virological analysis on nine patients of COVID-19 for examining
the kinetics of viral load and measuring the virus replication in tissues of the upper respiratory tract.
Infection of all patients was known because they had near contact to an index case. The patients were
admitted to a hospital in Munich, Germany, and underwent virological tests in collaboration with two
reputable laboratories. Both laboratories were equipped with the same technology in PCR-PT and the
same standards for virus isolation. Authors measured and analyzed viral loads were projected to RNA
copies per ml, per swab and per g for sputum, throat swab and stool samples, respectively. All samples
were taken between 2 and 4 days after the onset of symptoms. In [29] swab samples are used for some
mathematical models.

Here, data fitting is used to estimate the values of parameters of the model (1). The parameters are
fitted by measured RNA viral load in sputum samples of five patients from [26] using by implementing
a least squares algorithm, fminsearch, that is a MATLAB function. The measured viral load was done
daily. The results for parameter estimation are presented in Table 1. Data fitting are made for different
valuse of α ∈ (0, 1]. In Figures 1 - 5 the result of the fitting for values α = 1 and α = 0.98 are presented.
Due to the arbitrary derivative order of model and non–locality properties of these derivatives, different
curves may be obtained in data fitting. This advantage will help to find the best fitting to the parameters
of the model.

4 Simulations and Model Validation

In order to numerically solve the system (1) the Adams-Bashforth-Moulton method of fractional version
(FABM) will be used. This method was introduced in [37]. Consider following fractional-order differential
equation

Dαy(t) = K(t, y(t)), (5)

the fractional Adams-Bashforth-Moulton method is include two step first step is predictor:

yprh (tn+1) =

⌈α⌉−1∑
j=0

tjn+1

j!
y
(j)
0 +

1

Γ(α)

n∑
i=0

pi,n+1K(ti, yh(ti)),

after computing the predictor step in second step modifier is calculated by

ymh (tn+1) =

⌈α⌉−1∑
j=0

tjn+1

j!
y
(j)
0 +

hα

Γ(α+ 1)

n∑
i=0

qi,n+1K(ti, yh(ti)),

where the pi,n+1 and qi,n+1 are

pi,n+1 =
hα

α
((n+ 1− i)α − (n− i)α) ,

qi,n+1 = (n− i+ 2)α+1 + (n− i)α+1 − 2(n− i+ 1)α+1, 1 ≤ i ≤ n,

q0,n+1 = nα+1 − (n− α)(n+ 1)α,

qn+1,n+1 = 1.
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in which ti i = 0, 1...n are equally selected points with fixed step length h.
Garrappa has written a MATLAB function for FABM, FDE12, which is available at the MathWorks [50].
The FDE12 algorithms is used for numerically solving of the model (1). This numerical simulation is
done for five patients a, c,d, e,g in [26] with their associated parameter values.

All simulations were performed to evaluate the behavior of the SARS-CoV-2 virus against immune
cells 28 days after the onset of symptoms. In these simulations, three values α = 0.95, 0.85, 0.80 are
considered as the fractional-order derivatives order of the equations in the model (1). The results are
shown in Figures 6–8.

As can be seen in the graphs, the virus concentration is not accurate for each patient. Simulations
show that for smaller amounts of α the virus load is higher. It will also reduce the virus load with less
speed and longer time.

In three patients a, c and d, the maximum load of the virus is before the fifth day. This may depend
on the amount of contact and the amount of primary virus that has been transmitted to the patient. Of
course, the initial behavior of the patient’s immune system against the virus should not be ignored.

Unlike patients a,d, in patient c, the decrease in the RNA viral concentration to its lowest level is
about 30 days after the onset of symptoms. Slow in reducing the concentration of viral RNA due to
the phenomenon of immune exhaustion and especially here NK cell exhaustion. High infections usually
lead to NK cells exhaustion, so limiting the infection potential of NK cells [28, 27]. In SARS-CoV-2
infections exhaustion of the NK cell was confirmed by increased frequencies of programmed cell death
protein 1 (PD-1) positive cells and reduced frequencies of natural killer group 2 member D (NKG2D)-,
sialic acid-binding Ig-like lectin 7 (Siglec-7)-, and DNAX ancillary molecule-1 (DNAM-1)-expressing NK
cells related to a reduced ability to spatter interferon IFNγ (see Figure 9) [27]. Furthermore, it was shown
that in sera of COVID-19 patients, IL-6 is present in large surplus. It may down-regulate NKG2D on
NK cells, leading to disorder of NK cells activity [27].

In middle-aged patient g, due to the increased load of the virus, it leads to the NK cells exhaustion and
reduces the infection potential. Decreased immune system function prolongs the course of the disease, so
these patients need long-term treatment and a longer quarantine period than other patients. In addition,
patients who show high viral loads 10 to 11 days after the first symptoms, due to immune exhaustion,
will have symptoms of a lung infection [27]. If the limit of quantification of RNA viral load be 200 RNA
copies per ml, the concentration of the virus in the patient’s body will reach this limit after 330 days for
α = 0.8 (see Figure 7, right). In this case, it is said that the patient is involved in Long COVID or Post
COVID phenomenon. Chronic COVID, known in English as long COVID, is a long-term symptoms of
acute COVID disease. The disease, which is characterized by long-term complications, persists after a
normal recovery period. The diagnosis of the duration or how long these conditions last is not yet fully
understood [38]. Based on our model duration of long COVID for patient g is 330 days. Of note, it seems
that delay in vaccination of immune exhaustion and long COVID individuals may be necessary. In the
next section, we will discuss the process of the disease profile in the patient g.

In patient e, an increase in viral load occurs after the first week, potentially indicating an exacerbation
of symptoms [26]. The immune system function of these patients need further investigation and more
studies should be done in future studies.

The diagrams in Figure 8 show the behavior of infected virus versus the behavior of NK and CD8+

cells one month after the first symptoms in a, c patients. Order derivative values α = 0.95, 0.85 are
considered for both cases. System (1) solutions with α = 0.85 indicate that in patient a because of severe
NK cells depletion as the first defense factor, SARS-CoV-2 virus growth reaches more than 107. Two
weeks after the peak viral load and with more CD8+ T-cells activation, the NK cells population increases
and dominates the SARS-CoV-2 virus population. The solutions of Model (1) for α = 0.95 show that
after approximately 10 days from the peak of infected virus concentration, the population of NK cells
increases and overcomes viruses. Therefore, it can be said that it takes two to three weeks for the immune
system to completely overcome the disease, in the patient a.

For the patient c, the solutions of (1) with α = 0.95, 0.85 indicate that due to the greater resistance
of NK cells to increased virus load and activated T-cells, the virus concentration is a maximum of 105.
Compared to the patient a, RNA viral had a lower burden, but due to NK cell exhaustion, NK cells
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were able to dominated SARS- CoV-2 infection with greater delay. About 25-30 days after the onset of
symptoms, NK cells can return to their original value and completely dominate the infected virus.

The results of [42] show that despite the same initial viral load, innate immunity such as NK cells and
INFγ , are stronger in younger patients and are more active than in adults in exposure to SARS-CoV-2
and quickly return to homeostasis. This may be seen in the solutions of model (1): As shown in Figure
8, when the α value is closer to one, the NK cells proliferate and become active faster. Also, the model
with smaller α values is suitable for older patients. Here we can call α as the age parameter.

The response of CD8+ T-cells to the COVID virus is slow and at a constant rate. It seems that in
order to reduce the peak load of the virus, T-cells need to respond more quickly to the virus attack.
Therefore, it is recommended that in the first days of the disease, drugs that lead to faster activation of
T-cells be prescribed. Rapid production of neutralizing antibodies is effective in treating the disease. In
patients who made the neutralizing antibody before day 14, they eventually recovered, but in patients
who started making the neutralizing antibody after 14 days, the antibodies lost their protective role [41].

5 Sensitivity Analysis

Sensitivity analysis is an important tool for assessing dynamic behavior of the underlying biological
system. Herein, we evaluate sensitivity of state variables to small variations in model parameters to
enable us to (i) display how robustness of the underlying infection model is to small changes in the
parameter values, (ii) discover in which subinterval the model sensitive to a particular parameter to
understand significant processes and immune system mechanisms. We evaluate the sensitivity functionals
throughout studying the effect of changes in the parameters on the period to estimate severity of the
diseases [22].

Some model parameters are very effective in determining the progression and decline of SARS-CoV-
2 load. To determine the relationship between the parameters and model outcomes we use sensitivity
analysis. Here we use Partially Ranked Correlation Coefficients (PRCC) to quantify the sensitivity and
the relationships. The PRCC will be calculated for 1000 values of each parameter which is drawn by
running the Latin Hypercube Sampling method (LSH). The LSH technique is a type of Monte Carlo
sampling described in [39]. The LHS scheme allows the values of all input parameters to be changed
simultaneously. This sampling method will be efficient if the outcome is a monotonic function of each
of the input parameters. Here, we only use the parameters a1, dsn, dt, bt, dn, bn, T0 and N0 that are
monotically associated to outcomes of the model in the sensitivity analysis.

Sensitivity analysis of the selected parameters was performed for 4 and 23 days post-onset of symp-
toms. The results for SARS-Cov-2 load are peresented in Figure 10. On day 4 after the first symptoms,
the parameter a1, which is replication rate of the virus had a significant positive relationship with virus
load. The PRCC value for the parameter a1 at significance level of 0.001 was 0.62. The virus lysis by
CD8+ T-cells rate parameter dst had a high negative correlation with viral load. The correlation coeffi-
cient for this parameter was 0.87. This negative correlation with viral loading indicates that increasing
the SARS-CoV-2 lysis by CD8+ T cells may play an important role in controlling and reducing the virus
load in the first days of the disease.

On day 23 post-onset of symptoms, in addition to dst and a1 parameters, the dt parameter, which
indicates the natural death rate of CD8+ T-cells, had a significant correlation with SARS-Cov-2. This
correlation is positive with PRCC value 0.62, which indicates that in the forth week of the disease, death
and consequently a decrease in the volume of cytotoxic T-cells has a great impact on the persistence of
the virus and the disease is exacerbated.

Furthermore, to show the effect of dst and dt parameters on SARS-CoV-2 behavior in long COVID
patients, we solved the model (1) with α = 0.8 for patient g, separately. According to Figure 11 (left),
the maximum RNA viral for dst = 0.0275 is 1.2× 107 copies per ml, and the time for complete clearance
of the virus is 330 days after the onset of symptoms. For dst = 0.0285 the maximum RNA viral is
5.2× 106 copies per ml, and the clearance time of the virus is 180 days after the onset of symptoms and
for dst = 0.0295 maximum RNA viral and clearance time are 2.6× 106 copies per ml and 140 days after
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the onset of symptoms, respectively. As shown in Figure 11 (right) the maximum RNA viral for dt = 0.01
is 1.2 × 107 copies per ml, and the time for complete clearance of the virus is 330 days after the onset
of symptoms. So if we assume that vaccination increases the virus removal rate by CD8+ T-cells dst by
0.002, then vaccination of COVID-19 reduces the severity and effect of long COVID for 140 days. This
is due to the induction of T cells with the vaccine.

For dt = 0.006 the maximum RNA viral is 6.26 × 106 copies per ml, and the clearance time of the
virus is 120 days after the onset of symptoms and for dt = 0.001 maximum RNA viral and clearance time
are 3.5× 106 copies per ml and 65 days after the onset of symptoms, respectively.
Thus, by increasing the lifespan of CD8+ T-cells by 0.005 and inducing long-term responses of these
cells by vaccination, the long COVID period can be reduced to 65 days. Of note, this feature will be
challenging for vaccine technology.
The findings published in [40] confirm the results of our model. In [40] it is shown that the symptoms
and severity of long COVID among patients with persistent symptoms are significantly reduced 120 days
after vaccination.

6 Conclusion

The coronavirus associated with severe acute respiratory syndrome-2 (SARS-CoV-2) interacts dynami-
cally with many components of the immune system. These interactions are poorly understood because
of their complexity. Using reliable mathematical models is one way to understand the mechanism of
SARS-CoV-2 viral behavior. This paper presents a fractional-order mathematical model of the immune
system responses to SARS-CoV-2 viral load in 5 patients with COVID-19. In this model, the population
of cytotoxic T-cells (CD8+), natural killer cells are taken into account.

By sufficient conditions, non-negativity of the solution and asymptotic stability of the steady states
are guaranteed. Simulation results shed light on the dynamics of SARS-Cov-2 and the immune system
of the patients. Depending on the immune system, the dynamics of SARS-Cov-2 differ from person to
person. It is possible for patients to develop so-called long COVID due to immuno-exhaustion. In Model
1, innate immunity, including NK cells, was well demonstrated. It is possible to achieve more results by
developing the model and adding other parts of the immune system, such as helper T cells (CD4+).

A major advantage of the model was the fractional-order, which illustrated how age affects disease.
In this case, the fractional-order value was 0 < α ≤ 1. Model (1) with α values closer to one is suitable
for younger people and with smaller values is suitable for older people.

We performed a sensitivity analysis on some parameters to determine their effect on the model.
SARS-Cov-2 load was closely correlated with some model parameters, such as the replication rate, virus
removal rate by CD8+ T-cells, and death rate of T-cells. In addition to vaccine design, these parameters
are useful in disease control and future treatments.

In the future, vaccine-related variables and parameters could be added to the model to prevent SARS-
Cov-2 from spreading.
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Table 1: Information of the Parameters
Par. Description Units Value range Source
a1 S replication rate 1/day [2.86,7.07] [29]
b Maximum S ml/(RNA copies) [1e-010,1e-09] [29]
dst Virus lysis by CD8+ T-cells rate 1/day [0.01,0.4] Estimated
dsn Virus death rate by NK cells ml/cell(day) [1.2e-11,2e-010] Estimated
d1 Natural death rate of Virus 1/day [0.0001,0.1] Estimated
bt CD8+ T-cells proliferation cell/ml(day) [50 1500] [47]
r CD8+T-cell activation 1/day [0.001,0.032] Estimated
e1 CD8+T recruitment rate by virus lysed by NK ml/(RNA copies)(day) [2.1e-06,8.4e-005] Estimated
q CD8+T inactivation rate by virus ml/(RNA copies)(day) [1.1e-10,9.5e-10] Estimated
dt Natural death rate of T-cells 1/day [0.001,0.08] [48]
bn NK cells proliferation cell/ml(day) [7, 200] [43]
k NK cells activation 1/day [0.001,0.02] Estimated
dns Inactivation NK cells rate ml/(RNA copy)(day) [1.1e-06,9.09e-05] Estimated
dn NK celss death rate 1/day [4.2e-02,0.15] [46, 45]
z Steepness coefficient of virus lysis by T-cells – [0.01,1] [43]
c1 Steepness coefficient of NK recruitment – [1e+03,1e+06] Estimated
α Fractional virus kill power – [9.1e-01,9.9e-01] Estimated
n Michaelis-Menten order – 2 [48]
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Numerical Simulations for α=0.85 (Case a) 
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Numerical Simulations for α=0.95 (Case a) 
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Numerical Simulations for α=0.85 (Case c) 
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Numerical Simulations for α=0.95 (Case c) 
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Figure 8: Numerical solutions of the model (1) for patient a, c .

Figure 9: Schematic of exhausted NK cell.
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Figure 10: Sensitivity analysis for 4 (left) and 23 (right) days post-onset of symptoms.
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Numerical Simulation for SARS−CoV−2, α=0.8 (Case g) 
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Numerical Simulation for SARS−CoV−2, α=0.8 (Case g) 
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Figure 11: RNA viral load based on changing of dst (left) and dt (right) parameters for long COVID case
g.
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