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Abstract 6 

This study aims to explore and understand the common belief that COVID infection rate is 7 

highly dependent on either the outside temperature and/or the humidity. Thirty-six 8 

regions/states from two humid-tropical countries, namely Brazil and Colombia and two 9 

countries with temperate climate, France and Italy, are studied over the period of October to 10 

December. Daily outside temperature, relative humidity and hospitalization/cases are analyzed 11 

using Spearman’s correlation. The eighteen cold regions of France and Italy has seen an 12 

average drop in temperature from 10°C to 6°C and 17°C to 7°C, respectively, and France 13 

recorded an addition of 2.3 million cases, while Italy recorded an addition of 1.8 million cases. 14 

Outside temperature did not fluctuate much in tropical countries, but Brazil and Colombia 15 

added 4.17 million and 1.1 million cases, respectively. Köppen–Geiger classification showed 16 

the differences in weather pattern between the four countries, and the analysis showed that 17 

there is very weak correlation between either outside weather and/or relative humidity alone 18 

to the COVID-19 pandemic.  19 

1. Introduction 20 

Recent studies by different researchers show that weather temperature, humidity and precipitation 21 

may have largely contributed to the spread of influenzas and airborne viruses that are mediated 22 

through the means of aerosol droplets of different sizes. Human to human transmission of acute 23 
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respiratory viruses, such like SARS-CoV-2, has turned into a widespread pandemic, with large 24 

fractions of infected patients suffering from acute respiratory distress syndrome (ARDS) and 25 

needing non-invasive and invasive mechanically ventilated interventions[1]. While the virus 26 

persisted throughout the year of 2020, hospitalizing thousands of patients all across the United 27 

States, many researchers claimed that the pattern of rise-fall-rise (winter-summer-winter) of the 28 

rate of daily infections indicates that the respiratory virus has a strong correlation with the 29 

seasonality, particularly with the changes in temperature, relative humidity (RH), absolute 30 

humidity (AH) and host behavior[2]–[4].  31 

Because of the potential resemblance of typing of SARS-CoV-2, researchers have studied 32 

surrogate models to find out the survivability under different environmental settings. Typical 33 

healthcare environments with varying relative humidity (RH) but an ambient temperature (AT) at 34 

around 20C showed that potential surrogate virus types like transmissible gastroenteritis virus 35 

(TGEV) and mouse hepatitis virus (MHV) loose very small infectivity within a period of two days. 36 

Studies also indicated that TGEV and human coronavirus 229E survivability at low temperature 37 

and medium and low RH is rather enhanced.   38 

A recent COVID-19 study [5] on droplet dynamics showed that the spreading and concentration 39 

of contaminated droplets’ have strong and significant correlation to weather temperature and 40 

humidity.  Their numerical simulations of droplet spreading through coughing and sneezing has 41 

shown that at low temperatures (0°C) the spread of contaminated respiratory droplets would be 42 

quite wider and larger in spatial sense, compared to the spread of droplets at 20C to 40C. Similarly, 43 

at high RH (50% ~ 90%), the contaminated droplets would thin out less compared to the spread at 44 

low RH (10% ~ 30%). Therefore, in terms of temperature and relative humidity there is a strong 45 

correlation between high relative humidity at low temperature and the increased spread of 46 
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concentrated and contaminated virus borne droplets. Another study [6] on the evaporation 47 

modelling of coughing droplets in high humid areas, where it was found that dry conditions 48 

enhance droplet travelling more efficiently than in wet conditions. The evaporation model study 49 

arrived in another major conclusion that smaller droplets are not affected by higher relative 50 

humidity (60% to 90%) compared to bigger droplets. Their final impression is that even though 51 

the evaporation model shows significant increase in evaporation rate with bigger droplets, the 52 

scarcity of study on the dilution and inactivation of small droplets in low humidity condition makes 53 

it difficult to assess the certainty of spreading and suspension of virus borne coughs and sneezes 54 

in different regions of the world. Iqbal et al. [7] and Bukhari et al. [8] concluded that coronavirus 55 

spread was faster in colder regions compared to warmer region and that there is close relationship 56 

between daylight hours, average temperature and risk of COVID infection rate.  In different parts 57 

of the world, researchers found that there indeed positive correlation between COVID infection 58 

rate and humid climate. For instance, Pani et al. [9] found that along with temperature and weaker 59 

correlation with relative humidity, dew point and water vapor has positive correlation with 60 

COVID-19 in Singapore, a predominantly “hot and humid climate with abundant rainfall”. On the 61 

other hand, Takagi et al.[10] found negative association of temperature, pressure and UV with 62 

COVID-19 prevalence in Japan and exclaimed that the finding of no association of Covid-19 with 63 

climatic conditions in China [11] can be possibly argued. Both research papers were published 64 

based on the studies done in early period of COVID pandemic in specific geo locations (Chinese 65 

cities: Yao et al. [11], published in April 2020 and Japanese cities: Takagi et al. [10] published in 66 

August 2020). Similarly, a supportive study results from Japan showed that the epidemic growth 67 

has strong correlation to increase in daily temperature[12]. A very recent study done by Zhu et al. 68 

[13] looked across various regions in South America but concluded that among other factors, 69 
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absolute humidity was highly negatively correlated to the COVID-19 spread. Across the 122 cities 70 

in China, Xie et al. [14] found that at certain threshold temperature of 3C, the mean temperature 71 

has positive linear relationship with infection cases and in Iran, humid provinces has higher rate 72 

of increase in infection rate and extreme dry regions have proved a reverse relationship[15]. Both 73 

in Brazil and Indonesia, Auler et al. [16] and Tosepu et al. [17] found that higher mean temperature 74 

and humidity has positive correlation in infection spreading which is in contrast to many other 75 

studies done in colder European and US regions[18]. Auler et al. [16] also reported that among the 76 

five Brazilian cities, Sao Paulo was the city with highest confirmed cases but with the lowest mean 77 

temperature and highest relative humidity. But with further statistical analysis they arrived at the 78 

conclusion that the disease transmission rate was favored by high temperature and relatively high 79 

humidity. Therefore, it can be assumed from their study that there is no strong correlation but 80 

rather several anomalies within a given region, and therefore a sole factor cannot be singled out to 81 

have strong impact on the increasing infection rate. In Victoria, Mexico [19] temperature was 82 

found to be negatively correlated to the spread of the infection and their study spanned from March 83 

2020 till June 2020 but consequently did not include the sharp rise in infection rate of the second 84 

wave in other Mexican cities. Another study on tempered climate stated that tropical climate slows 85 

spreading of COVID-19 local transmission, and also reported to have negative association between 86 

temperature and local positive cases[20].  A case study based on New Jersey by Doğan et al. [21] 87 

produced results indicating that humidity has positive relationship and temperature has negative 88 

relationship to COVID-19 based on data collected and analyzed from late February to late July of 89 

2020. They also pointed out that their study outcome is in contradiction to the study by Ahmadi et 90 

al. [15] in Iran, which stated that there exist strong correlation between COVID infection and 91 

humidity, temperature and wind. An associative study has explored the pathway of COVID-19 92 
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spread in Oslo Norway a little differently, where Menebo et al. [22] implied that sunny weather 93 

makes people come out of home and rainy weather makes people stay indoors, and hence warm 94 

climate triggers an increase in infection and spreading events. Many studies found strong 95 

temperature association based on low COVID cases in different countries, as pointed out by [23] 96 

and there remains the question as to what happened afterwards with regards to exponential global 97 

growth in infection and death inherently affecting different individual regions. Bashir et al. [24] 98 

indicated that scientific evidence does not support that warm weather would bring down the 99 

epidemic spread contrary to popular misbelief pointed out by many researchers [25] when 100 

compared to different influenza and COVID variants [26], [27].  In Spain[28], Iran[29] and in 50 101 

US cities[25], studies conducted between February and March showed that there exists no 102 

correlation between weather variables and COVID-19, which contradicts to the other studies that 103 

found some correlation as discussed before. Even recent observations by Pan et al. [30] implicated 104 

that meteorological factors, including temperature, did not exhibit significant association and 105 

would not help in reducing COVID-19 transmission. Several other studies that studied the mixed 106 

combination of different climatological factors have either found unconvincing or very weak 107 

correlation to  COVID transmission [31]–[33].  108 

It is also relevant to mention that several studies have [11], [34]–[38].  On the other hand, many 109 

studies have confuted weather factors that were deemed strongly correlated to the rate of spread 110 

of the infection and argued the weaknesses of different studies[39]. Certain researchers pointed 111 

out that the factors like population density, emergency care and medical treatment, socio-economic 112 

conditions of different locations could be coupled with climatic factors and thus disassociating or 113 

considering outside temperature or humidity to be a single controlling factor would give false 114 

perception, conception and pretense on how SARS-CoV-2 spreads[23], [40].  115 
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In this study, our approach to understand and elaborate the difference in correlation between 116 

climatic conditions and the coronavirus transmission is based on a total of four countries, two 117 

countries that have relatively dry colder climates and two that have tropical humid climates during 118 

the period of October to December of 2020. In the later part of the paper, we would demonstrate, 119 

as many other research studies already pointed out, that a single climatic factor is not solely 120 

responsible for the spread of the coronavirus infection among different types of climate regions.    121 

Part of the problem with statistical correlation is always related to the degree of uncertainty 122 

and the risk of over-confidence in statistical representation of the results. While many  of the 123 

statistical studies are done with relatively low spread of infection (compare to the spread and 124 

infection rate of COVID during the summer in US) researchers publishing data based on the late 125 

winter (February to April) and Summer is not totally indicative of the link between climate and 126 

COVID infection. This became more apparent in our study where we found that the weather model 127 

and the rise in infection in cold climatic regions (for instance in Italy, France) is totally opposite 128 

to tropical regions (like Brazil and Colombia) during the months of November and December. We 129 

acknowledge that climatic factors like outside temperature and humidity alone cannot predict viral 130 

transmissibility and the spread of the SARS-CoV-2 infection, rather physiological factors through 131 

means of aerosol and infected droplets causing membranous fusion and are found to be dependent 132 

on wet-bulb temperature which in turn is a function of indoor/outdoor room temperature, absolute 133 

and relative humidity, as investigated by JD Runkle et al. [41] and Dougherty [42], are the active 134 

route of transmission for the virus. What is more important to understand is, measure of social 135 

distance, mask mandates and part of governing policy regulation including lockdowns are key 136 

factors that dictate the rate of infections, not the weather as believed by many including policy 137 

makers.  138 
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2. Methods 139 

2.1 Data Collection and Validation 140 

For this study, weather data is collected from Integrated Surface Database (ISD) from NOAA’s 141 

National Climatic Data Center (NCDC) [43] . The ISD data from more than 20,000 stations 142 

worldwide and consists of different weather identifying subsets including, but not limited to, 143 

World Meteorological Organization(WMO), Weather Bureau Army Navy (WBAN), Climate 144 

Reference Network (CRN), Federal Aviation Administration (FAA), Automated Surface 145 

Observing System (ASOS), and Automated Weather Observing System (AWOS) [44]. With 146 

extensive hourly and daily data including air temperature, dew point temperature, maximum and 147 

minimum recorded temperatures for the day, and wind speed, this study used the ISD provided 148 

data for the entire year of 2020. Several sources are used to collect the daily infection data for each 149 

of the four countries: Brazil[45], Italy[46], France[47], and Colombia [48]. Datasets have been 150 

crosschecked and validated with John Hopkins Coronavirus Resource Center [49], The New York 151 

Times [50], Google [51] and Microsoft Bing[52].     152 

 2.2 Calculation based on Longitude, Latitude and of Relative Humidity (%RH) 153 

An extensive algorithm has been developed in MATLAB to study the spreading of COVID 154 

infection in two tropical countries Brazil and Colombia, as well as two temperate climate countries, 155 

Italy, and France. Regions/cities with highest reported cases in each country were picked and close 156 

proximal stations were identified using the longitude and latitude data, while cross checked with 157 

the Hourly/Sub-Hourly Observational Data Map [53]. The location and daily COVID 158 

cases/hospitalization information were very critical, since some of the hourly data were not 159 

available for some of the stations and some of the COVID data had lapses (unreported, erroneous 160 
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or skipped reporting). Therefore, careful consideration has been made to locate correct 161 

WMO/WBAN stations within the given latitude and longitude combinations for each of the 36 162 

regions/states and the weather data were accurately collected and matched with the COVID 163 

datasets using the MATLAB algorithm. Using the outside temperature and dewpoint temperature, 164 

the Relative Humidity (%RH) was calculated using the following relationship:  165 

𝑅𝑅𝑅𝑅 = 100 ×
𝑒𝑒
�
17.625∗𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
243.04+𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�

𝑒𝑒�
17.625∗𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
243.04+𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�
 166 

2.3 Analysis 167 

Weather data and infection rate (in some countries reported as number of cases with 168 

Hospitalization) are analyzed from October 1st to December 31st. Spearman correlation coefficients 169 

with bivariate, two-tailed analysis stating 95% confidence interval are also reported for each region 170 

where the infection and the weather patterns are plotted. (See Supplemental Information for 171 

Temperature and Relative Humidity data plotted against highest recorded infection/hospitalization 172 

cases for a total of thirty six regions of each of the four countries.) 173 

3. Results and Discussion 174 

Since October 1st, the outside air temperature started to fall in France and Italy, but a similar pattern 175 

was not observed in the two tropical countries considered, namely Brazil and Colombia. Because 176 

of the geolocation of Colombia, which is very close to the equator line, the seven-day averaged 177 

temperature did not deviate much. For instance, in between October to December, Bogota 178 

observed temperature change from 13°C to 11.5°C; Cartagena observed 28°C to 27°C. Except 179 

Tolima, all other regions reported very weak to almost no correlation coefficient (rT<0.30) in 180 

between air temperature and daily reported cases. Throughout Colombia, the weather classified by 181 
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Köppen–Geiger moves from tropical savanna climate (Aw/As) to tropical monsoon (Am) to 182 

tropical rainforest climate (Af) the further the reference location moves from the equator line. 183 

While Bogotá and Antioquia weathers are classified as oceanic climate (Cfb) and warm tropical 184 

(Af) respectively, with outside temperature steadied at 13°C and 27°C and relative humidity 185 

ranging well within RH~ 72% to 80%, the infection rate kept a steady record regardless of the 186 

outside air temperature and relative humidity. Considering only relative humidity (RH), for the 187 

highest recording nine departments of Colombia, shows no correlation (r%RH <0.20), even though 188 

the relative humidity for Valle del Cauca, Norte de Santander, Huila, and Tolima were within the 189 

range of RH< 71% and Cartagena, Santander and Atlantico had steady record of RH > 80%. Thus, 190 

in both cases of air temperature and relative humidity, throughout Colombia there was very little 191 

correlation between weather and the spread of the second wave of COVID-19 infection through 192 

the months of October till December.  193 

In Brazil, a widely varying climate is observed across all the regions, and in between October 1st 194 

and December 31st, except for Santa Catarina and Rio Grande do Sul, the temperature varied in 195 

between 35°C to 25°C. Outside temperature for Santa Catarina and Rio Grande do Sul distributed 196 

between 25°C and 15°C, and the Köppen–Geiger classification for both states is considered as 197 

Aw (tropical savanna climate) and Cwa (dry-winter humid subtropical climate). In both states from 198 

mid-October to the end of December, the recorded infection/hospitalization rose from average of 199 

2000 to 5000 and the Spearman correlation coefficient indicated a no correlation (rT, Santa Catarina ~ 200 

0.18, p-value>0.05) to weak correlation (rT, Rio Grande do Sul ~ 0.41, p-value<0.05). Rio de Janeiro, 201 

Goias, and Ceara, all within the Aw (tropical savanna climate with dry-winter characteristics) has 202 

experienced an average of 3700 daily cases with little deviation from mean. With Ceará having 203 

hot-overall weather throughout region, the COVID infection kept spreading when the weather was 204 
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within the overall dryer climate. On the other hand, in Goiás, the second wave was within the rainy 205 

season (October-April), but the infection rate soared throughout the time. Relative humidity for 206 

both Ceará and Goiás fluctuated between 40% to 60% while in Rio de Janeiro the average RH ~ 207 

80%, but calculated correlation coefficient were still very insignificant (r%RH, Rio de Janeiro, Goiás, Ceará 208 

~ -0.07, -0.23, -0.03, p-value>0.05).  In Rio de Janeiro, weather moved from spring to hot-humid 209 

summer from October to December, but infection record remained within 3700 cases every day. 210 

In no correlation (rT, Rio de Janeiro, Goiás , Ceará ~ -0.11, 0.21, -0.02, p-value>0.05) between the 211 

temperatures and the infection cases, thus the spread of COVID infection has very little correlation 212 

within this study period for Brazil.   213 

 214 

 215 

Figure 1: Spearman’s Correlation for Temperature and Relative Humidity vs Nine states/regions 216 
with highest COVID infection by the end of December 31st, 2020 of a) Top: Colombia and b) 217 

Bottom: Brazil 218 

rT° r% R H

Bogotá, Capital District 0.03 0.01 7,412,566 17,994 471,155 N/A
Antioquia -0.01 -0.08 6,407,102 100 261,592 N/A
Valle del Cauca -0.1 0.19 4,475,886 200 137,867 N/A
Atlántico -0.04 -0.04 2,535,517 75 93,975 N/A
Santander 0.01 0.12 2,184,837 72 67,114 N/A
Norte de Santander -0.16 0.17 1,491,689 69 40347 N/A
Cartagena, Bolivar 0.01 -0.03 914,552 1,600 51799 N/A
Tolima -0.35 0.19 1,330,187 56 44138 N/A
Huila -0.02 -0.13 1,100,386 55 34880 N/A

Colombia
Spearman's correlation coefficient

Population Population Density(/km2 ) Reported Cases Reported Case / Per Capita

rT° r% R H

Minas Gerais 0.09 -0.07 21,168,791.00   33.00 536044 2,555
Sao Paulo 0.04 0.29 12,176,866.00   8006.00 1452078 3,202
Bahia 0.07 -0.10 14,873,064.00 25.00 490538 3,318
Rio de Janeiro -0.11 -0.07 6,718,903.00    2706.00 428373 2,504
Parana 0.1 0.23 11,433,957.00  52.00 412627 3,650
Santa Catarina 0.18 0.25 7,164,788.00    75.00 489069 6,957
Rio Grande do Sul 0.41 -0.08 11,286,500.00   39.00 444212 3,930
Goias 0.21 -0.23 7,018,354.00    18.00 308202 4,483
Ceara -0.02 -0.03 9,132,078.00    58.00 332462 3,674

Brazil 
Spearman's correlation coefficient

Population Population Density(/km2 ) Reported Cases Reported Case / Per Capita
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 219 

Figure 2: Comparison between recorded outside temperature patterns and the COVID infection 220 
of four different regions for two different climate types: 221 

Rio Grande do Sul, Brazil (r=0.41); Bourgogne-Franche-Comte, France (r=-0.40); 222 
Tolima, Colombia (r=-0.35); Sicilia, Italy (r=-0.39) 223 
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 224 

Figure 3: Köppen–Geiger classification of four countries: Top: Brazil (left), Colombia (right)  225 
Bottom: France (left), Italy (right) [54]–[58] 226 

 227 

For colder climates, by the end of the year 2020, France and Italy recorded a total of 2.64 million 228 

(3.94% of the total population) and 2.14 million cases (3.55% of the total population), respectively. 229 

On the other hand, Colombia had an estimated of 1.67 million cases (3.28% of the total population) 230 

and Brazil had 7.72 million cases of infected people (3.62% of the total population). All four 231 

countries considered in this study have varying climate patterns, as shown in Figure 3, even though 232 

the proportions of people infected with the virus by the end of 2020 are approximately very similar. 233 

From the very beginning of October till mid-December, nine of the regions with the most recorded 234 

COVID cases in France, observed a constant fall in temperature, with an average shift of mean 235 

temperature from 13°C to 7°C.  This observation is reflected in the correlation coefficient, 236 
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especially in Auvergne-Rhone-Alpes (ARA), Grand Est (GE), and Bourgogne-Franche-Comte 237 

(BFC) regions, the Spearman’s correlation reported within a range of (rT,ARA,GE,BFC ~ -0.32, -0.56, 238 

-0.40, p-value<0.001). COVID cases, except in the case of Grand Est, is not significantly 239 

correlated to the reported related humidity. 240 

 241 

 242 

Figure 4: Spearman’s Correlation for Temperature and Relative Humidity vs Nine states/regions 243 
with highest COVID infection by the end of December 31st, 2020 of a) Top: France and b) 244 

Bottom: Italy 245 

The COVID second wave in Italy has indicated an overall strong to moderate correlation in regions 246 

like Veneto (rT, Veneto ~ -0.68, p-value>0.05), Emilia-Romagna (rT, Emilia-Romagna ~ -0.55, p-247 

value<0.05), Sicilia (rT, Sicilia ~ -0.39, p-value<0.05), Puglia (rT, Puglia ~ -0.71, p-value<0.05). In all 248 

Veneto and Emilia-Romagna, the outside weather dropped from 16C to 6C, whereas in Sicilia the 249 

temperature dropped from 21C to 13C and in Puglia 20C to 7C. In Veneto and Emilia-Romagna, 250 

the cases rose from 1000/cases per day to 2000/cases per day, and in Sicilia and Puglia, the cases 251 

rose from 250/cases per day to 1000/cases per day. Both in France and Italy, regions like Grand 252 

Est (Fr), Bourgogne-Franche-Comte (Fr), Lombardia (Italy) and Emili-Romagna (Italy), infection 253 

rate has weak correlation to relative humidity (r%RH < 0.35, p-value<0.05).  254 

rT° r% R H

Ile-de-France -0.11 -0.18 12,278,210 52 71596 583
Auvergne-Rhone-Alpes -0.32 -0.06 7,948,287 110 38,925 477
Grand Est -0.56 0.34 5,549,586 97 30,215 538
Provence-Alpes-Cote d'Azur -0.09 -0.16 5,007,977 160 24,807 491
Hauts-de-France -0.21 0.06 6,009,976 190 24,693 407
Bourgogne-Franche-Comte -0.4 0.28 2,811,423 59 14,265 499
Occitanie -0.05 0.06 5,839,867 80 13,582 227
Normandie -0.23 0.07 3,322,757 110 8,460 252
Pays de la Loire -0.27 0.11 3,553,352 110 8,354 216

Reported Case / Per CapitaFrance
Spearman's correlation coefficient

Population Population Density(/km2 ) Reported Cases 

rT° r% R H

Lombardia -0.06 0.31 10,103,969 420 478,903 4,760
Veneto -0.68 0.10 4,865,380 260 253,875 5,175
Piedmonte -0.08 0.07 4,322,805 170 197,828 4,541
Campania -0.04 0.25 5,869,029 430 189,673 3,269
Emilia-Romagna -0.55 0.35 4,446,220 200 171,512 3,846
Lazio -0.13 0.13 5,864,321 340 163,051 2,773
Toscana 0.13 -0.04 3,722,729 160 120,328 3,226
Sicilia -0.39 0.32 4,969,147 190 93,644 1,873
Puglia -0.71 0.65 4,063,888 210 90,964 2,258

Reported Case / Per CapitaItaly
Spearman's correlation coefficient

Population Population Density(/km2 ) Reported Cases 
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 255 

Figure 5: Comparison between relative humidity (%RH) and the COVID infection of four 256 
different regions for two different climate types: 257 

São Paulo, Brazil (r=0.29); Grand Est, France (r=0.34); 258 
Valle del Cauca, Colombia (r=0.19); Puglia, Italy (r=0.65) 259 

 260 
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Even though a thorough study has been made available through this study, a wider look into the 261 

dryer climates in middle east, or a varying climatic zone of Australia and colder climates in Canada 262 

and Russia could have strengthen the findings and help build a more extensive study on the effect 263 

of weather patterns and the spread of COVID infection. A further look into a combination of 264 

weather and relative humidity, such like wet-bulb temperature, or other factors like absolute 265 

humidity, heat index in dry climate areas should be further explored.  266 

4. Conclusion 267 

This study sheds light into the detail of more than 36 regions with widely varying weather patterns. 268 

While outside temperature may seem to hold good correlation and might support the hypothesis 269 

that outside temperature effects the rate of spread of COVID infection in cold climates such like 270 

Italy and France, this hypothesis across warmer humid tropical climates does not hold to be true. 271 

With a falling seven-day average outside temperature seemingly causes a rise in infection rate in 272 

Italy and France, a very little fluctuation in temperature could not stop the spread of COVID-19 in 273 

Colombia. While many of the recent scientific research exploring the strength of correlation 274 

between weather and the spread of SARS-CoV-2 may seem to be producing conjectures that are 275 

quite convincing, based on this literature findings the notion that COVID-19 is heavily dependable 276 

on climate pattern is not convincible and therefore remains quite debatable.  277 

 278 

 279 

 280 

 281 
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