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Abstract

Genes functionally associated with SARS-CoV-2 and genes functionally related to COVID-19 disease

can be different, whose distinction will become the first essential step for successfully fighting against the

COVID-19 pandemic. Unfortunately, this first step has not been completed in all biological and medical

research. Using a newly developed max-competing logistic classifier, two genes, ATP6V1B2 and IFI27,

stand out to be critical in transcriptional response to SARS-CoV-2 with differential expressions derived

from NP/OP swab PCR. This finding is evidenced by combining these two genes with one another

gene in predicting disease status to achieve better-indicating power than existing classifiers with the

same number of genes. In addition, combining these two genes with three other genes to form a five-gene

classifier outperforms existing classifiers with ten or more genes. With their exceptional predicting power,

these two genes can be critical in fighting against the COVID-19 pandemic as a new focus and direction.

Comparing the functional effects of these genes with a five-gene classifier with 100% accuracy identified

and tested from blood samples in the literature, genes and their transcriptional response and functional

effects to SARS-CoV-2 and genes and their functional signature patterns to COVID-19 antibody are

significantly different, which can be interpreted as the former is the point of a phenomenon, and the

latter is the essence of the disease. Such significant findings can help explore the causal and pathological

clue between SARS-CoV-2 and COVID-19 disease and fight against the disease with more targeted

vaccines, antiviral drugs, and therapies.

Keywords: PCR sample, blood sample, COVID-19 detection, gene-gene interaction, functional effects,

competing risks, computational medicine.

1 Introduction

The fluctuations in infection rates of the COVID-19 pandemic has been like sea waves, with many small

ones and several big ones in the past two years. In the meantime, variants of SARS-CoV-2 have emerged

and made scientists and medical practitioners on high alert all the time, and many problems have remained

unanswered1;2;3;4;5;6;7;8;9;10;11. In addition, there have been new concerns with COVID-19 disease, e.g.,

SARS-CoV-2 enters the brain12, COVID-19 vaccines complicate mammograms13, memory loss and ’brain

fog’14, amongst others. However, these new concerns are observational and experimental outcomes, and

they do not have genetic bases due to a lack of effective analytical methods to link COVID-19 to the

concerned. Regarding gene expression samples, the literature didn’t point out the significant difference

between samples with differential expressions derived from NP/OP swab PCR and samples derived from
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blood samples as the majority of research work focused on individual genes’ fold changes. Zhang15 first

applied an innovative algorithm to analyze 126 blood samples from COVID-19-positive and COVID-19-

negative patients16 and reported five critical genes and their competing classifiers, which led to 100% accuracy

to classify all hospitalized patients, including ICU patients, to their respective groups. Zhang17 further

develops a mathematical and biological equivalence between COVID-19 and five critical genes and proves

the existence of at least three genomic signature patterns and at least seven subtypes. This paper studies

gene expression data drawn from NP/OP swab PCR tested samples with COVID-19 positives and negatives.

Surprisingly, we find that the functional effects of those five critical genes, ABCB6, KIAA1614, MND1,

SMG1, RIPK3, found in Zhang15;17 are no longer playing a decisive role in PCR samples. At first glance,

this observation seems not useful at all, or it even brings doubts about the study methodology and genomics.

A careful thought confirms that this observation perfectly suggests the relationship between blood samples

and PCR samples. The former stands for the essence of the disease, while the latter stands for the point of

the phenomenon. Metaphorically, let’s consider samples from the deep sea and samples from the shoreside.

The samples from the deep sea represent the meta contents and functions of the sea, while the samples

from the shoreside contain likely polluted contents from the bank. Also, the structures of the deep sea have

changed along sea waves. As a result, samples from the deep sea and samples from the shoreside will provide

very different information. Analogously, deep-sea samples correspond to blood samples, while shoreside

samples correspond to PCR samples, which therefore explains the significant difference inferred from the

study in Zhang15;17 and this study. On the other hand, our new finding calls forth an old question: treat the

symptoms, cure the root cause or both. Zhang17 argues that the existence of a genomic signature pattern

has to be solved to end the disease, i.e., it is about to cure the root cause. This paper is about treating

the symptoms. These two researches reinforce each other, and both are important to current studies of the

disease.

The studies15;17;18;19;20 applied an innovative algorithm to study classifications of COVID-19 patients,

breast cancer patients, colorectal cancer patients, and lung cancer patients and gained the highest accuracy

(100%) among eleven different study cohorts with thousands of patients. The 100% accuracy establishes a

mathematical and biological equivalence between the formed classifiers and the disease, which shows that

the study method is effective, informative, and robust. These applications are advanced as they lead to new,

interpretable, and insightful functional effects of genes linked to the diseases. The findings can be the key

factor in achieving breakthroughs against the diseases. As a result, they shouldn’t be wrongly treated as

data reanalysis exercises. Due to the limitation of the existing analysis methods and the limited knowledge

of the diseases, the fundamental functional effects of genes associated with the disease couldn’t be quested

even the truth in the collected data has existed for a long time, and the chances of discovering the truth have

been wasted. Conducting new experiments, producing new data, and applying the same analysis methods

just like repeating, making the same errors of finding suboptimal (even sometimes misleading) answers.

This paper is using the innovative method to study differential expressions of human upper respiratory

tract gene expressions from 93 COVID-19 positive patients and 141 patients having other acute respiratory

illnesses with or without viral21, and to study host gene expression among RNA-sequencing profiles of

nasopharyngeal swabs from 430 individuals with SARS-CoV-2 and 54 negative controls22. Using the first

dataset, we identify two genes, ATP6V1B2 and IFI27, critical in transcriptional response to SARS-CoV-2.

The gene IFI27 was also identified in Mick et al. (2020), but was not entered their final classifiers. In the

analysis of the first dataset, a combination of these two genes with RIPK315 can lead to an overall accuracy

of 87.2%, the sensitivity of 76.3%, and specificity of 94.3%, and a combination of these two genes with one of

these three genes, BTN3A1, SERTAD4, EPSTI1, can lead to an overall accuracy of 89.74%, the sensitivity of

89.25∼93.55%, and specificity of 87.24∼90.12%, which are higher than the classifiers in the literature. Using
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these two genes and one other gene together can easily get overall accuracies between 87.2% and 89.74%,

which reveals that these two genes can be fundamental. Combining all these five genes can get to an overall

accuracy of 91.88%, the sensitivity of 94.62%, and specificity of 90.08%, which are higher than the classifiers

with 10 genes or more in the literature. In the analysis of the second dataset, a combination of the above five

genes led to an overall accuracy of 93.39%, a sensitivity of 98.37%, and specificity of 53.70%. Many other

combinations will be illustrated in Data Section. These performance results from different combinations

indicate that COVID-19 can have many different variants. Different from the studies in Zhang (2021; 2021),

the accuracy from any of the combinations applied to PCR gene expressions hasn’t been up to 100%. There

are three possible reasons, e.g., 1) samples themselves can be false positive or false negative from PCR tests;

2) sample signals were weak, and counts were inaccurate; 3) experimental conditions vary. We note that

there are many zero expression values in the second dataset, which may be the reason for a low specificity.

These two critical genes ATP6V1B2 (ATPase H+ Transporting V1 Subunit B2) and IFI27 (Interferon

Alpha Inducible Protein 27) had previously been reported to be associated with several diseases. For example,

de novo mutation in ATP6V1B2 was found to impair lysosome acidification and cause dominant deafness-

onychodystrophy syndrome23, while IFI27 was found to discriminate between influenza and bacteria in

patients with suspected respiratory infection24, among others.

The significant differences of gene functional effects, gene-gene interactions, and gene-variants interactions

between blood sampled gene expressions and PCR sampled gene expressions reveal that ATP6V1B2 and

IFI27 are associated with SARS-CoV-2, which points to a new optimal direction of developing more effective

vaccines and antiviral drugs. On the other hand, the functional effects of ABCB6, KIAA1614, MND1, SMG1,

RIPK3 can be critical to understanding the disease.

The contribution of this paper includes: 1) signifying the genomic difference between PCR samples and

blood samples (hospitalized patients); 2) identifying single digit critical genes (ATP6V1B2, IFI27, BTN3A1,

SERTAD4, EPSTI1) which are a transcriptional response to SARS-CoV-2; 3) presenting interpretable func-

tional effects of gene-gene interactions, gene-variants interactions using explicitly mathematical expressions;

4) presenting graphical tools for medical practitioners to understand the genomic signature patterns of the

virus; 5) making suggestions on developing more efficient vaccines and antiviral drugs; 6) identifying poten-

tial genetic clues to other diseases due to COVID-19 infection. The remaining part of the paper is organized

as follows. Section 2 briefly reviews the studying methodology. Section 3 reports the data source, analysis

results, and interpretations. Finally, Section 4 concludes the study.

2 Methodology

Many medical types of research, especially gene expression data related, applied the classical logistic regres-

sion as a starting base, then together with implementations of some advanced machine learning methods.

However, Teng and Zhang (2021)25 points out that classical logistic regression can only model absolute

treatments, not relative treatments, and as a result, it has led (and will lead) to many supposedly efficient

trials to be wrongly concluded as inefficient. Four clinical trials, including one COVID-19 study trial, were

illustrated in their paper. Their new AbRelaTEs regression model for medical data is much more advanced

than the classical logistic regression as it greatly enhances interpretability and truly being personalized

medicine computability. Our new study in this paper is different from AbRelaTEs as we don’t deal with

treatment and control, and we use a new innovative method to study the existence of functional effects of

genes associated with SARS-CoV-2.

The competing risk factor classifier has been successfully applied in the literature15;18;19;20. This section

briefly introduces necessary notations and formulas for self-contained due to different data structures used
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in this work. For continuous responses, the literature papers26;27;28 deal with max-linear computing factor

models and max-linear regressions with penalization. Max-logistic classifier has some connections to the

logistic polytomous models but with different structures29;30;31.

Suppose Yi is the ith individual patient’s COVID-19 status (Yi = 0, 2 for COVID-19 free, Yi = 1 for

infected) and X
(k)
i = (X

(k)
i1 , X

(k)
i2 , . . . , X

(k)
ip ), k = 1, . . . ,K, being the gene expression values with p =

15979, 35784 genes in this study. Here k stands for the kth type of gene expression levels drawn based on

K different biological sampling methodologies. Note that most published work set K = 1, and hence the

supercript (k) can be dropped from the predictors. In this research paper, K = 4 as we have two datasets,

and in the first dataset, there are other ARIs patients with other viral or non-viral. Using a logit link (or

probit link, Gumbel link), we can model the risk probability p
(k)
i of the ith person’s infection status as:

log
( p

(k)
i

1− p(k)i

)
= β

(k)
0 +X

(k)
i β(k) (1)

or alternatively, we write

p
(k)
i =

exp(β
(k)
0 +X

(k)
i β(k))

1 + exp(β
(k)
0 +X

(k)
i β(k))

where β
(k)
0 is an intercept, X

(k)
i is a 1 × p observed vector, and β(k) is a p × 1 coefficient vector which

characterizes the contribution of each predictor (gene in this study) to the risk.

Considering there have been several variants of SARS-COV-2 and multiple symptoms (subtypes) of

COVID-19 diseases, it is natural to assume that the genomic structures of all subtypes can be different.

Suppose that all subtypes of COVID-19 diseases may be related to G groups of genes

Φ
(k)
ij = (X

(k)
i,j1
, X

(k)
i,j2
, . . . , X

(k)
i,jgj

), j = 1, . . . , G, gj ≥ 0, k = 1, . . . ,K (2)

where i is the ith individual in the sample, gj is the number of genes in jth group.

The competing (risk) factor classifier is defined as

log
( p

(k)
i

1− p(k)i

)
= max(β

(k)
01 + Φ

(k)
i1 β

(k)
1 , β

(k)
02 + Φ

(k)
i2 β

(k)
2 , . . . , β

(k)
0G + Φ

(k)
iG βG) (3)

where β
(k)
0j ’s are intercepts, Φ

(k)
ij is a 1×gj observed vector, β

(k)
j is a gj×1 coefficient vector which characterizes

the contribution of each predictor in the jth group to the risk.

Remark 1. In (3), p
(k)
i is mainly related to the largest component β

(k)
0j + Φ

(k)
ij β

(k)
j , j = 1, . . . , G, i.e., all

components compete to take the most significant effect.

Remark 2. Taking β
(k)
0j = −∞, j = 2, . . . , G, (3) is reduced to the classical logistic regression, i.e., the

classical logistic regression is a special case of the new classifier. Compared with blackbox machine learning

methods (e.g., random forest, deep learning (convolution) neural network (DNN, CNN)) and regression tree

methods, (3) shows clear patterns. Each competing risk factor forms a signature with the selected genes. The

number of factors corresponds to the number of signatures, i.e., G. This model can be regarded as a bridge

between linear models and more advanced (blackbox) machine learning methods. However, (3) remains the

desired properties of interpretability, computability, predictability, and stability. Note that this remark is the

same as Remark 120.

In practice, we have to choose a threshold probability value to decide a patient’s class label. Following
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the general trend in the literature, we set the threshold to be 0.5. As such, if p
(k)
i ≤ 0.5, the ith individual

is classified as disease free, otherwise the individual is classified to have the disease.

With the above established notations and the idea of quotient correlation coefficient32, Zhang (2021)20

introduces a new machine learning classifier, smallest subset and smallest number of signatures (S4) as

(β̂, Ŝ, Ĝ) = arg min
β, Sj⊂S, j=1,2,...,G

{
(1 + λ1 + |Su|)

∑K
k=1

∑n
i=1

(
I(p

(k)
i ≤0.5)I(Yi=1)+I(p

(k)
i >0.5)I(Yi=0)

)
(4)

+λ2

(
|Su| −

|Su|+G− 1

(|Su|+ 1)×G− 1

)}

where I(.) is an indicative function, p
(k)
i is defined in Equation (3), S = {1, 2, . . . , 15979, 35784} is the index

set of all genes, Sj = {jj1, . . . , jj,gj}, j = 1, . . . , G are index sets corresponding to (2), Su is the union of

{Sj , j = 1, . . . , G}, |Su| is the number of elements in Su, λ1 ≥ 0 and λ2 ≥ 0 are penalty parameters, and

Ŝ = {jj1, . . . , jj,gj , j = 1, . . . , Ĝ} and Ĝ are the final gene set selected in the final classifiers and the number

of final signatures.

Remark 3. The case of K = 1 corresponds to the classifier introduced in Zhang (2021)20. The case of

K = 1 and λ2 = 0 corresponds to the classifier introduced in Zhang (2021)15.

3 Data Descriptions, Results and Interpretations

3.1 The data

Two COVID-19 datasets to be analyzed are publicly available at https://github.com/czbiohub/covid19-

transcriptomics-pathogenesis-diagnostics-results21 and as GSE15207522. The first dataset contains 15979

genes, 93 patients with PCR tested COVID-19 positive, 41 patients with viral acute respiratory illnesses

(ARIs) and COVID-19 negative, and 100 non-viral acute respiratory illnesses (ARIs) COVID-19 negative.

The second dataset contains 35784 genes, individuals with PCR confirmed SARS-CoV-2, and 54 negative

controls. We note that there are many gene expression values in the second dataset being zero.

3.2 The competing factor classifiers and their resulting risk probabilities

Solving the optimization problem (4) among all genes (15979 and 35784), with different combinations, various

competing classifiers can be identified. Although, as discussed in Introduction, the gene expression data used

in this study were drawn from PCR samples (not blood samples), 100% accurate classifiers with a single-digit

number of genes do not exist. Also, with the same accuracy (smaller than 100%), different combinations of

genes can be candidate classifiers. Therefore, we report the best-performed classifiers in this subsection. After

an extensive Monte Carlo search of the best combinations of genes, five genes, ATP6V1B2, IFI27, BTN3A1

(Butyrophilin Subfamily 3 Member A1), SERTAD4 (SERTA Domain Containing 4), EPSTI1 (Epithelial

Stromal Interaction 1), are found to form the S4 classifiers.

Given the first dataset has three categories (COVID-19 positive, ARIs with non-SARS-CoV-2 viral, ARIs

without viral), we also study the classification between COVID-19 positive and ARIs with non-SARS-CoV-2

viral, and between COVID-19 positive and ARIs without viral, which leads to K = 4 as stated in the prior

subsection.
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Table 1: First dataset: Characteristics of the top performed individual genes together with ATP6V1B2 and
IFI27 to form a three-gene classifier.

Classifier Intercept ATP6V1B2 IFI27 BTN3A1 SERTAD4 EPSTI1 Accuracy Sensitivity Specificity
BTN3A1 -9.8180 -8.0116 2.1871 5.2583 88.46% 83.87% 91.49%
SERTAD4 -4.5269 -1.9712 2.1584 -7.8030 89.32% 86.02% 91.49%
EPSTI1 -7.2904 -7.2500 2.6524 4.1633 89.74% 93.55% 87.23%

Table 2: First dataset: Characteristics of RIPK3 together with ATP6V1B2 and IFI27.
Classifier Intercept ATP6V1B2 IFI27 RIPK3 Accuracy Sensitivity Specificity
RIPK3 -1.2487 -5.7586 1.3916 9.9020 87.2% 76.3% 94.3%

Note that in (3) each individual component itself is a classifier which has the following form

β0 + β1 ×ATP6V1B2 + β2 × IFI27 + β3 × BTN3A1 + β4 × SERTAD4 + β5 × EPSTI1 (5)

where (β0, β1, . . . , β5) are coefficients. In the subsequent subsections, we use tables to present individual

(CFi,j) and combined (CFmaxj) classifiers representing (5), where i is the index for classifier, and j is for

dataset.

The risk probabilities of each component classifier are

Pi,j =
exp

(
CFi,j

)
1 + exp

(
CFi,j

) , i = 1, 2, j = 1, 2, (6)

and the risk probabilities based on all three component classifiers together are

Pmaxj =
exp

(
CFmaxj

)
1 + exp

(
CFmaxj

) , j = 1, 2. (7)

3.3 First dataset: Three-gene classifiers (G = 1)

Note that the results in this subsection are not from our final best-performed classifiers. We found that

a combination of ATP6V1B2 and IFI27 with many other genes can lead to high accuracy classifiers. We

present their performance combined with the remaining genes of the best subset of five genes in this paper

and one of the five critical genes found by Zhang15. Tables 1 and 2 summarize the results.

In both Tables 1 and 2, we see that the coefficient signs of ATP6V1B2 and IFI27 are the same across all

individual classifiers, which is a strong indication that they are truly associated with the virus. Although

gene RIPK3 plays a key role in the perfect classifier identified in Zhang15, its performance is inferior to the

other three genes identified from PCR samples in this paper. This phenomenon reflects the discussions in

Introduction that RIPK3 is related to the natural essence of COVID-19, while ATP6V1B2, IFI27, BTN3A1,

SERTAD4, and EPSTI1 contain more information about SARS-CoV-2.

We note that for BTN3A1, its combinations with ATP6V1B2 and IFI27 can have numerous types, which

also leads to the same accuracy; for SERTAD4, there are numerous combinations with ATP6V1B2 and IFI27;

and the same is true for EPSTI1. The coefficients listed in Table 1 are just a particular type of coefficient.

Also, for EPSTI1, we can get different sensitivities and specificities while maintaining the same accuracy.

Among four genes (BTN3A1, SERTAD4, EPSTI1, and RIPK3), EPSTI1 has the best performance in Tables

1 and 2. This empirical evidence proves that ATP6V1B2 and IFI27 are at the center of genes associated

with SARS-CoV-2.
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Table 3: First dataset: Characteristics of the top performed five-gene classifier. CF1 and CF2 stand for the
first and second individual classifier for data COVID-19 patients vs. other viral ARIs and non-viral patients.

Classifier Intercept ATP6V1B2 IFI27 BTN3A1 SERTAD4 EPSTI1 Accuracy Sensitivity Specificity
CF1 9.1930 -1.8935 1.5774 -4.3303 87.61% 81.72% 91.49%
CF2 -7.2786 -5.2993 3.2572 2.3400 86.32% 76.34% 92.91%
max{CF1, CF2} 91.88% 94.62% 90.07%

Table 4: First dataset: Characteristics of the top performed five-gene classifier. CF1 and CF2 stand for the
first and second individual classifier for data COVID-19 patients vs. other viral ARIs but non-viral patients.

Classifier Intercept ATP6V1B2 IFI27 BTN3A1 SERTAD4 EPSTI1 Accuracy Sensitivity Specificity
CF1 -2.0520 3.9086 2.5578 -9.6586 70.15% 62.37% 87.80%
CF2 5.5979 -7.4352 8.3704 4.4936 76.12% 74.19% 80.49%
max{CF1, CF2} 91.04% 97.85% 75.61%

3.4 First dataset: Five-gene classifiers and the existence of variants

Our extensive Monte Carlo search leads to the best solution of the accuracy of 91.82% to the optimization

problem (4) as five genes, i.e., ATP6V1B2, IFI27, BTN3A1, SERTAD4, and EPSTI1 though the solution is

not unique. These five genes stand out after comparing solutions for all three categories in the first dataset.

Tables 3-5 summarize the results.

Table 6 demonstrates part of patients’ expression values of the five critical genes, competing classifier

factors, predicted probabilities. Note that due to very relative large scales in Columns CF-1, CF-2, CFmax,

they are rescaled by a division of 100 when computing the risk probabilities as very large values can result

in an overflow in computation. The validity of rescaling was justified in Zhang17.

Figure 1 presents critical gene expression levels and risk probabilities corresponding to different combi-

nations in the first dataset and Tables 3-5. It can be seen that each plot shows a genomic signature pattern

and functional effects of genes involved.

From Tables 1-5, we can immediately see that the coefficient signs associated with ATP6V1B2 are uni-

formly negative, which shows that increasing the expression level of ATP6V1B2 will decrease the virus

(SARS-CoV-2) strength; the coefficient signs associated with IFI27 are uniformly positive, which shows that

decreasing the expression level of IFI27 will decrease the virus (SARS-CoV-2) infection strength. Such func-

tional effects of ATP6V1B2 and IFI27 can also be clearly seen in Figure 1 around origins which show the

higher the IFI27 level, the higher the risk probability (yellow color); the higher the ATP6V1B2 level, the

lower the risk probability (blue color). These observations show that ATP6V1B2 and IFI27 are in the circle

of genes associated with SARS-COV-2. BTN3A1 appears three times in Tables 3-5 with positive coefficients,

which shows decreasing the expression level of BTN3A1 will decrease the virus (SARS-CoV-2) infection

strength. The coefficient signs of SERTAD4 and the coefficient signs of EPSTI1 show both positive and

negative in Tables 3-5 depending on the ways of genes being combined. These phenomena explain the reason

SARS-CoV-2 variants have emerged as variants can be related to different coefficient signs corresponding to

genes.

Table 5: First dataset: Characteristics of the top performed five-gene classifier. CF1 and CF2 stand for the
first and second individual classifier for data COVID-19 patients vs. non-viral ARIs patients.

Classifier Intercept ATP6V1B2 IFI27 BTN3A1 SERTAD4 EPSTI1 Accuracy Sensitivity Specificity
CF1 -2.2381 -7.9733 4.5448 4.7567 90.16% 81.72% 98.00%
CF2 -2.1003 -4.8036 4.0849 -9.9738 90.16% 82.80% 97.00%
max{CF1, CF2} 96.37% 95.70% 97.00%
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Table 6: First dataset: Expression values of the five critical genes, competing classifier factors, predicted
probabilities.

#ID Status ATP6V1B2 IFI27 BTN3A1 SERTAD4 EPSTI1 CF-1 CF-2 CFmax1 P1 P2 P-1

e-202 0 277 604 104 158 138 -246.74 -813.52 -246.74 0.08 0.00 0.08
e-080 0 866 103 82 76 94 -1797.21 -4109.42 -1797.21 0.00 0.00 0.00
e-287 0 3127 717 271 233 151 -5789.75 -15342.15 -5789.75 0.00 0.00 0.00
e-753 1 1053 2029 766 214 819 289.20 -1175.97 289.20 0.95 0.00 0.95
e-751 1 253 1423 266 114 369 1281.12 381.87 1281.12 1.00 0.98 1.00
e-520 0 617 344 120 11 559 -664.10 -1578.02 -664.10 0.00 0.00 0.00
e-505 0 721 240 298 10 500 -1020.75 -1687.43 -1020.75 0.00 0.00 0.00
i-083 0 191 320 119 72 71 -159.48 -465.70 -159.48 0.17 0.01 0.17
e-764 0 1667 202 76 3 1232 -2841.63 -5710.78 -2841.63 0.00 0.00 0.00
e-451 0 1880 24 98 2 27 -3521.39 -9587.58 -3521.39 0.00 0.00 0.00
e-285 0 794 826 530 392 300 -1888.79 -1786.61 -1786.61 0.00 0.00 0.00
e-254 0 512 253 195 388 69 -2241.35 -1923.91 -1923.91 0.00 0.00 0.00
e-726 1 398 1395 362 96 567 1040.34 389.49 1040.34 1.00 0.98 1.00

Figure 1: COVID-19 classifiers in Tables 3-5: Visualization of gene-gene relationship and gene-risk proba-
bilities. Note that 0.5 is the probability threshold.
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COVID‐19 vs Other ARIs with viral

Figure 2: Venn diagram of variants of SARS-CoV-2 (the first dataset): Top-left panel is for COVID-19 vs.
all others; Top-right panel is for COVID-19 vs. other viral; Bottom-left panel is for COVID-19 vs. non viral;
Bottom-right panel is for all three together.

Figure 2 is a Venn diagram to illustrate the performance of each classifier and the combined classifier.

In Venn diagram, those patients who fall in the intersections are relatively easy to be tested and confirmed

positive, while for those who only fall in one category, it is relatively hard to test and confirm their status.

Two individual classifiers can be explained as having two times COVID-19 tests using two different testing

procedures, and with both tests being positive, the probability of infection will be higher depending on the

sensitivity and the specificity of each test. Summarizing Tables 3-5 and Figure 2, mathematically speaking,

SARS-CoV-2 can have 3×3×3×4 = 108 variants with some of them being insignificant from dominant ones

while some of them being dominant and having emerged (or will emerge), where the multiplier 3 corresponds

to 3 classes in one Venn diagram, and similarly, other numbers are interpreted. We note that the joint

functional effects of genes are not directly observable, and the meaning of variants is defined by the joint

functional effects. As a result, the variants of the virus are not directly referred to what has been known in

the literature and practice.

Comparing the individual classifiers and combined classifiers among COVID-19 vs. all others, COVID-19

vs. ARIs with other viral, and COVID-19 vs. without viral, we see that the combined classifier for the case

of COVID-19 vs. without viral works the best. We found some ARIs with other viral may be COVID-19

patients but not yet confirmed. If we apply the classifier in Figure 2 bottom-right panel, we can get sensitivity

up to 98.94% with a slight loss of specificity.

3.5 Second dataset: Five-gene classifiers and the existence of variants

The five genes, ATP6V1B2, IFI27, BTN3A1, SERTAD4, EPSTI1, achieved superior performance in classi-

fying patients in their respective groups. In this subsection, we test their performance in a second dataset.
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Table 7: Second dataset: Characteristics of the top performed five-gene classifier. CF1 and CF2 stand for
the first and second individual classifier for data COVID-19 confirmed vs. COVID-19 negative.

Classifier Intercept ATP6V1B2 IFI27 BTN3A1 SERTAD4 EPSTI1 Accuracy Sensitivity Specificity
CF1 -9.0153 8.2227 -3.6174 0.2020 -10.2465 8.4920 91.32% 95.35% 59.26%
CF2 1.7700 -7.0875 -1.7572 -8.7975 6.2012 8.7980 27.07% 18.84% 92.59%
max{CF1, CF2} 93.39% 98.37% 53.70%

Table 8: Pairwise correlation coefficients: The upper triangle is for the first dataset, and the lower triangle
is for the second dataset.

ATP6V1B2 IFI27 BTN3A1 SERTAD4 EPSTI1
ATP6V1B2 – 0.2080 0.5416 0.0510 0.5415

IFI27 0.4031 – 0.5463 0.3084 0.5616
BTN3A1 0.6900 0.3823 – 0.2500 0.7527

SERTAD4 0.3417 0.3302 0.2663 – 0.0079
EPSTI1 0.6531 0.3366 0.6562 0.1791 –

One significant difference between these two datasets is that the patients in the first study (dataset) are

either COVID-19 positive or ARIs with other viral or ARIs without viral, while the patients in the second

study (dataset) are PCR confirmed SARS-CoV-2 or negative controls. As a result, genes found to be critical

from the first dataset can be thought of as SARS-CoV-2 specific. It turned out that those five genes are also

the best subset for the second dataset. Table 7 presents the individual classifier and the combined classifier.

Data are ln(raw+1) normalized.

We can see that the signs of ATP6V1B2, IFI27 in CF1 remain the same as their counterparts in Tables

1-5 while the sign of ATP6V1B2 changed in CF2. This phenomenon is not surprising as CF1 has 91.32%

overall accuracy, while CF2 has only 27.07% accuracy. This table again supports our earlier claim that

ATP6V1B2, IFI27 are in the circle of critical genes associated with SARS-CoV-2.

Note that individual classifiers in the second dataset involve all five genes while counterparts in the first

dataset only involve three genes. This phenomenon can be explained as the patients’ attributes from these

two datasets are different. Next, we compute the correlations among those five genes for each dataset. Table

8 presents pairwise correlations in a matrix form in which the upper triangle is for the first dataset, and the

lower triangle is for the second dataset.

Table 8 shows different correlation structures among the five genes, which shows the difference of classifiers

between two datasets is reasonable.

4 Discussions

The results presented in this paper are the first to directly associate a few critical genes with SARS-CoV-2

with the best performance (relative to other subsets with the same number of genes). Furthermore, the results

signify the genomic difference between PCR samples and blood samples (hospitalized patients), identify single

digit critical genes (ATP6V1B2, IFI27, BTN3A1, SERTAD4, EPSTI1) which are a transcriptional response

to SARS-CoV-2, interpretable functional effects of gene-gene interactions, gene-variants interactions using

explicitly mathematical expressions, introduce graphical tools for medical practitioners to understand the

genomic signature patterns of the virus, make suggestions on developing more efficient vaccines and antiviral

drugs, and finally identify potential genetic clues to other diseases due to COVID-19 infection.

In Zhang17, a conceptual visualization of the gene-gene relationship was created. At the top of the figure,

virus variants were placed. With new findings of this paper, six signature patterns from Tables 3-5 can be
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used to replace those virus variants, and then a complete dynamic flow can be formed.

As discussed in Introduction, the genes identified in Zhang17 are hypothesized to link to the root cause of

COVID-19, while the genes identified in this study are the key to treat the symptoms. Based on the findings

in this paper, we make the following hypotheses.

Hypothesis 1: The five genes17 ABCB6, KIAA1614, MND1, SMG1, RIPK3 and their functional effects are the key

to cure the root cause.

Hypothesis 2: The five genes ATP6V1B2, IFI27, BTN3A1, SERTAD4, EPSTI1 and their functional effects are the

key to treat the symptoms.

Hypothesis 3: The gene CDC617 (cell division cycle 6) is a protein essential for the initiation of RNA replication.

Hypothesis 1 is based on the mathematical and biological equivalence between COVID-19 disease and

the functional effects of these five genes proved in Zhang17. At the moment, testing Hypothesis 2 is more

urgent than testing Hypothesis 1 given variants of SARS-CoV-2 have been emerging, and waves of COVID-19

have been arriving one after another. Once Hypothesis 2 is tested and confirmed, scientists can test their

counterparts from animals, trace the virus origin, and find the intermediate host species of SARS-CoV-2.

As to Hypothesis 3, in Zhang (2021), a combination of CDC6 and ZNF282 (Zinc Finger Protein 282) can

lead to 97.62% accuracy (98% sensitivity, 96.15% specificity), which suggests the protein encoded by CDC6

is a protein essential for the initiation of RNA replication.

As mentioned in Introduction, ATP6V1B2 was found to impair lysosome acidification and cause dominant

deafness-onychodystrophy syndrome23, while IFI27 was found to discriminate between influenza and bacteria

in patients with suspected respiratory infection24. There have been new concerns with COVID-19 disease,

e.g., SARS-CoV-2 enters the brain12, COVID-19 vaccines complicate mammograms13, memory loss and

’brain fog’14. Using the findings from this paper, we may hypothesize that ATP6V1B2 can be a leading

factor causing COVID-19 to brain function and ENT problems. As to IFI27, given that COVID-19 is a

respiratory tract infection, it makes sense to hypothesize IFI27 is the infection’s key. EPSTI1 has been

found related to breast cancer and oral squamous cell carcinoma (OSCC) and lung squamous cell carcinoma

(LSCC)33, which may link COVID-19 to what has been found in mammograms complication13. Liang et

al.34 suggests that BTN3A1 may function as a tumor suppressor and may serve as a potential prognostic

biomarker in NSCLCs and BRCAs. However, all of these findings have not been confirmed. A confirmed

Hypothesis 2 may help further explore whether these genes reported in the literature are truly effective, as

suggested in the literature.

Finally, with the proven existence of signature patterns associated with SARS-CoV-2 and COVID-19,

variants of the disease will continue to emerge if the problems revealed by the existing signatures are not

solved. We have witnessed that each time after a peak of the COVID-19 pandemic, the world saw hopes

of the end of the pandemic, and the public lowered their guard; as a result, another wave (small or big)

appeared. As such, we shouldn’t forget the pain where the gain follows as existence determines recurrence

noted by Murphy’s law “Anything that can go wrong will go wrong.”
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Limitations

Solving optimization problems (4) involves combinatorial optimization, integer programming, and continuous

programming. The computational complexity is exceptionally high, and we haven’t figured out how to define

the complexity. We used an extensive Monte Carlo search method to find the best solution. However, we

cannot guarantee whether additional sets of genes can also be the optimal solutions. Although we have

identified functional effects by gene-gene interactions and gene-subtype (variants) interactions of the five

genes, we haven’t identified how gene-gene interacts with each other and their causal directions. We are

working in this direction. Due to the lack of available new sampled data for new variants, it’s difficult to

infer the risks of variants. Finally, our results are in the field of computational biology/medicine, and they

are not lab-confirmed.
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