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Abstract

In this paper we introduce a compartmental epidemic model describing the transmission of the
COVID�19 disease in presence of non�mandatory vaccination. The model takes into account the
hesitancy and refusal of vaccination. To this aim, we employ the information index, which mimics
the idea that individuals take their decision on vaccination based not only on the present but also
on the past information about the spread of the disease. Theoretical analysis and simulations show
clearly as a voluntary vaccination can certainly reduce the impact of the disease but it is unable to
eliminate it. We also show how the information�related parameters a�ect the dynamics of the disease.
In particular, the hesitancy and refusal of vaccination is better contained in case of large information
coverage and small memory characteristic time. Finally, the possible in�uence of seasonality is also
investigated.
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1 Introduction

On 31 December 2019, the Chinese public health authorities reported to WHO the existence in Wuhan
City of a cluster of cases of viral pneumonia [73]. The causal agent of the disease was shortly later
identi�ed as a new type of SARS, and named SARS�CoV�2. Although many governments undervalued
the pandemic risks [55], since 21 January 2020 WHO published on its website a daily situation reports. In
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the �rst report it is clearly written WHO has issued interim guidance for countries, updated to take into
account the current situation [73]. Indeed, the �rst extra�China case was on 13 January 2020 and then
rapidly moved in other countries. Finally, it developed in a devastating pandemics we all know, causing
the temporary collapse of many health systems. For example, France in the pre COVID�19 era had
about 5000 ICU beds, however at the peak of its �rst wave 7019 ICU beds were occupied by COVID�19
patients [32].
In the �rst year of the pandemic, in the absence of a vaccine, the only possible pandemic mitigation
strategies were locally based on social distancing and partial and full lockdowns [8, 55]. Lockdowns were
generally very e�ective in reducing the pressure of the pandemic on the health systems of the countries
but the period after them was generally characterized by a new epidemic outbreak after some months.
Up to now most countries had three epidemic outbreaks (also termed waves) [14].
Since the early stage of the pandemic, many authors implemented models, from traditional mathematical
epidemiology, for the evolution and control of COVID�19 disease [16, 19, 22, 33, 34, 46, 63]. The early
dynamics of transmission in Wuhan, China, was studied by Kucharski et al. [46] through a stochastic
SEIR model using the data obtained from the outbreak in Wuhan. Gatto et al. [33] proposed a model
to study the transmission between a network of 107 Italian provinces during the initial stage of the
�rst COVID�19 wave. A network model applied to Italy was proposed also by Della Rossa et al. [19]
to show that heterogeneity between regions plays a fundamental role in designing e�ective strategies to
control the disease while preventing national lockdowns. Giordano et al. [34] introduced a model for
assessing the e�ectiveness of testing and contact tracing combined with social distancing measures. Non�
pharmaceutical interventions to �ght COVID�19 in the UK and US were considered by Davis et al. [16]
and Ngonghala et al. [63], respectively, while the e�ect of social distancing during lockdown in France
was studied by Dolbeault and Turinici [22] by using a variant of the SEIR model. Many other relevant
studies focused on assessing the e�ects of containment measures and predicting epidemic peaks and ICU
accesses, see e.g. [29, 31, 68]. As soon as vaccines for COVID�19 became available, many compartmental
models have began to appear in the literature with the speci�c aim of investigating the vaccination e�ects
on the spread of the disease as well as assessing the optimal allocation of vaccine supply [5, 15,20,60].
A limitation of classical Mathematical Epidemiology (ME) is that it is built up on Statistical Mechanics:
the agents are modelled as if they were molecules and the contagion is abstracted as a chemical reaction
between `molecules' of the healthy species with `molecules' of the infectious species. Thus, mass action�like
laws are used in such models. The missing ingredient of ME is the behaviour of agents: how people modify
their contacts at risk and how their vaccine�related decisions are taken. The absence of this ingredient
makes models of classical ME increasingly less adapt as a tool for Public Health. Indeed, a major challenge
for global Public Health is the spread of hesitancy and refusal of vaccines. This is due to the phenomenon
of `Pseudo�Rational' Objection to VAccination (PROVA) [10]: people overweight real and imaginary side
e�ects of vaccines and underweight real risks due to the target infectious diseases [10, 56, 72]. PROVA
is inducing remarkable changes in the civil society attitude towards the prevention of infectious diseases.
This increasingly important lack of trust towards vaccination is one of the many negative consequences
of two distinct and synergyzing phenomena of more general nature: the post�trust society [51] and the
post�truth era [58].
The �rst work that explicitly modelled social distancing in ME was [11], which incorporated a phe-
nomenological behavioural response into the Kermack and McKendrick's epidemic model. The emergence
of PROVA led in the last two decades to the birth of a new branch of ME: the Behavioural Epidemiology
of infectious diseases (BEID) [56,72]. The main aim of BEID is to embed the impact of human behaviour
in models of the spread and control of infectious diseases [56, 72]. The key role of both present and past
information on vaccination decisions and uptake as well as on the social distancing was �rst stressed,
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respectively, in [26,56] and in [23] by means of phenomenological models. In a recent paper [8] a model for
the transmission of COVID�19 disease has been introduced. The model considers the social distancing and
quarantine as mitigation strategies by the Public Health System. The model is information�dependent,
in the sense that contact rate and quarantine rate are assumed to depend on the available information
and rumours about the disease status in the community. In [8] the model is applied to the case of the
COVID�19 epidemic in Italy. The paper estimates that citizen compliance with mitigation measures
played a decisive role in curbing the epidemic curve, by preventing a duplication of deaths and about 46%
more infections.
The COVID�19 pandemic caused a worldwide e�ort on the vaccine that resulted in the rapid development
of new vaccines [45, 52], some of which belongs to the new class of mRNA vaccines [2, 64]. In the light
of the deep changes in the life of milliards of people and of the huge negative impact on world economics
that the world has experienced, one could have expected that only a tiny proportion of people would
really be hesitant towards vaccination. Unfortunately, this is not what occurred. As early as June 2020
Neumann�Böhme and coworkers [62] investigated the attitudes about anti COVID�19 vaccination of a
representative sample of citizens of seven European countries. Amazingly, although the �rst European
epidemic wave had just ended, a large proportion of hesitancy and opposition to the vaccines were found
in all class ages, and in both sex. In particular, in France the 38% of citizens were hesitant (28%) or
strongly against (10%) anti COVID�19 vaccines.
Before mid December 2020 phase 3 of a number of vaccines ended, showing that they have a very out-
standing e�ectiveness in preventing COVID�19 [2, 52, 64]. Typically, drug regulatory agencies de�ned
priority groups for the vaccination (elderly people with serious co�morbidities, healthcare workers in se-
nior residences, etc.). From a rational viewpoint there were all the premises to believe that the vaccine
hesitancy would have been strongly reduced and that mandatory vaccination campaigns could have been
conducted but this was not the case. As far as the mandatory nature of the vaccination campaign is
concerned, in many countries the vaccines are no mandatory [48,54,69]. As for the vaccine hesitancy, an
investigation conducted in October 2020 [38] suggests that 46% of French citizens are vaccine hesitant.
Other countries have percentages of opposition and hesitancy that exceeds 30%: 36% in Spain and USA,
35% in Italy, 32% in South Africa, 31% in Japan and Germany. Globally, the hesitancy and objection
area is as large as 27%.
Given these large percentages of hesitance and opposition to the COVID�19 vaccine, we think that
applying the behavioural epidemiology approach to model the implementation of a vaccination campaign
for COVID�19 is appropriate. To this end, we adopt a strategy remindful of the one used in [26]. Namely,
we assume that the vaccination rate is a phenomenological function of the present and past information
that the citizens have on the spread of the epidemic. Note that, in the context of SIR and SEIR infectious
diseases, more mechanistic models based on evolutionary game theories [3, 24, 25, 72] exist, but reduce to
the approach of [10,26] in case of volatile opinion switching [18,24,72].
In this paper, we consider a COVID�19 a�ected population controlled by vaccination, where the �nal
choice to vaccinate or not is partially determined on a fully voluntary basis and depends on the publicly
available information on both present and recent past spreading of the disease in the community. Our
model is inspired by the compartmental epidemic model introduced in [8], where the COVID�19 trans-
mission during the 2020 lockdown in Italy was studied. In some sense, compared with the model in [8],
the main di�erence is that here the non�pharmaceutical interventions (social distancing and quarantine)
are replaced by vaccination. An analogous situation was considered by Gumel and co�workers for SARS
epidemic in 2003 when they studied a SARS model in [37] and then considered vaccination intervention
in [36].
We perform a qualitative analysis based on stability theory and bifurcation theory. The analysis shows
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that, when the control reproduction number, RV , is less than 1, there exists only the disease�free equi-
librium (DFE) that is globally stable; otherwise, when RV > 1, the DFE is unstable and an endemic
equilibrium arises. The model is then parametrized based on the COVID�19 epidemic in Italy and on
preliminary reports about anti COVID�19 vaccines. In numerical simulations, we consider two possible
starting times for a one year�lasting vaccination campaign. We assess the role of vaccine and information�
related parameters by evaluating how they a�ect suitable epidemiological indicators. Finally, the presence
of seasonality e�ects is investigated by adding the assumption that the disease transmission and severity
as well as the rate of vaccination, are lower during the warmer months.
The paper is organized as follows. In Section 2 the model is introduced and in Section 3 the qualitative
analysis is performed. Model parametrization and numerical solutions are given in Section 4 and Section
5, respectively. The case of seasonally�varying parameter values is addressed in Section 6. Concluding
remarks follow in Section 7. The paper is complemented by the Appendix A.

2 The model

2.1 State variables and the information index

We consider a population a�ected by COVID�19 disease, where a vaccine is available and administered
on voluntary basis and not mandatory. We assume that the vaccine provides only partial protection, so
that the transmission of the disease due to contacts between vaccinated and infectious individual is still
possible, although with reduced probability. We also assume that both the vaccine�induced immunity
and the disease�induced immunity are not waning (see Remark 1 below for a discussion on this point).
The total population at time t (say, N) is divided into the following six disjoint compartments:

- susceptibles, S: individuals who are healthy but can contract the disease;

- exposed (or latent), E: individuals who are infected by SARS�CoV�2 but are not yet capable of
transmitting the virus to others;

- asymptomatic infectious, Ia: this compartment includes two groups, namely the post�latent indi-
viduals, i.e. individuals who lie in the phase of incubation period following latency, where they are
infectious and asymptomatic, and the truly asymptomatic individuals, i.e. who have no symptoms
throughout the course of the disease;

- symptomatic infectious, Is: infectious individuals who show mild or severe symptoms;

- vaccinated, V : individuals who are vaccinated with at least one dose of COVID�19 vaccine;

- recovered, R: individuals who are recovered after the infectious period.

The size of each compartment at time t represents a state variable of the mathematical model, and
N = S + E + Ia + Is + V +R.
We assume that agents take their decision on vaccination based not only on the present but also on the
past information they have on the spread of the disease, the past being weighted in an exponential way.
Therefore the information on the status of the disease in the community is described by means of the
information index [26, 72]:

M(t) =

∫ t

−∞
k a Is(τ) e−a(t−τ)dτ. (1)
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Such index is an important tool of behavioural epidemiology [56] and is an extension of the idea of
the prevalence�dependent contact rate, developed by V. Capasso in the seventies, which describes the
behavioural response of individuals to prevalence [11]. Here, the parameter a takes the meaning of inverse
of the average time delay of the collected information on the disease (say, Ta = a−1) and the parameter
k is the information coverage, which summarises two opposite phenomena: the disease under�reporting
and the level of media coverage of the disease status, which tends to amplify the social alarm. It may be
assumed that k ∈ (0, 1], see [9].
From (1), by applying the linear chain trick [53], we obtain the di�erential equation Ṁ = a (kIs −M),
ruling the dynamics of M .

Remark 1. Together with the role of human behaviour in the vaccine decisions, the other major hypotheses
of the above model are that the vaccine is not perfect and there is no waning e�ect of both natural and
vaccine�induced immunity. The �rst is related to the scienti�c results on the phase 3 clinical trials as well
as general knowledge concerning vaccines. The second hypothesis is stronger, and some could read it as
modelling an extreme optimistic case. Such assumption is based on some very recent experimental results
[43, 71] and experimental review paper [44] on one of the most complex and intriguing topic concerning
SARS�CoV�2: the immunological response associated to it. In particular, Iyer and colleagues [43] showed
that the igG response has practically no conversion for a long period after the onset of symptoms, namely
only 3 individuals over 90 had igG seroconversion. This very limited fraction of seroconversion can be
taken into account (through a coe�cient σ, see Section 2.3) as some vaccinated individuals get infected
because they had seroconversion of their vaccine�induced immune response. Moreover, in their review
paper on T cell immunity to COVID�19 [44], Karlsson and colleagues stressed that: `Generation of
memory T cells can provide lifelong protection against pathogens. Previous studies have demonstrated
that SARS�CoV� and MERS�CoV�speci�c T cells can be detected many years after infection. Likewise,
SARS�CoV�2�speci�c CD4+ and CD8+ T cells are distinguished in a vast majority of convalescent donors
(...). Preliminary results from the two major mRNA vaccine trials in humans have demonstrated potent
Th1 responses.'

2.2 Modelling transmission

Global research on how SARS�CoV�2 is transmitted continues to be conducted at time of writing this
paper. It is believed that infected people appear to be most infectious just before (around 1�2 days before)
they develop symptoms (i.e. in the post�latency stage) and early in their illness [74]. Recent investigations
con�rmed that pre�symptomatic transmission was more frequent than symptomatic transmission [4]. The
possibility of contagion from a truly asymptomatic COVID�19 infected person (i.e. an infected individual
who does not develop symptoms) is still a controversial matter. However it has been shown that little to
no transmission may occur from truly asymptomatic patients [4].
In our model the routes of transmission from COVID�19 patients are included in the Force of Infection
(FoI) function, i.e. the per capita rate at which susceptibles contract the infection. As in [36], the mass
action incidence is considered:

FoI = β (εaIa + εsIs) , (2)

where 0 ≤ εa, εs < 1.
The rationale for this choice is that during observed COVID�19 outbreaks the total population has
remained e�ectively constant. For instance, in Italy (one of the countries more hit by the epidemic [75]),
the drop in the total population (≈ 60 · 106) due to the disease�induced deaths (≈ 117 · 103 as of 19 April
2021 [41]) is around 0.195%. In this case, we expect mass action and standard incidence to give similar
results.
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In (2) the parameters εa and εs are modi�cation factors that represent the level of reduced infectiousness
of compartments Ia and Is when compared with the subgroup of Ia given by post�latent individuals.
Therefore, the baseline transmission rate β is the transmission rate of post�latent individuals (see also
Section 4.2 where εa and εs are estimated). For the reasons discussed above we assume that the factor
concerning the post�latent individuals is 1.

2.3 Description of the balance equations

All the state variables decrease by natural death, with rate µ. The susceptible population S increases
by the net in�ow Λ, incorporating both new births and immigration and decreases due to transmission
and vaccination. For the time span covered in our simulations, demography could be neglected. However,
including a net in�ow of susceptible individuals into the model allows one to consider not only new
births, but also immigration, which plays an important role during COVID�19 epidemics and can be well
estimated in some cases [8]. Therefore, since the demography parameters can be easily obtained from
data, we prefer to use an SEIR�like model with demography as successfully done for SARS models [37].
The exposed (or latent) individuals E arise as the result of new infections of susceptible and vaccinated
individuals and decrease by development at the infectious stage (at rate ρ). We assume that after the
end of the latency period, the individuals enter in the asymptomatic compartment Ia, which includes
post�latent and truly asymptomatic, as described in Section 2.1. Asymptomatic individuals Ia diminish
because they enter the compartment of symptomatic individuals Is (at a rate η) or they recover (at
a rate νa). Mildly or severely symptomatic individuals Is come from the post�latency stage and get
out due to recovery (at rate νs) or disease�induced death (at rate δ). Vaccinated individuals V come
from the susceptible class after vaccination (at least one dose of COVID�19 vaccine) and decrease due to
infections (at a reduced rate σβ, where σ ∈ [0, 1)). Finally, recovered individuals come from the infectious
compartments Ia and Is and, as discussed in Remark 1, acquire long lasting immunity against the disease.

2.4 The equations

According to the description above, the time evolution of the state variables is ruled by the following
system of balance equations:

Ṡ = Λ− (ϕ0 + ϕ1(M))S − βS(εaIa + εsIs)− µS (3a)

Ė = βS(εaIa + εsIs) + σβV (εaIa + εsIs)− ρE − µE (3b)

İa = ρE − ηIa − νaIa − µIa (3c)

İs = ηIa − νsIs − δIs − µIs (3d)

V̇ = (ϕ0 + ϕ1(M))S − σβV (εaIa + εsIs)− µV (3e)

Ṁ = a (kIs −M) (3f)

with initial conditions

S(0) > 0, E(0) ≥ 0, Ia(0) ≥ 0, Is(0) ≥ 0, V (0) ≥ 0, M(0) ≥ 0. (4)

Since the equations (3) do not depend on R, the dynamics of the removed compartment can possibly be
studied separately, by means of equation

Ṙ = νaIa + νsIs − µR. (5)
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Figure 1: Flow chart for the COVID�19 model (3)�(5). The population N(t) is divided into six disjoint
compartments of individuals: susceptible S(t), exposed E(t), asymptomatic Ia(t), symptomatic Is(t),
vaccinated V (t) and recovered R(t). Blue colour indicates the information�dependent process in the
model, with M(t) ruled by (3f).

In (3) it is assumed that ϕ0 > 0 and ϕ1(·) is a continuous increasing function of the information index
M with ϕ1(0) = 0 and sup(ϕ1) < 1 − ϕ0. The parameter ϕ0 embeds: i) the fact that some categories
of subjects such as patients and healthcare workers in senior care facilities will be strongly recommended
to get the vaccine (and in some countries their vaccination will be even mandatory [48]); ii) the fact that
some people are strongly in favour of vaccines and act coherently by getting vaccinated.
The �ow chart in Fig. 1 illustrates all the processes included in the model; a description of each parameter
together with their baseline values is given in Table 1 (see Section 4).

3 Qualitative analysis

The following theorem ensures that the solutions of model (3) are epidemiologically and mathematically
well�posed.

Theorem 1. The region D de�ned by

D =

(S,E, Ia, Is, V,M) ∈ R6
+

∣∣∣∣∣ 0 < S + E + Ia + Is + V ≤ Λ

µ
, 0 < S ≤ Λ

µ+ ϕ0
,

0 < S + σV ≤ Λ(µ+ σϕ0)

µ(µ+ ϕ0)
, M ≤ kΛ

µ

 (6)

with initial conditions (4) is positively invariant for model (3).

Proof. By standard procedure (see e.g. [66]), from (3)�(4) one can derive that

S > 0, E ≥ 0, Ia ≥ 0, Is ≥ 0, V ≥ 0, M ≥ 0 (7)

for all t ≥ 0.
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Let us introduce the variable Ñ = S+E+ Ia+ Is+V , that is, at each time t, the total population devoid
of the removed individuals. Adding the �rst �ve equations of the system (3), we obtain

˙̃N = Λ− µÑ − δIs ≤ Λ− µÑ, (8)

where we use (7). The solution Ñ of the di�erential equation in (8) has the following property

0 < Ñ ≤ Ñ(0)e−µt +
Λ

µ

(
1− e−µt

)
,

implying that 0 < Ñ ≤ Λ/µ, as t→ +∞. Speci�cally, if Ñ(0) ≤ Λ/µ, then Λ/µ is the upper bound of Ñ ;
if Ñ(0) > Λ/µ, then Ñ will decrease to Λ/µ.
Similarly, from equation (3a) and property (7), it follows that Ṡ ≤ Λ− (µ+ ϕ0)S, yielding

0 < S ≤ Λ

µ+ ϕ0
, as t→ +∞. (9)

Then, (
S − Λ

µ+ ϕ0

)
+

(
V − Λϕ0

µ(µ+ ϕ0)

)
= S + V − Λ

µ
≤ 0, as t→ +∞. (10)

Inequalities (9) and (10), taking into account that σ ∈ [0, 1), imply that(
S − Λ

µ+ ϕ0

)
+ σ

(
V − Λϕ0

µ(µ+ ϕ0)

)
≤ 0, as t→ +∞,

namely 0 < S + σV ≤ Λ(µ+ σϕ0)/(µ(µ+ ϕ0)), as t→ +∞.
Let us now prove that M ≤ kΛ/µ, as t→ +∞. From the de�nition of M , as given in (1), it easily follows

M(t) ≤ kΛ

µ

∫ +∞

0

ae−audu = k
Λ

µ
, as t→ +∞.

This completes the proof that the region D, as de�ned in (6), is positively invariant under the �ow induced
by the system (3).

Thus, it is not restrictive to limit our analyses to the region D.

3.1 Disease�free equilibrium and its stability

The model given by equations (3) has a unique disease�free equilibrium (DFE), obtained by setting the
r.h.s. of equations (3) to zero, given by

DFE =
(
S̄, 0, 0, 0, V̄ , 0

)
=

(
Λ

µ+ ϕ0
, 0, 0, 0,

Λϕ0

µ(µ+ ϕ0)
, 0

)
. (11)

To establish the local and global stability of the DFE, suitable threshold quantities are computed: the
basic and control reproduction numbers. The basic reproduction number, R0, is a frequently used indicator
for measuring the potential spread of an infectious disease in a community. It is de�ned as the average
number of secondary cases produced by one primary infection over the course of the infectious period in
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a fully susceptible population. If the system incorporates vaccination strategies, then the corresponding
quantity is named the control reproduction number and is usually denoted by RV .
The reproduction number can be calculated as the spectral radius of the next generation matrix FV−1,
where F and V are de�ned as Jacobian matrices of the new infection appearance and the other rates of
transfer, respectively, calculated for infected compartments at the disease�free equilibrium [70]. In this
speci�c case, if ϕ0 +ϕ1(M) = 0 in (3), namely when a vaccination program is not in place, we obtain the
expression of R0; otherwise, the corresponding RV can be computed.

Theorem 2. The basic reproduction number of model (3) is given by

R0 =
ρβ (εa (νs + δ + µ) + εsη)

(ρ+ µ) (η + νa + µ) (νs + δ + µ)

Λ

µ
(12)

and the control reproduction number is given by

RV = R0
µ+ σϕ0

µ+ ϕ0
. (13)

Proof. Following the procedure and the notations adopted by Diekmann et al. [21] and Van den Driessche
& Watmough [70], we derive the control reproduction number, RV .
Let us consider the r.h.s. of equations (3b)�(3c)�(3d) (the balance equations for the infected compart-
ments), and distinguish the new infections appearance from the other rates of transfer, by de�ning the
vectors

F =

 β(S + σV )(εaIa + εsIs)
0
0


and

V =

 (ρ+ µ)E
−ρE + (η + νa + µ) Ia
−ηIa + (νs + δ + µ) Is

 .

The Jacobian matrices of F and V evaluated at model DFE (11) read, respectively,

F =

 0 βεa
Λ(µ+ σϕ0)

µ(µ+ ϕ0)
βεs

Λ(µ+ σϕ0)

µ(µ+ ϕ0)
0 0 0
0 0 0

 (14)

and

V =

 ρ+ µ 0 0
−ρ η + νa + µ 0
0 −η νs + δ + µ

 . (15)

As proved in [21,70], the control reproduction number is given by the spectral radius of the next generation
matrix FV−1. It is easy to check that FV−1 has positive elements on the �rst row, being the other ones
null. Thus, RV = (FV−1)11, that is

RV =
ρβ (εa (νs + δ + µ) + εsη)

(ρ+ µ) (η + νa + µ) (νs + δ + µ)

Λ

µ

µ+ σϕ0

µ+ ϕ0
.

Similarly one can prove that the basic reproduction number is given by (12).
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From Theorem 2, it follows that [70]:

Proposition 1. The DFE is locally asymptotically stable if RV < 1; otherwise, if RV > 1, it is unstable.

As far as the global stability of the DFE, we prove the following theorem

Theorem 3. The DFE is globally asymptotically stable (GAS) if RV < 1.

Proof. To prove the global stability of the DFE, we adopt the approach developed by Castillo�Chavez et
al. in [12]. We rewrite system (3) in the form

ẏ =h(y, z)

ż =l(y, z), l(y,0) = 0

where y = (S, V,M) denotes the vector of uninfected compartments and z = (E, Ia, Is) that of infected
compartments. The disease�free equilibrium (11) is also rewritten as (ȳ,0), with ȳ = (S̄, V̄ , 0) and 0 ∈ R3.
Then, the DFE is globally asymptotically stable if RV < 1, provided that the two following conditions
are satis�ed [12]:

C.1 For ẏ = h(y,0), ȳ is GAS.

C.2 l(y, z) = J̄z − l̂(y, z), l̂(y, z) ≥ 0 in D, where J̄ = Dz(ȳ,0) is an M�matrix (the o��diagonal
elements are non�negative).

Condition C.1 is immediate, since ẏ = h(y,0) reads

Ṡ = Λ− (ϕ0 + ϕ1(M))S − µS
V̇ = (ϕ0 + ϕ1(M))S − µV
Ṁ = −aM

yielding

(S, V,M)→
(

Λ

µ+ ϕ0
,

Λϕ0

µ(µ+ ϕ0)
, 0

)
, as t→ +∞.

The matrix J̄ is given by J̄ =F-V, with F and V as computed in the proof of Theorem 2 and given in
(14) and (15), respectively. It is easily follows that J̄ is an M�matrix. Further, in view of (6),

l̂ = J̄z− l =

 β

(
Λ(µ+ σϕ0)

µ(µ+ ϕ0)
− S − σV

)
(εaIa + εsIs)

0
0

 ≥ 0.

Hence, also condition C.2 is satis�ed and the proof is completed.
For an alternative proof see Appendix A.

We remark that by introducing

p =
V̄

S̄ + V̄
=

ϕ0

µ+ ϕ0

as the fraction of the population vaccinated at the disease�free equilibrium (11) we can express

RV = R0 (1− (1− σ) p) . (16)

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259324doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.22.21259324
http://creativecommons.org/licenses/by-nc-nd/4.0/


Note that RV ≤ R0 with equality only if ϕ0 = 0 (i.e., p = 0) or σ = 1. That is, despite being imperfect,
the vaccine (characterized by ϕ0 > 0 and 0 ≤ σ < 1) will always reduce the reproduction number of the
disease.
The expression (16) is the same as obtained by Gumel et al. [36] for the SARS epidemic control. In [36],
a detailed analysis is given, leading to the following main results:

Proposition 2. The disease will be eliminated from the community if p ≥ pc, with pc given by

pc =
1

1− σ

(
1− 1

R0

)
.

Proposition 3. Let us consider the following quantity:

ϕ0c =
µ(R0 − 1)

1− σR0

We have that: if R0 < 1/σ and ϕ0 > ϕ0c, then the disease will eliminate from the community. If
R0 ≥ 1/σ, then no amount of vaccination will prevent a disease outbreak in the community.

See also Fig. 5 in [36], where the critical value, pc, is plotted as a function of 1 − σ for several values of
R0.

3.2 Endemic equilibrium

Let us denote the generic endemic equilibrium (EE) of model (3) with

EE = (Se, Ee, Iea, I
e
s , V

e,Me) . (17)

By setting the r.h.s. of equations (3b)�(3c)�(3d)�(3e)�(3f) to zero, one can derive the relationships

Se =
1

R0

Λ

µ

σβIea (εa (νs + δ + µ) + εsη) + µ (νs + δ + µ)

σβIea (εa (νs + δ + µ) + εsη) + [µ+ σ(ϕ0 + ϕe(Iea))] (νs + δ + µ)
(18a)

Ee =
η + νa + µ

ρ
Iea (18b)

Ies =
η

νs + δ + µ
Iea (18c)

V e =
1

R0

Λ

µ

(νs + δ + µ)(ϕ0 + ϕe(I
e
a))

σβIea (εa (νs + δ + µ) + εsη) + [µ+ σ(ϕ0 + ϕe(Iea))] (νs + δ + µ)
(18d)

Me = k
η

νs + δ + µ
Iea (18e)

where

ϕe(x) = ϕ1

(
η

νs + δ + µ
x

)
.

By substituting S = Se, Is = Ies and M = Me in the r.h.s. of equation (3a) and setting it to zero, we
obtain Iea as a positive solution (when it exists) of

ψ(Ia) = χ(Ia)
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where
ψ(Ia) = a2I

2
a + a1Ia + a0

with
a2 = −σβ2 (εa (νs + δ + µ) + εsη)

2

a1 = −β (µ (1− σR0) + σ(µ+ ϕ0)) (νs + δ + µ) (εa (νs + δ + µ) + εsη)

a0 = µ (νs + δ + µ)
2

((µ+ σϕ0)R0 − µ− ϕ0)

(19)

and
χ(Ia) = (νs + δ + µ) [µ (1− σR0) (νs + δ + µ) + σβIa (εa (νs + δ + µ) + εsη)]ϕe(Ia).

In view of (6), we can limit ourselves to seek Iea in the interval (0,Λ/µ).
Firstly, let us list some proprieties of the functions ψ(Ia) and χ(Ia), that can be easily veri�ed:

(i) ψ(Ia) is a concave quadratic function;

(ii) χ(Ia) is the product of a linear�a�ne increasing function and a positive increasing function (ϕe(·));

(iii) sgn(ψ(0)) = sgn(RV − 1) and χ(0) = 0;

(iv) ψ(Λ/µ) < 0 < χ(Λ/µ);

(v) ∀Ia 6= 0, sgn(χ(Ia)) = sgn(Ia − I∗a), where

I∗a =
µ (σR0 − 1) (νs + δ + µ)

σβ (εa (νs + δ + µ) + εsη)
;

(vi) ψ(I∗a) = µ2R0(1− σ) (νs + δ + µ)
2
> 0.

Then, we distinguish three cases:

� R0 ≤ (µ+ ϕ0)/(µ+ σϕ0) (namely, RV ≤ 1). Then,

R0 ≤
µ+ ϕ0

µ+ σϕ0
<

1

σ
,

implying that a0 = ψ(0) ≤ 0, a1 = ψ′(0) < 0 and χ(Ia) is increasing and positive ∀Ia > 0. From
(i)�(iii) it follows that ψ(Ia) and χ(Ia) cannot intersect for Ia > 0, namely no endemic equilibria
exist.

� (µ+ ϕ0)/(µ+ σϕ0) < R0 ≤ 1/σ. Then, a0 = ψ(0) > 0, a1 = ψ′(0) < 0 and χ(Ia) is a positive
increasing function ∀Ia > 0. From (i)�(iii)�(iv) it follows that ψ(Ia) and χ(Ia) have one positive
intersection point and it is in (0,Λ/µ), namely an unique endemic equilibrium exists.

� R0 > 1/σ. Then, a0 = ψ(0) > 0 and χ(Ia) is negative for 0 < Ia < I∗a and it is positive and
increasing for Ia > I∗a . Further,

ψ′(I∗a) = −β (νs + δ + µ) (µ (σR0 − 1) + σ(µ+ ϕ0)) (εa (νs + δ + µ) + εsη) < 0.

From (i)�(iii)�(iv)�(vi) it follows that ψ(Ia) and χ(Ia) have one positive intersection point and it is
in (I∗a ,Λ/µ), namely an unique endemic equilibrium exists.
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Hence, EE exists if and only if RV > 1 and the endemic number of asymptomatic individuals Iea is
characterized by ψ(Iea) = χ(Iea) > 0, ψ′(Iea) < 0 < χ′(Iea) and

max(0, I∗a) < Iea < −
a1 +

√
a21 − 4a0a2
2a2

, (20)

where the last term in (20) is the (unique) positive root of ψ(Ia).
The results are summarized in the following theorem.

Theorem 4. If RV ≤ 1, system (3) admits no endemic equilibria.
If RV > 1, system (3) admits an unique endemic equilibrium, de�ned in (17)�(18), with Iea such that

max

(
0,

µ (σR0 − 1) (νs + δ + µ)

σβ (εa (νs + δ + µ) + εsη)

)
< Iea < −

a1 +
√
a21 − 4a0a2
2a2

,

and ai, i = 0, . . . , 2, given in (19).

3.3 Central manifold analysis

To derive a su�cient condition for the occurrence of a transcritical bifurcation at RV = 1, we can use a
bifurcation theory approach. We adopt the approach developed in [27, 70], which is based on the general
center manifold theory [35]. In short, it establishes that the normal form representing the dynamics of
the system on the central manifold is given by:

u̇ = Au2 +Bβu,

where

A =
v

2
·Dxxf(DFE, βc)w

2 ≡ 1

2

6∑
k,i,j=1

vkwiwj
∂2fk(DFE, βc)

∂xi∂xj
(21)

and

B = v ·Dxβf(DFE, βc)w ≡
6∑

k,i=1

vkwi
∂2fk(DFE, βc)

∂xi∂β
. (22)

Note that in (21) and (22) β has been chosen as bifurcation parameter, βc is the critical value of β,
x = (S,E, Ia, Is, V,M) is the state variables vector, f is the right�hand side of system (3), and v and w
denote, respectively, the left and right eigenvectors corresponding to the null eigenvalue of the Jacobian
matrix evaluated at criticality (i.e. at DFE and β = βc).
Observe that RV = 1 is equivalent to:

β = βc =
µ(µ+ ϕ0)(ρ+ µ) (η + νa + µ) (νs + δ + µ)

Λ(µ+ σϕ0)ρ (εa (νs + δ + µ) + εsη)

so that the disease�free equilibrium is stable if β < βc, and it is unstable when β > βc.
The direction of the bifurcation occurring at β = βc can be derived from the sign of coe�cients (21) and
(22). More precisely, if A > 0 [resp. A < 0] and B > 0, then at β = βc there is a backward [resp. forward]
bifurcation.
For our model, we have the following:
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Theorem 5. System (3) exhibits a forward bifurcation at DFE and RV = 1.

Proof. The Jacobian of system (3) is

J =


J11 0 −βεaS −βεsS 0 −ϕ′1(M)S

β(εaIa + εsIs) −(ρ+ µ) βεa(S + σV ) βεs(S + σV ) σβ(εaIa + εsIs) 0
0 ρ −(η + νa + µ) 0 0 0
0 0 η −(νs + δ + µ) 0 0

ϕ0 + ϕ1(M) 0 −σβεaV −σβεsV −σβ(εaIa + εsIs)− µ ϕ′1(M)S
0 0 0 ak 0 −a


with J11 = −β(εaIa + εsIs)− (µ+ ϕ0 + ϕ1(M)).
J evaluated at DFE (11) for β = βc becomes:

J(DFE, βc) =



− (µ+ ϕ0) 0 −βcεa
Λ

µ+ ϕ0
−βcεs

Λ

µ+ ϕ0
0 −ϕ′1(0)

Λ

µ+ ϕ0

0 −(ρ+ µ) βcεa
Λ(µ+ σϕ0)

µ(µ+ ϕ0)
βcεs

Λ(µ+ σϕ0)

µ(µ+ ϕ0)
0 0

0 ρ −(η + νa + µ) 0 0 0
0 0 η −(νs + δ + µ) 0 0

ϕ0 0 −σβcεa
Λϕ0

µ(µ+ ϕ0)
−σβcεs

Λϕ0

µ(µ+ ϕ0)
−µ ϕ′1(0)

Λ

µ+ ϕ0

0 0 0 ak 0 −a


.

Its spectrum is: Σ = {0,−(µ+ ϕ0),−µ,−a, λ+, λ−}, where λ± are given by

λ± =
−b1 ±

√
b21 − 4b0

2

with
b1 = (ρ+ µ) + (η + νa + µ) + (νs + δ + µ) > 0

b0 = ((ρ+ µ) + (η + νa + µ)) (νs + δ + µ) +
εsη(ρ+ µ) (η + νa + µ)

εa (νs + δ + µ) + εsη
> 0.

As expected, it admits a simple zero eigenvalue and the other eigenvalues have negative real part. Hence,
when β = βc (or, equivalently, when RV = 1), the DFE is a non�hyperbolic equilibrium.
It can be easily checked that a left and a right eigenvector associated with the zero eigenvalue so that
v·w = 1 are:

v =

(
0, v2,

ρ+ µ

ρ
v2,

Λ(µ+ σϕ0)βcεs
µ(µ+ ϕ0)(νs + δ + µ)

v2, 0, 0

)
,

w =

(
−Λ

βc(εa(νs + δ + µ) + εsη) + kηϕ′1(0)

(µ+ ϕ0)2(νs + δ + µ)
,
η + νa + µ

ρ
, 1,

η

νs + δ + µ
,w5,

kη

νs + δ + µ

)T
,

with

v2 =
ρµ(νs + δ + µ)2(µ+ ϕ0)

µ(νs + δ + µ)2(µ+ ϕ0) ((ρ+ µ) + (η + νa + µ)) + Λ(µ+ σϕ0)ρβcεsη

and

w5 = Λ
kηϕ′1(0)µ2 − ϕ0(µ+ σ(µ+ ϕ0))βc(εa(νs + δ + µ) + εsη)

µ2(µ+ ϕ0)2(νs + δ + µ)
.
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The coe�cients A and B may be now explicitly computed. Considering only the non�zero components of
the eigenvectors and computing the corresponding second derivative of f , it follows that:

A = v2

[
w3

(
w1
∂2f2(DFE, βc)

∂S∂Ia
+ w5

∂2f2(DFE, βc)

∂V ∂Ia

)
+ w4

(
w1
∂2f2(DFE, βc)

∂S∂Is
+ w5

∂2f2(DFE, βc)

∂V ∂Is

)]
= v2

βc(εa(νs + δ + µ) + εsη)

νs + δ + µ
(w1 + σw5)

= −v2βc (εa(νs + δ + µ) + εsη) Λ

[
µ2 + σϕ0(µ+ σ(µ+ ϕ0))

]
βc(εa(νs + δ + µ) + εsη) + (1− σ)kηϕ′1(0)µ2

µ2(µ+ ϕ0)2(νs + δ + µ)2

and

B = v2

(
w3

∂2f2
∂Ia∂β

(DFE, βc) + w4
∂2f2
∂Is∂β

(DFE, βc)

)
= v2

Λ(µ+ σϕ0)

µ(µ+ ϕ0)

εa(νs + δ + µ) + εsη

νs + δ + µ

where v2 > 0. Then, A < 0 < B. Namely, when β − βc changes from negative to positive, DFE changes
its stability from stable to unstable; correspondingly a negative unstable equilibrium becomes positive
and locally asymptotically stable. This completes the proof.

4 Parametrization

Demographic and epidemiological parameter values are based on the COVID�19 epidemic in Italy reported
since the end of February 2020 [41]. Vaccine�related parameter values are mainly inferred by preliminary
reports about anti COVID�19 vaccines and by the initial trend of the Italian immunization campaign. A
detailed derivation of such quantities is reported in the following.

4.1 Initial conditions

In order to provide appropriate initial conditions that mark the beginning of an epidemic wave, we
make the following considerations. After the �rst dramatic epidemic wave (February�May 2020) Italy
experiences the so�called `living with the virus' period, characterized by a relatively low level of prevalence
and loosening of restrictions. But this breathing space ends towards the second half of August 2020, when
the virus regained strength and progressively grew its prevalence, marking the arrival of the second wave.
Since data available at the beginning of the second wave are reasonably more accurate than those at
the epidemic starting time, we consider them as initial data. More speci�cally, we take the o�cial
national data for infectious (Ia + Is) and recovered (R) people at 16 August 2020, that is estimated as
the �rst time after the end of the �rst wave that the e�ective reproduction number exceeds the threshold
1 [42]. For that period, the Italian National Institute of Health estimates the fraction of asymptomatic
individuals w.r.t. the total case as 49.25% about, namely Ia(0) = 0.4925(Ia(0) + Is(0)) [39]. As far as
the initial values of exposed individuals E and the information index M are concerned, in the absence
of exact data, we infer them by the corresponding expressions at the endemic state, as given in (18).
Hence, one yields E(0) = Ia(0)(η + νa + µ)/ρ and M(0) = kIs(0). Finally, the initial value of susceptible
individuals S is obtained by subtracting from the total initial population (say, N0), as given in [8], namely
S(0) = N0 − E(0)− Ia(0)− Is(0)−R(0).
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Parameter Description Baseline value
tf Time horizon 365− 395 days
N0 Initial total population 6.036 · 107

E(0) Initial number of exposed individuals Ia(0)(η + νa + µ)/ρ
Ia(0) Initial number of asymptomatic infectious individuals 7,322
Is(0) Initial number of symptomatic infectious individuals 7,545
V (0) Initial number of vaccinated individuals 0
R(0) Initial number of recovered individuals 203,968
M(0) Initial value of the information index kIs(0)
R0 Basic reproduction number 1.428
RV Control reproduction number 0.302
Λ Net in�ow of susceptibles 1, 762 days−1

µ Natural death rate 1.07 · 10−2 years−1

β Baseline transmission rate 2.699 · 10−8 days−1

q Fraction of post�latent individuals that develop symptoms 0.15
εa Modi�cation factor concerning transmission from Ia q + (1− q)0.033
εs Modi�cation factor concerning transmission from Is 0.034
ϕ0 Information�independent constant vaccination rate 0.002 days−1

σ Factor of vaccine ine�ectiveness 0.2
ρ Latency rate 1/5.25 days−1

η Rate of onset of symptoms 0.12 days−1

νa Recovery rate for asymptomatic infectious individuals 0.165 days−1

νs Recovery rate for symptomatic infectious individuals 0.055 days−1

δ Disease�induced death rate 6.248 · 10−4 days−1

D Reactivity factor of information�dependent vaccination 500µ/Λ
ϕmax Ceiling of overall vaccination rate 0.02 days−1

a Inverse of the average information delay Ta 1/3 days−1

k Information coverage 0.8

Table 1: Temporal horizon, initial conditions and parameters baseline values for model (3)�(23).

4.2 Baseline scenario

In the absence of empirical data about vaccinating attitudes, we follow the approach of [7, 8, 26] and
assume that ϕ1(M) is a Michaelis�Menten function [61]

ϕ1(M) =
CM

1 +DM
,

with 0 < C ≤ D. Similarly to what done in [7, 8, 26], we set C = D (ϕmax − ϕ0), where ϕmax > ϕ0. This
reparametrisation means an asymptotic overall rate of ϕmax days−1. The ensuing vaccination function is:

ϕ1(M) = (ϕmax − ϕ0)
DM

1 +DM
. (23)

As of April 2021, the rate of anti COVID�19 vaccination in Italy was less than 400,000 administrations
per day in a population of N0 ≈ 60 millions of inhabitants [39], but acceleration plans have been laid out.
Here, we take ϕmax = 0.02 days−1 potentially implying a ceiling of 0.02 days−1 in vaccination rate under
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Figure 2: Dynamics in absence of vaccination (ϕ0 = 0 days−1, D = 0). Total infectious cases (panel
A) and cumulative disease�induced deaths (panel B) as predicted by model (3)�(23) (black lines) and
compared with Italian o�cial data [41] (blue dots), in the period 16 August�13 October 2020. Initial
conditions and other parameter values are given in Table 1.

circumstances of high perceived risk. This value is in line with data concerning the 2009 H1N1 pandemic
in�uenza, whose daily rate of vaccine administration has been largely investigated and it was below 2%
of the total population (see [49] and references therein). Furthermore, threshold values of 1�2% per day
were also considered in epidemic models of dengue [67] and cholera diseases [30].
In order to obtain a baseline value for D, we observe that in [6, 26] it was set D = 500, where M varied
in [0, k]. Here M varies in [0, kΛ/µ] (see (6)), hence we expect that D = 500µ/Λ could be a good starting
point.
As far as the factor of vaccine ine�ectiveness, σ, and the information�independent constant vaccination
rate, ϕ0, are concerned, in Section 5 numerical solutions by varying both σ ∈ [0, 1) and ϕ0 ∈ [0, ϕmax]
are given. Anyway, for illustrative purposes, a corresponding baseline value is selected: σ = 0.2, meaning
that the vaccine o�ers 80% protection against infection, and ϕ0 = 0.002 days−1, that is the 10% of the
ceiling vaccination rate ϕmax (ϕ0 = 0.1ϕmax). Speci�cally, 80% is the estimated e�ectiveness of partial
immunization (14 days after �rst dose but before second dose) of some authorized mRNA COVID�19
vaccines [13].
We estimate the rate at which symptoms onset as η = qγ, where q = 0.15 represents the fraction of
infected people that develops symptoms after the incubation period and γ = 1/1.25 days−1 is the post�
latency rate, as given in [8]. The fraction q is also used to infer εa, the modi�cation factor concerning
transmission from Ia, namely we set εa = q+ (1− q)0.033, where 1 [resp. 0.033] is the modi�cation factor
concerning transmission from post�latent [resp. truly asymptomatic] individuals, as considered in the
models [8, 33].
Following the approach adopted by Gumel et al. [37], based on the formula given by Day [17], we estimate
the disease�induced death rate as

δ = (1− µΘ)
CF
Θ
,
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where CF is the fatality rate and Θ is the expected time from the onset of symptoms until death. We
compute CF by the o�cial national data from 16 August to 13 October 2020 [41] (the same period
considered for the estimation of the transmission rate β, as explained below), yielding CF = 0.75%. As
far as Θ is concerned, from [39] we get Θ = 12 days, providing δ ≈ 6.248 ·10−4 days−1.
Similarly, the recovery rates νj with j ∈ {a, s} are estimated as

νj = (1− µΘj)
1− CF

Θj
,

where Θa [resp. Θs] is the expected time until recovery for asymptomatic [resp. symptomatic] individuals.
We assume Θa = 6, Θs = 18 days on the basis of the considerations made in [8].
Values for Λ, µ, εs, ρ, a and k are based on the estimates given in [8]. Like as for σ and ϕ0, numerical
solutions by varying both k ∈ [0.2, 1] and a ∈ [1/60, 1] days−1 are given in Section 5 (for a detailed
motivation about the ranges of values of the information parameters see [8]).
Finally, in order to obtain an appropriate value for the baseline transmission rate β, we consider model
(3)�(23) in absence of vaccination strategies (ϕ0 = 0 days−1, D = 0) and search for the value that best �ts
with the initial `uncontrolled' phase of the second Italian epidemic wave. More precisely, we consider the
number of COVID�19�induced deaths in Italy from 16 August, assumed as the starting date of the second
wave (see Section 4.1), and 13 October 2020, the last day of loose restrictions. Indeed, on 13 October the
Council of Ministers approved a decree to reintroduce stricter rules to limit the spread of the disease [40].
The choice of the curve to �t is motivated by the fact that data about deaths seem to be more accurate
with respect to other ones, e.g. the number of infected people, who are not always identi�ed, especially
if asymptomatic or with very mild symptoms. Anyway, by setting β = 2.699 · 10−8 days−1, we obtain a
good �t not only with the cumulative deaths (see Fig. 2B) but also with the total infectious cases, Ia+ Is
(see Fig. 2A).
All the parameters of the model as well as their baseline values are reported in Table 1.

5 Numerical simulations

Numerical simulations are performed in MATLAB [57]. We use the 4th order Runge�Kutta method with
constant step size for integrating the system and the platform�integrated functions for getting the plots.
First, we numerically investigate the impact of two vaccine�related parameters, namely the information�
independent constant vaccination rate, ϕ0, and the factor of vaccine ine�ectiveness, σ, on the control
reproduction number RV of formula (13). The corresponding contour plot of RV (ϕ0, σ) is shown in Fig.
3A. This �gure shows that: i) for very small values of ϕ0 this parameter impacts on RV but ϕ0 > 0.002
days−1 about yields that RV depends practically only on σ in a linear�a�ne manner as shown in Fig.
3B; ii) for small values of σ (as those declared for some of the vaccines) the RV is small, for example
for σ = 0.05 it is RV < 0.1; iii) for values of σ ≈ 1/3, comparable with those observed often for vaccine
against the seasonal �u, it is RV ≈ 0.5; iv) if we de�ne as threshold of non�e�ectiveness the curve RV = 1
we observe that for ϕ0 > 0.002 days−1 this threshold is reached for values of σ between around 0.6 and
0.7.

5.1 Temporal dynamics

Let us consider the time frame [0, t], where 0 ≤ t ≤ tf . We introduce four relevant cumulative quantities
that will be used in the following: the cumulative vaccinated individuals CV(t), i.e. the total number
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Figure 3: Panel A: Contour plot of the control reproduction number RV (13) versus the information�
independent constant vaccination rate, ϕ0, and the factor of vaccine ine�ectiveness, σ. Intersection
between dotted black lines indicates the value corresponding to the baseline scenario: ϕ0 = 0.002 days−1,
σ = 0.2. Panel B: plot of RV versus σ, by setting ϕ0 = 0.002 days−1 (black line) and ϕ0 = 2 ·10−5 days−1

(blue line). Other parameters values are given in Table 1.

of individuals who are vaccinated with at least one dose of COVID�19 vaccine in [0, t]; the cumulative
symptomatic cases CY(t), i.e. the number of new cases showing symptoms in [0, t]; the cumulative
incidence CI(t), i.e. the total number of new cases in [0, t]; and the cumulative deaths CD(t), i.e. the
disease�induced deaths in [0, t]. For model (3)�(23) we have, respectively:

CV(t) =

∫ t

0

(
ϕ0 + (ϕmax − ϕ0)

DM(τ)

1 +DM(τ)

)
S(τ)dτ,

CY(t) =

∫ t

0

ηIa(τ)dτ,

CI(t) =

∫ t

0

β(S(τ) + σV (τ)) (εaIa(τ) + εsIs(τ)) dτ,

CD(t) =

∫ t

0

δIs(τ)dτ.

(24)

We also consider two possibilities for the time at which vaccines administration starts, namely

� VAX-0, that is the baseline case that the vaccination campaign starts at day t = 0;

� VAX-30, that is the case that the vaccination campaign starts at day t = 30.

We assume that in both cases the vaccination campaign lasts 1 year, namely tf = 365 [resp. tf = 395]
days in the case VAX-0 [resp. VAX-30].
Numerical simulations for the case VAX-0 are displayed in Fig. 4. Namely, we report the temporal
dynamics of three relevant state variables: susceptible individuals S (Fig. 4A), vaccinated individuals
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V (Fig. 4B) and symptomatic infectious individuals Is (Fig. 4C), as well as the cumulative number of
deaths CD (Fig. 4D). We consider the following four signi�cant scenarios (for each of them we also report
the observed results):

� Constant vaccination (D = 0), with baseline rate ϕ0 = 0.002 days−1 (blue lines). We observe at
t = 202 days the occurrence of a large peak of symptomatic cases Is (225,025) and at the end of
simulation a large cumulative number of deaths (28,343);

� Information�dependent vaccination: ϕ0 = 0.002 days−1, D = 500µ/Λ (black lines). This case is
characterized by a time of Is peak that is halved w.r.t. the constant baseline case, namely at t = 105
days about, and a much lower prevalence: 57, 588, i.e. one quarter about w.r.t. the constant baseline
case. This could be an excellent performance, but it is not the case since better performance could
have been reached appropriately higher vaccination rate levels;

� Constant vaccination (D = 0), with rate ϕ0 = ϕp10 = 4.25 · 10−3 days−1 (red lines), which is such
that the peak value of Is is equal to the peak value observed in the case of information�dependent
vaccination. One can observe that in this case the epidemic peak occurs earlier, at t = 119 days,
and the �nal cumulative number of death is smaller: CD(tf ) = 5, 948;

� Constant vaccination (D = 0), with rate ϕ0 = ϕp20 = 7.87 · 10−3 days−1 (green lines), where the
peak of Is is halved w.r.t. the case of information�dependent vaccination. The epidemic peak
occurs very early, at t = 72 days, and the �nal cumulative number of death is relatively modest:
CD(tf ) = 2, 203.

Simulations for the case VAX-30 are, of course, graphically similar to those in Fig. 4, hence corresponding
plots are here omitted. From a quantitative point of view, in order to compare the results in the case
VAX-30 w.r.t. the case VAX-0, we focus on the scenario of information�dependent vaccination and report
in Table 2 the value of the following epidemiological indicators (not necessarily in this order): the number
of susceptible and vaccinated individuals, and the cumulative quantities (24) at the end of the time horizon
tf , the peak of symptomatic cases and its occurrence time. Comparison between the cases VAX-0 and
VAX-30 is given though the di�erence operator:

X|
VAX-30

− X|
VAX-0

where X ∈ {S(tf ), V (tf ),CV(tf ),max(Is), argmax(Is),CY(tf ),CI(tf ),CD(tf )} (see third column in Ta-
ble 2).
Observe that, in both VAX-0 and VAX-30 case, cumulative asymptomatic people at the �nal time tf (that
is the di�erence CI(tf )−CY(tf )) account for approximately 57% of cumulative SARS�CoV�2 infections.
This result is in line with the current estimates (as of April 2021) reported by the Italian National Institute
of Health [39].
We also investigate the temporal dynamics of the ratio ϕ1(M)/ϕ0 in the case of information�dependent
vaccination. Numerical solutions are displayed in Fig. 5 for both the case VAX-0 (black line) and the case
VAX-30 (blue line). We note that in the case VAX-30 the ratio is larger than in the case VAX-0 since the
delay in the start of the vaccination campaign induces a larger epidemic peak. Namely, in the case VAX-0,
the maximum value reached by ϕ1(M)/ϕ0 is 2.49 and the time at it is reached is approximately t = 108
days. In the case of VAX-30 this peak is reached at t = 114, i.e. 84 days after the start of VAX-30, but
the peak value is much larger: it is 3.4.
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Figure 4: VAX-0 case. Temporal dynamics of susceptible individuals S (panel A), vaccinated individuals
V (panel B), symptomatic infectious individuals Is (panel C), and cumulative deaths CD (panel D), as
predicted by model (3)�(23). Blue lines: constant vaccination with ϕ0 = 0.002 days−1, D = 0; black lines:
information�dependent vaccination with ϕ0 = 0.002 days−1, D = 500µ/Λ; red lines: constant vaccination
with ϕ0 = ϕp10 , D = 0; green lines: constant vaccination with ϕ0 = ϕp20 , D = 0. Initial conditions and
other parameter values are given in Table 1 and in Section 5.1.

X X|
VAX-0

X|
VAX-30

X|
VAX-30

− X|
VAX-0

S(tf ) 1.33 · 107 1.09 · 107 −2.39 · 106

V (tf ) 4.58 · 107 4.77 · 107 1.92 · 106

CV(tf ) 4.62 · 107 4.82 · 107 2.00 · 106

max(Is) 5.76 · 104 9.14 · 104 3.38 · 104

arg max(Is) 105.14 110.61 5.47
CY(tf ) 4.42 · 105 6.44 · 105 2.02 · 105

CI(tf ) 1.03 · 106 1.51 · 106 4.80 · 105

CD(tf ) 5.04 · 103 7.30 · 103 2.26 · 103

Table 2: Information�dependent vaccination case (ϕ0 = 0.002 days−1, D = 500µ/Λ). Relevant quantities
as predicted by model (3)�(23) in the case that the vaccination campaign starts at day 0, VAX-0 (�rst
column) and in the case that it starts at day 30, VAX-30 (second column). The third column reports the
di�erences between the values corresponding to the VAX-30 case w.r.t. the case VAX-0. Initial conditions
and other parameter values are given in Table 1.
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Figure 5: Information�dependent vaccination case (ϕ0 = 0.002 days−1, D = 500µ/Λ). Temporal dynamics
of the ratio between the information�dependent component, ϕ1(M), and the constant component, ϕ0, of
the vaccination rate. Black line: VAX-0 case; blue line: VAX-30 case. Initial conditions and other
parameter values are given in Table 1.

5.2 Sensitivity of epidemiological indicators to critical parameters

Here, we focus on the VAX-0 case and evaluate the sensitivity of some relevant epidemiological indicators
to variations of critical parameter values. Note that for the case VAX-30 we obtain similar results, which
we omit.
Speci�cally, we assess how changing suitable information and vaccine�related parameters a�ects the cu-
mulative quantities (24) evaluated at the �nal time tf , the peak of symptomatic cases and its occurrence
time. We anticipate here that the �nal cumulative incidence, CI(tf ), the �nal cumulative symptomatic
cases, CY(tf ) and the peak of symptomatic cases, max(Is), have in all cases contour plots qualitatively
similar to the �nal cumulative deaths CD(tf ), thus we do not plot them. Hence, the following �gures
display the counter plots of just three quantities:

� the cumulative vaccinated individuals at tf = 365 days, CV(tf );

� the occurrence time of the symptomatic prevalence peak, argmax(Is);

� the cumulative disease�induced deaths at tf = 365 days, CD(tf ).

We start by investigating how the information parameters, namely the information coverage, k, and the
information delay, Ta = a−1, may a�ect the epidemic course, see Fig. 6. We observe that for argmax(Is)
and CD(tf ) (as well as max(Is), CI(tf ) and CY(tf )) the patterns of the contour plots are similar, and
in particular: for small k = 0.2 the range of the simulated variable when Ta increases is large, whereas
for k = 1 the range is restricted and low. The inverse phenomenon is observed for CV(tf ): the range is
restricted and small for low k = 0.2 whereas it is larger for k = 1.
Then, we investigate how the factor of vaccine ine�ectiveness, σ, and the information�independent con-
stant vaccination rate, ϕ0, a�ect the same quantities considered above. The results are shown in the
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Figure 6: Impact of the information coverage, k, and of the average delay, Ta = a−1, on the VAX-0
scenario as shown by contour plots. Panel A: cumulative vaccinated individuals at the �nal time tf = 365
days, CV(tf ). Panel B: time of symptomatic prevalence peak, argmax(Is). Panel C: cumulative deaths
at the �nal time tf = 365 days, CD(tf ). The intersection between dotted white lines indicates the values
corresponding to the baseline scenario: k = 0.8, Ta = 3 days. Initial conditions and other parameter
values are given in Table 1.

contour plots in Fig. 7 for the case of constant baseline vaccination (ϕ0 = 0.002 days−1, D = 0) and in
Fig. 8 for the case of information�dependent vaccination (ϕ0 = 0.002 days−1, D = 500µ/Λ). We may
observe that the quantitative impact of the information�dependent vaccination is remarkable (but this
was expected). As far as the shapes of the plots, we note that the plots for CV(tf ) (panels A) and for the
time at symptomatic prevalence peaks (panels B) are remarkably di�erent from the other plots. Moreover
the plot for CV(tf ) is qualitatively di�erent in the information�dependent vaccination case w.r.t. the case
of constant vaccination.

6 The impact of seasonality

There is an ongoing debate on possible seasonality e�ects on the transmission and global burden of
COVID�19 [1,50,59,65]. Thus, for the sake of the completeness, we consider here the case of information�
dependent vaccination and simulate the presence of seasonality on three key parameters: not only the
transmission rate, β, but also the rate of symptoms onset, η, and the total rate of vaccination, ϕ(M) =
ϕ0 + ϕ1(M), with ϕ1(M) given in (23). For the latter, the seasonality could be determined by a lower
vaccination rate due to the summer vacations.
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Figure 7: Impact of the factor of vaccine ine�ectiveness, σ, and of the information�independent constant
vaccination rate, ϕ0, on the scenario VAX-0 with constant vaccination (i.e. D = 0) as shown by contour
plots. Panel A: cumulative vaccinated individuals at the �nal time tf = 365 days, CV(tf ). Panel B: time
of symptomatic prevalence peak, argmax(Is). Panel C: cumulative deaths at the �nal time tf = 365 days,
CD(tf ). The intersection between dotted white lines indicates the values corresponding to the baseline
scenario: σ = 0.2, ϕ0 = 0.002 days−1. Initial conditions and other parameter values are given in Table 1.

Namely, we use in our simulations

par(t) = parbχ(t), par = β, η, ϕ0, ϕmax

where: parb are the baseline values and χ(t) is simply two states switch, i.e. similar to the one proposed
in [28] for the transmission rate:

χ(t) =

{
0.75, t ∈ (July and August)

1, t ∈ (September to June)

Since we used initial conditions corresponding to COVID�19 data at 16 August 2020, as o�cially com-
municated by Italian health authorities (see Section 4.1), we consider:

χ(t) =


0.75, t ∈ [0, 16)

1, t ∈ [16, 319)

0.75, t ∈ [319, 365]

We will denote this simulation scenario with VAX-0S.
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Figure 8: Impact of the factor of vaccine ine�ectiveness, σ, and of the information�independent constant
vaccination rate, ϕ0, on the scenario VAX-0 with information�dependent vaccination (i.e. D = 500µ/Λ),
as shown by contour plots. Panel A: cumulative vaccinated individuals at the �nal time tf = 365 days,
CV(tf ). Panel B: time of symptomatic prevalence peak, argmax(Is). Panel C: cumulative deaths at
the �nal time tf = 365 days, CD(tf ). The intersection between dotted white lines indicates the values
corresponding to the baseline scenario: σ = 0.2, ϕ0 = 0.002 days−1. Initial conditions and other parameter
values are given in Table 1.

Numerical simulations are displayed in Fig. 9 and compared with the baseline scenario, VAX-0. Corre-
sponding relevant quantities are reported in Table 3. Our simulation suggests that: i) the impact of the
summer vacation on the vaccine delivery and on S(t) is minimal (and they are omitted from Fig. 9); ii)
the peak of symptomatic cases decreases many months after the summer decrease of the transmission and
symptoms onset w.r.t. the no seasonality scenario, and it is delayed (Fig. 9A); iii) the cumulative number
of deaths decreases a little bit (Fig. 9B).

7 Conclusions

In this paper we introduced a mathematical model describing the transmission of the COVID�19 disease in
presence of non mandatory vaccination. The main novelty is that the hesitancy and refusal of vaccination
is taken into account. To this aim, we used the information index, which mimics the idea that individuals
take their decision on vaccination based not only on the present but also on the past information they
have on the spread of the disease.
Theoretical analysis and simulations show clearly as a voluntary vaccination can of course reduce the
impact of the disease but it is unable to eliminate it. The qualitative path of the disease remains the same
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Figure 9: Impact of the seasonality on the information�dependent vaccination case (ϕ0 = 0.002 days−1,
D = 500µ/Λ). Temporal dynamics of symptomatic infectious individuals Is (panel A), and cumulative
deaths CD(t) (panel B), as predicted by model (3)�(23). Blue lines: VAX-0S case (i.e. scenario including
seasonality); black lines: VAX-0 case (i.e. no seasonality scenario). Initial conditions and other parameter
values are given in Table 1 and in Section 6.

X X|
VAX-0S

X|
VAX-0S

− X|
VAX-0

S(tf ) 1.45 · 107 1.18 · 106

V (tf ) 4.47 · 107 −1.09 · 106

CV(tf ) 4.51 · 107 −1.12 · 106

max(Is) 5.03 · 104 −7.34 · 103

arg max(Is) 115.66 10.52
CY(tf ) 4.02 · 105 −3.97 · 104

CI(tf ) 9.44 · 105 −8.91 · 104

CD(tf ) 4.59 · 103 −444.88

Table 3: Information�dependent vaccination case (ϕ0 = 0.002 days−1, D = 500µ/Λ). Relevant quantities
as predicted by model (3)�(23) in the scenario including seasonality VAX-0S (�rst column). The second
column reports the di�erences between the values corresponding to the VAX-0S case w.r.t. the case VAX-
0 (see also Table 2). Initial conditions and other parameter values are given in Table 1 and in Section 6.

but the quantitative results are strongly di�erent: an epidemic outbreak (a new epidemic wave) occurs,
even if (as we observed in our simulations) the information�dependent vaccination rate is, at its peak,
more than three times larger than the constant baseline vaccination rate.
A key result is in particular the fact that the information�related parameters deeply a�ect the dynamics
of the disease: large information coverage and small memory characteristic time are needed to have the
best results. The di�erent impact of behaviour and information with respect to the scenario of mandatory
constant vaccination can be further appreciated by examining the contour plots in Figs. 6�8.
As it is reasonable, the parameter σ, i.e. the risk of infection for vaccinated people, has a major impact.
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Namely, the control reproduction number RV (σ, ϕ0) essentially depends on σ in a linear�a�ne manner.
This suggest to stick to vaccines that have very low σ, where RV (σ, ϕ0) is tiny. A very positive result
is that the threshold of non�e�cacy of the vaccine, which can roughly be delineated as the curve (σ, ϕ0)
where RV (σ, ϕ0) = 1 is located for values σ ∈ (0.6, 0.7), i.e. for very large values of σ (Figure 3A).
As far as the impact of human behaviour w.r.t. scenarios with constant vaccination rates is concerned,
we obtained that that the performances were better only w.r.t. a constant vaccination rate as low as ϕ0,
whereas the scenario where ϕ0 = ϕp20 (see Section 5.1) would lead to excellent result and a substantially
smaller number of deaths.
As far as the comparison of the VAX-0 vs VAX-30 scenarios is concerned, we also measured its impact
on the ratio between the information�dependent and the constant components of the vaccination rate,
namely ϕ1(M)/ϕ0. As expected, the peak was considerably larger in the scenario VAX-30. The peaks
occur in the same week if measured in the absolute time, i.e. the peak for VAX-30 occurs one month
before the peaks of VAX-0 if measured in time since the start of the vaccination (see Figure 5).
Finally, seasonality has a relative but non neglectable relevance. For example, although the decrease of
the transmission rate and of the onset of symptoms occur in the summer, the predicted winter epidemic
peak of symptomatic cases is decreased and delayed w.r.t. the one in the no�seasonality scenario. A small
but not neglectable decrease and delay of the cumulative deaths is also observed. This overall suggests
that a decrease of the transmission and of the onset of symptoms has positive impact even many months
after their end (see Figure 9).
An apparent limitation of this study is the absence of modelling for the dynamics of the transmission
rate. In other words, neither spontaneous changes of the parameter β and imposed changes due to
social distancing laws and partial/full lockdowns are taken into the account. However, these aspects are
intentionally neglected here since our goal is to assess the impact of a possible voluntary vaccination
campaign.
As far as future research is concerned, we plan: i) to explore (mainly numerically) a realistic model of the
COVID�19 spread that includes the time�changes of the transmission rate; ii) to explore the possibility
that eradication of the COVID�19 is not reached and the disease stays endemic.
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A Alternative proof of Theorem 3

Consider the following function

L = E +
(ρ+ µ) [(εa (νs + δ + µ) + εsη) Ia + εs (η + νa + µ) Is]

ρ (εa (νs + δ + µ) + εsη)
.
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It is easily seen that the L is non�negative in D (see (6)) and also L = 0 if and only if E = Ia = Is = 0.
The time derivative of L along the solutions of system (3) in D reads

L̇ =Ė +
(ρ+ µ)

[
(εa (νs + δ + µ) + εsη) İa + εs (η + νa + µ) İs

]
ρ (εa (νs + δ + µ) + εsη)

=β(S + σV )(εaIa + εsIs)− (ρ+ µ)E+

+
(ρ+ µ) [(εa (νs + δ + µ) + εsη) (ρE − (η + νa + µ)Ia) + εs (η + νa + µ) (ηIa − (νs + δ + µ)Is)]

ρ (εa (νs + δ + µ) + εsη)

=(εaIa + εsIs)

[
β(S + σV )− (ρ+ µ)(η + νa + µ)(νs + δ + µ)

ρ (εa (νs + δ + µ) + εsη)

]
≤(εaIa + εsIs)

[
β

Λ(µ+ σϕ0)

µ(µ+ ϕ0)
− (ρ+ µ)(η + νa + µ)(νs + δ + µ)

ρ (εa (νs + δ + µ) + εsη)

]
=− (εaIa + εsIs)

(ρ+ µ)(η + νa + µ)(νs + δ + µ)

ρ (εa (νs + δ + µ) + εsη)
(1−RV ).

It follows that L̇ ≤ 0 for RV < 1 with L̇ = 0 only if Ia = Is = 0. Hence, L is a Lyapunov function
on D and the largest compact invariant set in {(S,E, Ia, Is, V,M) ∈ D : L̇ = 0} is the singleton {DFE}.
Therefore, from the La Salle's invariance principle [47], every solution to system (3) with initial conditions
(4) approaches the DFE, as t→ +∞.

References

[1] A. Audi, M. AlIbrahim, M. Kaddoura, G. Hijazi, H. M. Yassine, and H. Zaraket. Seasonality of
respiratory viral infections: Will COVID�19 follow suit? Frontiers in Public Health, 8:576, 2020.

[2] L. R. Baden, H. M. El Sahly, B. Essink, K. Kotlo�, S. Frey, R. Novak, D. Diemert, S. A. Spector,
N. Rouphael, C. B. Creech, J. McGettigan, S. Khetan, N. Segall, J. Solis, A. Brosz, C. Fierro,
H. Schwartz, K. Neuzil, L. Corey, P. Gilbert, H. Janes, D. Follmann, M. Marovich, J. Mascola,
L. Polakowski, J. Ledgerwood, B. S. Graham, H. Bennett, R. Pajon, C. Knightly, B. Leav, W. Deng,
H. Zhou, S. Han, M. Ivarsson, J. Miller, and T. Zaks. E�cacy and safety of the mRNA�1273
SARS�CoV�2 vaccine. New England Journal of Medicine, 384(5):403�416, 2021.

[3] C. T. Bauch. Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal Society B:
Biological Sciences, 272(1573):1669�1675, 2005.

[4] J. K. Bender, M. Brandl, M. Höhle, U. Buchholz, and N. Zeitlmann. Analysis of asymptomatic
and presymptomatic transmission in SARS�CoV�2 outbreak, Germany, 2020. Emerging Infectious
Diseases, 27(4):1159, 2021.

[5] J. H. Buckner, G. Chowell, and M. R. Springborn. Optimal dynamic prioritization of scarce COVID�
19 vaccines. medRxiv, 2020.

[6] B. Buonomo. E�ects of information�dependent vaccination behavior on coronavirus outbreak: in-
sights from a SIRI model. Ricerche di Matematica, 69:483�499, 2020.

[7] B. Buonomo and R. Della Marca. Oscillations and hysteresis in an epidemic model with information�
dependent imperfect vaccination. Mathematics and Computers in Simulation, 162:97�114, 2019.

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259324doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.22.21259324
http://creativecommons.org/licenses/by-nc-nd/4.0/


[8] B. Buonomo and R. Della Marca. E�ects of information�induced behavioural changes during the
COVID�19 lockdowns: the case of Italy. Royal Society Open Science, 7(10):201635, 2020.

[9] B. Buonomo, A. d'Onofrio, and D. Lacitignola. Global stability of an SIR epidemic model with
information dependent vaccination. Mathematical Biosciences, 216(1):9�16, 2008.

[10] B. Buonomo, A. d'Onofrio, and D. Lacitignola. Modeling of pseudo�rational exemption to vaccination
for SEIR diseases. Journal of Mathematical Analysis and Applications, 404(2):385�398, 2013.

[11] V. Capasso and G. Serio. A generalization of the Kermack�McKendrick deterministic epidemic model.
Mathematical Biosciences, 42(1-2):43�61, 1978.

[12] C. Castillo-Chavez, Z. Feng, and W. Huang. On the computation ofR0 and its role on global stability.
In Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction.
Springer, New York, 2002.

[13] CDC, Centers for Disease Control and Prevention. Interim estimates of vaccine e�ectiveness of
BNT162b2 and mRNA�1273 COVID�19 vaccines in preventing SARS�CoV�2 infection among health
care personnel, �rst responders, and other essential and frontline workers � Eight U.S. locations,
December 2020�March 2021. MMWR Morbidity and Mortality Weekly Report. https://www.cdc.
gov/mmwr/volumes/70/wr/mm7013e3.htm#suggestedcitation, 2021. (Accessed on April 2021).

[14] Center for Systems Science and Engineering at Johns Hopkins University. COVID�19 Global Map.
https://coronavirus.jhu.edu/map.html, 2020. (Accessed on April 2021).

[15] W. Choi and E. Shim. Optimal strategies for vaccination and social distancing in a game�theoretic
epidemiologic model. Journal of Theoretical Biology, 505:110422, 2020.

[16] N. G. Davies, A. J. Kucharski, R. M. Eggo, A. Gimma, W. J. Edmunds, and on behalf of the Centre
for the Mathematical Modelling of Infectious Diseases COVID�19 working group. E�ects of non�
pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the
UK: a modelling study. The Lancet Public Health, 5:E375�E385, 2020.

[17] T. Day. On the evolution of virulence and the relationship between various measures of mortality.
Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1498):1317�1323, 2002.

[18] R. Della Marca and A. d'Onofrio. Volatile opinions and optimal control of vaccine awareness cam-
paigns: chaotic behaviour of the forward�backward Sweep algorithm vs. heuristic direct optimization.
Communications in Nonlinear Science and Numerical Simulation, 98:105768, 2021.

[19] F. Della Rossa, D. Salzano, A. Di Meglio, F. De Lellis, M. Coraggio, C. Calabrese, A. Guarino,
R. Cardona-Rivera, P. De Lellis, D. Liuzza, F. Lo Iudice, G. Russo, and M. di Bernardo. A network
model of Italy shows that intermittent regional strategies can alleviate the COVID�19 epidemic.
Nature Communications, 11(1):1�9, 2020.

[20] J. Deng, S. Tang, and H. Shu. Joint impacts of media, vaccination and treatment on an epidemic
�lippov model with application to COVID�19. Journal of Theoretical Biology, 523:110698, 2021.

[21] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz. On the de�nition and the computation of the
basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal
of Mathematical Biology, 28(4):365�382, 1990.

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259324doi: medRxiv preprint 

https://www.cdc.gov/mmwr/volumes/70/wr/mm7013e3.htm#suggestedcitation
https://www.cdc.gov/mmwr/volumes/70/wr/mm7013e3.htm#suggestedcitation
https://coronavirus.jhu.edu/map.html
https://doi.org/10.1101/2021.06.22.21259324
http://creativecommons.org/licenses/by-nc-nd/4.0/


[22] J. Dolbeault and G. Turinici. Heterogeneous social interactions and the COVID�19 lockdown outcome
in a multi�group SEIR model. Mathematical Modelling of Natural Phenomena, 15(36):1�18, 2020.

[23] A. d'Onofrio and P. Manfredi. Information�related changes in contact patterns may trigger oscilla-
tions in the endemic prevalence of infectious diseases. Journal of Theoretical Biology, 256(3):473�478,
2009.

[24] A. d'Onofrio, P. Manfredi, and P. Poletti. The impact of vaccine side e�ects on the natural history of
immunization programmes: an imitation�game approach. Journal of Theoretical Biology, 273(1):63�
71, 2011.

[25] A. d'Onofrio, P. Manfredi, and P. Poletti. The interplay of public intervention and private choices in
determining the outcome of vaccination programmes. PLoS ONE, 7(10):e45653, 2012.

[26] A. d'Onofrio, P. Manfredi, and E. Salinelli. Vaccinating behaviour, information, and the dynamics
of SIR vaccine preventable diseases. Theoretical Population Biology, 71(3):301�317, 2007.

[27] J. Dusho�, W. Huang, and C. Castillo-Chavez. Backwards bifurcations and catastrophe in simple
models of fatal diseases. Journal of Mathematical Biology, 36(3):227�248, 1998.

[28] D. J. Earn, P. Rohani, B. M. Bolker, and B. T. Grenfell. A simple model for complex dynamical
transitions in epidemics. Science, 287(5453):667�670, 2000.

[29] R. Elie, E. Hubert, and G. Turinici. Contact rate epidemic control of COVID�19: an equilibrium
view. Mathematical Modelling of Natural Phenomena, 15(35):1�25, 2020.

[30] K. R. Fister, H. Ga�, S. Lenhart, E. Numfor, E. Schaefer, and J. Wang. Optimal control of vaccination
in an age�structured cholera model. In G. Chowell and J. M. Hyman, editors, Mathematical and
Statistical Modeling for Emerging and Re-emerging Infectious Diseases, pages 221�248. Springer,
Cham, Switzerland, 2016.

[31] S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, C. Whittaker, H. Zhu,
T. Berah, J. W. Eaton, M. Monod, Imperial College COVID�19 Response Team, A. C. Ghani, C. A.
Donnelly, S. M. Riley, M. A. C. Vollmer, N. M. Ferguson, L. C. Okell, and S. Bhatt. Estimating the
e�ects of non�pharmaceutical interventions on COVID�19 in Europe. Nature, 584:257�261, 2020.

[32] French Public Health Agency. Données hospitalières relatives á l'èpidèmie de COVID�19.
https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-

de-covid-19/, 2020. (Accessed on April 2021).

[33] M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi, and A. Rinaldo. Spread
and dynamics of the COVID�19 epidemic in Italy: E�ects of emergency containment measures.
Proceedings of the National Academy of Sciences, 117(19):10484�10491, 2020.

[34] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, and M. Colaneri.
Modelling the COVID�19 epidemic and implementation of population�wide interventions in Italy.
Nature Medicine, 26:855�860, 2020.

[35] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields. Springer, Berlin, 1983.

30

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259324doi: medRxiv preprint 

https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
https://doi.org/10.1101/2021.06.22.21259324
http://creativecommons.org/licenses/by-nc-nd/4.0/


[36] A. B. Gumel, C. C. McCluskey, and J. Watmough. An SVEIR model for assessing potential impact
of an imperfect anti�SARS vaccine. Mathematical Biosciences & Engineering, 3(3):485, 2006.

[37] A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. Van den Driessche, D. Gabrielson,
C. Bowman, M. E. Alexander, S. Ardal, J. Wu, and B. M. Sahai. Modelling strategies for control-
ling SARS outbreaks. Proceedings of the Royal Society of London. Series B: Biological Sciences,
271(1554):2223�2232, 2004.

[38] IPSOS. Global attitudes on a COVID-19 vaccine�Ipsos survey for The World Economic
Forum. https://www.ipsos.com/sites/default/files/ct/news/documents/2020-11/global-

attitudes-on-a-covid-19-vaccine-oct-2020.pdf, 2020. (Accessed on January 2021).

[39] ISS, Istituto Superiore di Sanità, EpiCentro. COVID�19. https://www.epicentro.iss.it/en/

coronavirus/, 2020. (Accessed on April 2021).

[40] Italian Ministry of Health. Covid�19, �rmato il nuovo Dpcm. http://www.salute.gov.it/

portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&menu=

notizie&p=dalministero&id=5119, 2020. (Accessed on March 2021).

[41] Italian Ministry of Health. Dati COVID�19 Italia. https://github.com/pcm-dpc/COVID-19, 2020.
(Accessed on April 2021).

[42] Italian Ministry of Health. Monitoraggio settimanale Covid�19, report 31 agosto 6 settembre.
http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.

jsp?lingua=italiano&id=5053, 2020. (Accessed on April 2021).

[43] A. S. Iyer, F. K. Jones, A. Nodoushani, M. Kelly, M. Becker, D. Slater, R. Mills, E. Teng, M. Kam-
ruzzaman, W. F. Garcia-Beltran, M. Astudillo, D. Yang, T. E. Miller, E. Oliver, S. Fischinger,
C. Atyeo, A. J. Iafrate, S. B. Calderwood, S. A. Lauer, J. Yu, Z. Li, J. Feldman, B. M. Hauser,
T. M. Caradonna, J. A. Branda, S. E. Turbett, R. C. LaRocque, G. Mellon, D. H. Barouch, A. G.
Schmidt, A. S. Azman, G. Alter, E. T. Ryan, J. B. Harris, and R. C. Charles. Persistence and
decay of human antibody responses to the receptor binding domain of SARS�CoV�2 spike protein in
COVID�19 patients. Science Immunology, 5(52), 2020.

[44] A. C. Karlsson, M. Humbert, and M. Buggert. The known unknowns of T cell immunity to COVID�
19. Science Immunology, 5(53), 2020.

[45] M. D. Knoll and C. Wonodi. Oxford�AstraZeneca COVID�19 vaccine e�cacy. The Lancet,
397(10269):72�74, 2021.

[46] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R. M. Eggo, and on behalf
of the Centre for the Mathematical Modelling of Infectious Diseases COVID�19 working group. Early
dynamics of transmission and control of COVID�19: a mathematical modelling study. The Lancet
Infectious Diseases, 20:553�558, 2020.

[47] J. La Salle. Stability by Liapunov's Direct Method with Applications. Academic Press, New York�
London, 1961.

[48] La Stampa. Il vaccino contro il Covid sarà obbligatorio solo in casi estremi. https:

//www.lastampa.it/cronaca/2020/11/22/news/magrini-vaccino-contro-il-covid-l-

obbligo-solo-in-casi-estremi-per-i-sanitari-e-nelle-rsa-1.39570395, 2020. (Accessed
on January 2021).

31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259324doi: medRxiv preprint 

https://www.ipsos.com/sites/default/files/ct/news/documents/2020-11/global-attitudes-on-a-covid-19-vaccine-oct-2020.pdf
https://www.ipsos.com/sites/default/files/ct/news/documents/2020-11/global-attitudes-on-a-covid-19-vaccine-oct-2020.pdf
https://www.epicentro.iss.it/en/coronavirus/
https://www.epicentro.iss.it/en/coronavirus/
http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&menu=notizie&p=dalministero&id=5119
http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&menu=notizie&p=dalministero&id=5119
http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&menu=notizie&p=dalministero&id=5119
https://github.com/pcm-dpc/COVID-19
http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&id=5053
http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioNotizieNuovoCoronavirus.jsp?lingua=italiano&id=5053
https://www.lastampa.it/cronaca/2020/11/22/news/magrini-vaccino-contro-il-covid-l-obbligo-solo-in-casi-estremi-per-i-sanitari-e-nelle-rsa-1.39570395
https://www.lastampa.it/cronaca/2020/11/22/news/magrini-vaccino-contro-il-covid-l-obbligo-solo-in-casi-estremi-per-i-sanitari-e-nelle-rsa-1.39570395
https://www.lastampa.it/cronaca/2020/11/22/news/magrini-vaccino-contro-il-covid-l-obbligo-solo-in-casi-estremi-per-i-sanitari-e-nelle-rsa-1.39570395
https://doi.org/10.1101/2021.06.22.21259324
http://creativecommons.org/licenses/by-nc-nd/4.0/


[49] S. Lee, M. Golinski, and G. Chowell. Modeling optimal age�speci�c vaccination strategies against
pandemic in�uenza. Bulletin of Mathematical Biology, 74(4):958�980, 2012.

[50] X. Liu, J. Huang, C. Li, Y. Zhao, D. Wang, Z. Huang, and K. Yang. The role of seasonality in the
spread of COVID�19 pandemic. Environmental Research, 195:110874, 2021.

[51] R. Löfstedt. Risk Management in Post�Trust Societies. Palgrave Macmillan UK, London, 2005.

[52] D. Y. Logunov, I. V. Dolzhikova, D. V. Shcheblyakov, A. I. Tukhvatulin, O. V. Zubkova, A. S.
Dzharullaeva, A. V. Kovyrshina, N. L. Lubenets, D. M. Grousova, A. S. Erokhova, A. Botikov,
F. Izhaeva, O. Popova, T. Ozharovskaya, I. Esmagambetov, V. D. S. D. S. A. Favorskaya IA,
Zrelkin DI, Y. Simakova, E. Tokarskaya, D. Egorova, M. Shmarov, N. Nikitenko, V. Gushchin,
E. Smolyarchuk, S. Zyryanov, S. Borisevich, B. Naroditsky, A. Gintsburg, and Gam-COVID-Vac
Vaccine Trial Group. Safety and e�cacy of an rAd26 and rAd5 vector�based heterologous prime�
boost COVID�19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The
Lancet, 397(10275):671�681, 2021.

[53] N. MacDonald. Biological Delay Systems: Linear Stability Theory. Cambridge University Press,
Cambridge, 2008.

[54] E. Macron. Adresse aux francais, 24 Novembre 2020. https://www.elysee.fr/emmanuel-macron/
2020/11/24/adresse-aux-francais-24-novembre, 2020. (Accessed on January 2021).

[55] A. C. Magli, A. d'Onofrio, and P. Manfredi. Deteriorated Covid19 control due to delayed lockdown
resulting from strategic interactions between Governments and oppositions. medRxiv, 2020.

[56] P. Manfredi and A. d'Onofrio. Modeling the Interplay Between Human Behavior and the Spread of
Infectious Diseases. Springer, New York, 2013.

[57] MATLAB. Matlab release 2020a. The MathWorks, Inc., Natick, MA, 2020.

[58] L. McIntyre. Post�Truth. MIT Press, Cambridge, 2018.

[59] C. Merow and M. C. Urban. Seasonality and uncertainty in global COVID�19 growth rates. Pro-
ceedings of the National Academy of Sciences, 117(44):27456�27464, 2020.

[60] Z. Mukandavire, F. Nyabadza, N. J. Malunguza, D. F. Cuadros, T. Shiri, and G. Musuka. Quantifying
early COVID�19 outbreak transmission in South Africa and exploring vaccine e�cacy scenarios. PLoS
ONE, 15(7):e0236003, 2020.

[61] J. Murray. Mathematical Biology. Springer, New York, Tokyo, 1989.

[62] S. Neumann-Böhme, N. E. Varghese, I. Sabat, P. P. Barros, W. Brouwer, J. van Exel, J. Schreyögg,
and T. Stargardt. Once we have it, will we use it? A European survey on willingness to be vaccinated
against COVID�19. Journal of Health Economic, 21:977�982, 2020.

[63] C. N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C. R. MacIntyre, M. H. Bonds, and A. B. Gumel.
Mathematical assessment of the impact of non�pharmaceutical interventions on curtailing the 2019
novel coronavirus. Mathematical Biosciences, 325:108364, 2020.

32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259324doi: medRxiv preprint 

https://www.elysee.fr/emmanuel-macron/2020/11/24/adresse-aux-francais-24-novembre
https://www.elysee.fr/emmanuel-macron/2020/11/24/adresse-aux-francais-24-novembre
https://doi.org/10.1101/2021.06.22.21259324
http://creativecommons.org/licenses/by-nc-nd/4.0/


[64] F. P. Polack, S. J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, J. L. Perez,
G. Pérez Marc, E. D. Moreira, C. Zerbini, R. Bailey, K. A. Swanson, S. Roychoudhury, K. Koury,
P. Li, W. V. Kalina, D. Cooper, R. W. Frenck, L. L. Hammitt, Ö. Türeci, H. Nell, A. Schaefer,
S. Ünal, D. B. Tresnan, S. Mather, P. R. Dormitzer, U. Sahin, K. U. Jansen, and W. C. Gruber.
Safety and e�cacy of the BNT162b2 mRNA Covid�19 vaccine. New England Journal of Medicine,
383:2603�2615, 2020.

[65] M. M. Sajadi, P. Habibzadeh, A. Vintzileos, S. Shokouhi, F. Miralles-Wilhelm, and A. Amoroso. Tem-
perature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus
disease 2019 (COVID�19). JAMA Network Open, 3(6):e2011834�e2011834, 2020.

[66] S. Sharma and G. P. Samanta. Analysis of a drinking epidemic model. International Journal of
Dynamics and Control, 3(3):288�305, 2015.

[67] E. Shim. Optimal dengue vaccination strategies of seropositive individuals. Mathematical Biosciences
& Engineering, 16(3):1171�1189, 2019.

[68] M. Supino, A. d'Onofrio, F. Luongo, G. Occhipinti, and A. Dal Co. World governments should protect
their population from COVID�19 pandemic using Italy and Lombardy as precursor. medRxiv, 2020.

[69] The Guardian. Covid�19 vaccine: Boris Johnson says jab `will not be compulsory' but he rejects
`wrong' anti�vaxxers. https://inews.co.uk/news/health/covid-19-vaccine-boris-johnson-

says-jab-will-not-be-compulsory-769861, 2020. (Accessed on January 2021).

[70] P. Van den Driessche and J. Watmough. Reproduction numbers and sub�threshold endemic equilibria
for compartmental models of disease transmission. Mathematical Biosciences, 180(1):29�48, 2002.

[71] A. Wajnberg, F. Amanat, A. Firpo, D. R. Altman, M. J. Bailey, M. Mansour, M. McMahon, P. Meade,
D. R. Mendu, K. Muellers, D. Stadlbauer, K. Stone, S. Strohmeier, V. Simon, J. Aberg, D. L. Reich,
F. Krammer, and C. Cordon-Cardo. Robust neutralizing antibodies to SARS�CoV�2 infection persist
for months. Science, 370(6521):1227�1230, 2020.

[72] Z. Wang, C. T. Bauch, S. Bhattacharyya, A. d'Onofrio, P. Manfredi, M. Perc, N. Perra, M. Salathé,
and D. Zhao. Statistical physics of vaccination. Physics Reports, 664:1�113, 2016.

[73] WHO, World Health Organization. Novel Coronavirus (2019�nCoV). Situation Report�1. 21
January 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/
20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4, 2020. (Accessed on March 2021).

[74] WHO, World Health Organization. Coronavirus disease (COVID�19): How is it transmit-
ted? https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-

it-transmitted, 2021. (Accessed on April 2021).

[75] Worldometer. Reported cases and deaths by country, territory, or conveyance. https://www.

worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?#countries, 2020. (Accessed
on January 2021).

33

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259324doi: medRxiv preprint 

https://inews.co.uk/news/health/covid-19-vaccine-boris-johnson-says-jab-will-not-be-compulsory-769861
https://inews.co.uk/news/health/covid-19-vaccine-boris-johnson-says-jab-will-not-be-compulsory-769861
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4
https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted
https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted
https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?#countries
https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?#countries
https://doi.org/10.1101/2021.06.22.21259324
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	The model
	State variables and the information index
	Modelling transmission
	Description of the balance equations
	The equations

	Qualitative analysis
	Disease–free equilibrium and its stability
	Endemic equilibrium
	Central manifold analysis

	Parametrization
	Initial conditions
	Baseline scenario

	Numerical simulations
	Temporal dynamics
	Sensitivity of epidemiological indicators to critical parameters

	The impact of seasonality
	Conclusions
	Alternative proof of Theorem 3

