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Abstract. Many countries have manifested COVID-19 trajectories where extended periods of constant and 

low daily case rate suddenly transition to epidemic waves of considerable severity with no correspondingly 

drastic relaxation in preventive measures. Such solutions are outside the scope of classical epidemiological 

models. Here we construct a deterministic, discrete-time, discrete-population mathematical model which 

can explain these non-classical phenomena. Our key hypothesis is that with partial preventive measures in 

place, viral transmission occurs primarily within small, closed groups of family members and friends, which 

we call clusters. Inter-cluster transmission is infrequent compared to intra-cluster transmission but it is the 

key to determining the course of the epidemic. If inter-cluster transmission is low enough, we see stable 

plateau solutions. Above a cutoff level however, such transmission can destabilize a plateau into a huge 

wave even though its contribution to the population-averaged spreading rate still remains small. We call 

this the cryptogenic instability. We also find that stochastic effects when case counts are very low may result 

in a temporary and artificial suppression of an instability; we call this the critical mass effect. Both these 

phenomena are absent from conventional infectious disease models and militate against the successful 

management of the epidemic. 
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INTRODUCTION 

§1. Plateaus and waves. In many countries, the COVID-19 case trajectories have shown a “plateau” 

or constant and low daily case rate for an extended period. Oftentimes, these plateaus have given way to 

mountains of cases with little or no warning. India is an extreme example, where a second wave of 

abnormally high reproduction number (upto 2·1 in the worst affected cities) arose in April 2021 after 

months of declining daily case counts followed by weeks of steady and very low counts. (The reproduction 

number R is defined as the average number of people to whom one case transmits the disease.) In European 

countries like Germany, Italy and Slovakia, similar even if less dramatic scenes played out earlier in the 

pandemic’s history, while USA went through as many as four waves of epidemics during the past fifteen 

months. Very recently, Japan has been hit by a fourth wave threatening the Olympics while Taiwan has 

started exhibiting its first wave of the disease after more than a year of plateauing at nearly zero level. 

Plateaus are outside the ambit of lumped parameter or compartmental infectious disease models such as 

S-I-R and S-E-I-R. A compartmental model based on delay differential equations (DDE) has recently been 

proposed by our group [1]. This model is more realistic and more versatile than S-E-I-R but a constant case 

rate is still not a generic solution; it occurs only if R equals exactly unity, which happens for specially 

chosen parameter combinations and infection levels. All these models (which we collectively term as 

“classical”) do have second waves corresponding to reopening but a major change in epidemic trajectory 

must necessarily be caused (and hence immediately preceded) by a major relaxation in the level of non-

pharmaceutical interventions (NPI) like mobility restrictions or masking. This was not the situation in 

some countries.  

In May 2020, Thurner et. al. [2] first found a constant case rate as a stable, generic solution of a disease 

transmission model. These authors have considered a network of people in the shape of a circle with every 

lattice point being connected to its nearest neighbours. They have then connected some of the nodes to 

additional nodes, located far away on the circle. This accounts for the fact that people tend to interact 

frequently with their families and much less frequently with outsiders. In other words, Thurner et. al. differ 

from classical models by accounting for heterogeneity in people’s interaction patterns. They find that, if 

the average degree D of the network remains below a critical value then the infection spreads at a constant 

rate before dying out, while if the average degree exceeds this value then the epidemiological curve 

resembles the bell-shaped or wave solution of ODE models. An approximate expression has been 

calculated for the critical degree Dc in terms of the transmission probability and the transmissibility interval. 

While Ref. [2] appears to be a significant advance relative to the classical models, there are some overlaps 

with these models as well. For example, the nearest-neighbour links are interpreted as family ties while the 

long-distance bridge links are interpreted as “social contacts outside the local community (family)”. Thus, 

the constant-rate solution appears to hold only when there is a hard lockdown. Indeed, in a note added to 

the Supplement during proof (July 2020, by which time second waves had broken out in a lot of places), 

the authors mention that “many countries have (at least partially) taken back many NPIs, resulting in a 

(seemingly exponential) resurgence of daily infections ….. [which] is maybe not yet the ‘second wave’ but 

just the logical [fallout of the] reduction of social distancing and [consequent] increase of D, d 

[transmissibility duration] and ε [probability of a bridging link existing between two distant nodes]”. 

Indeed, the statement that in the network model, the epidemic is contained below a certain average network 

degree Dc and evolves naturally above it is substantively the same as the statement that in the DDE model 

[1], the epidemic is contained below a critical interaction rate (for which R0 = 1) and evolves naturally above 

it. The nature of the containment solution is different in the two models (constant rate in Ref. [2] vis-a-vis 

decaying rate in Ref. [1]), but containment and wave solutions are still separated by a change in a 

population-averaged parameter.  

In February 2021, Tkachenko et. al. [3] conjectured that the plateaus and waves are generated as a result 

of temporal heterogeneity in interaction rate, rather than inherent heterogeneity in our interaction patterns. 

Temporal variation refers to the fact that a person will have a high interaction rate with others on some 

days, for example when s/he attends a party, and a lower interaction rate on other days, for example when 
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s/he stays at home. To some degree at least, we would expect such fluctuations to get smoothed out when 

the case counts are high, and indeed their final model equation is quite similar to the conventional S-I-R 

model. Nielsen et. al. [4] have focussed on heterogeneity in people’s infectivity i.e. superspreading 

incidents. Very recently, Manrubia and Zanette [5] have made the contention that plateau solutions (R = 

1) are primarily the result of individuals’ risk-averse behaviour rather than a heterogeneity effect. 

We believe that heterogeneity in interaction patterns remains the most plausible hypothesis behind the non-

classical epidemic trajectories. After all, most or all people socialize within narrow groups of family and 

friends – interactions outside this set are considerably rare. Therefore, we build a transmission model which 

takes this as the starting premise. Our model is ultimately deterministic although it is based on probabilistic 

concepts. We find that it is capable of predicting plateaus and waves as well as unexpected transitions from 

the first state to the second. 

---- o ---- 

 

MATHEMATICAL MODEL 

§2. No vaccination. Before starting the model development, we mention that in this entire Article, 

we shall ignore vaccination. This is because COVID-19 plateaus and waves occurred in most countries 

when zero or small fractions of their populations were vaccinated (Chile, using vaccines made in a certain 

country, is a notable exception). American and European plateaus and waves occurred in mid-late 2020 

when there were no vaccines against the disease. India’s second wave started when only about 10 percent 

of the population had got their first dose. Other countries currently suffering from waves, such as Taiwan 

and Japan, are also lagging behind on vaccination. Therefore we leave this intervention for a future study. 

§3. Qualitative understanding. It is our observation that in many regions of India and USA, high 

levels of socioeconomic activity could be sustained for weeks on end while cases remained on a plateau – 

restaurants, cinema halls, places of worship as well as public transportation remained open without 

triggering case explosions. Similar phenomena must have occurred in other countries as well. We first 

argue how this is even possible. Masking is literally impossible in eateries, and we are aware that some 

violations have also been occurring in cinema halls, public transportation and other places. We hypothesize 

as follows. Firstly, the vast majority of symptomatic people go into quarantine or at least refrain from 

interacting in society, if for no other reason than that public sneezing or coughing makes one an immediate 

target of suspicion. Hence, almost all transmissions occur from asymptomatic or latent (pre-symptomatic) 

cases via speech and breathing. Masks render these mechanisms almost incapable of transmission [6], so 

the majority of spreading occurs in unmasked settings. Even there however, breathing and speech carry the 

infected droplets over a relatively short distance (speech farther than breathing). Thus, if the virus is present 

in a restaurant, it is very much likelier to spread among people seated at the same table than to jump from 

one table to the next (or to saturate the restaurant and infect everyone inside). Similarly, mask fault in a 

cinema hall might also infect only the nearest neighbour and not someone seated far away. In summary, 

our first hypothesis is that the overwhelming majority of transmissions occurs during close, unmasked 

interactions. 

It is logical that a person will indulge in such interactions only with his/her family members and friends 

and not with strangers. Thus, even if A goes to 20 restaurants in two months, it is likely that her dining 

companions on all these occasions will be a subset of B, C, D and E. Similarly, B’s companions might be 

A and D as well as F while C’s might be all the previous plus G. Our second hypothesis comes now. We 

posit that, starting from a random person, if we keep extending these links of close contacts, then it is 

extremely unlikely that the chain will continue all the way upto the country’s last citizen. On the contrary, 

sooner rather than later, the links will cover no new person and the cycle will close. This will give us a 

group of social contacts with dense links amongst each other and no (or very few) links outside. We call 

this group a cluster. At a small office for example, all employees might belong to a single cluster; at a large 

company, there will be multiple clusters with the people in each cluster possibly belonging to the same rank 

or payscale, or sharing the same office space. By the nature of clusters, when the virus enters a cluster it 
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will spread rapidly among its members, but will find it much more difficult to infect someone outside the 

cluster.  

The two hypotheses – primary spreading from close interactions and these being confined within clusters 

– can explain why it is possible to have low disease prevalence even with public transport, entertainment 

venues and places of worship open at full tilt. At recreation venues we interact primarily within our cluster 

and facilitate intra-cluster transmission. As regards places of worship, we go there either alone or with 

family, pray and come back. Inside a holy place we do not spend time socializing with all and sundry. 

Finally, in public transit as well, we by and large keep to ourselves, or interact with members of our cluster 

if we are going together to an entertainment venue. Thus, case counts remain low all through these 

activities as the virus remains primarily confined within a few clusters. 

Of course, all transmission cannot be occurring inside the clusters; if that were the case then the epidemic 

would not perpetuate. So we must now examine the mechanisms by which the disease can jump from 

cluster to cluster. There are two ways this can happen. The first is unintentional – during necessary activities 

like shopping or working, an unknowing case’s mask might happen to slip off just when a potential target 

is close by, or we may touch a contaminated surface/object and then our face, or the virus might just jump 

across a pair of masks etc. The second mechanism of inter-cluster jumping is social occasions where we 

deliberately interact outside of our cluster. For example, the invitees at a marriage gathering might include 

multiple families who hate each other and normally do not meet (and even less so in pandemic times). 

Similarly, a birthday bash hosted by a well-to-do IT sector company employee might feature half the staff 

in attendance, an occurrence which would not take place at a casual entertainment venue. At events like 

this, adherence to COVID-appropriate behaviour tends to be low; worse still, social norms require us to 

actively interact with many people present at the gathering and not just with our family members or close 

friends. Thus, a case present at such a gathering will likely transmit the disease to several others not 

belonging to his/her cluster. 

For the purposes of model-building we need to distinguish between household transmission and 

transmission among friends. In the former situation, due to constant contact, a case will spread the disease 

to all household members as soon as s/he turns infectious. In the latter situation however, it will take a 

finite time to fully infect a group – for example, the at large case A might dine with B and C on one day 

and infect them both, C will fall sick next week and go to a movie with E so on; it is unlikely that everyone 

from A to Z will be simultaneously present at an eatery or movie theatre and get infected in one fell swoop. 

To achieve this distinction, we must make two assumptions. Firstly, we decouple households and clusters, 

taking the latter to include only those close contacts with whom a person does not live together. Secondly, 

we assume that, per household, there is exactly one member who is socially active i.e. part of a cluster, 

while the other members are completely cautious. For example, in a family where a young working woman 

lives with her retired parents, the latter two might not step out of the house during the pandemic while the 

woman goes to work and does the shopping etc. A cautious family member can also be a person who is 

not socially inactive but rigorously adheres to COVID-appropriate behaviour all the time. In either case, 

the only way that the cautious person catches corona is if the active person catches it first; the active one 

can catch it through intra- or inter-cluster transmission.  

In view of the above, we build our mathematical model taking into account a four-tiered viral transmission 

process, as follows. 

• Household transmission : As soon as one member of a household contracts the virus, all others 

immediately follow suit.  

• Cluster transmission : When one member of a cluster gets infected, the others also gradually fall 

sick. The rate at which this happens and the fraction of people in the cluster who contract the 

infection are determined by the properties of the virus and the interaction rate of the cluster members 

among each other. 

• Unintentional cluster transition (UCT) : Note that this is cluster transition and not transmission – a 

jump from one cluster to another. These are events like the accidental mask slippage in a shop 

mentioned above. In this category we also include the events where a person makes a new 
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acquaintance outside his/her cluster and starts socializing with him/her – we expect that events of 

this kind will be rare overall. 

• Socializing external to cluster (SEC) : These are events like the wedding or party mentioned above. 

Organized gatherings where people from different clusters interact with each other also belong to this 

category. 

Intuition says that SEC events might be very dangerous from a public health perspective, since they are 

almost designed to facilitate large-scale inter-cluster transmission. We shall now verify this intuition 

through the mathematical model. 

§4. Quantitative model development. Our model treats time to be discrete and measured in days 

i.e. we construct a map rather than a flow. The population is also discrete as in an agent-based model, 

rather than continuous as in an ODE/DDE model. However, our model is ultimately deterministic rather 

than stochastic. Let us consider a city (see later for more clarification) of total population N, all of whom 

are initially susceptible. Let them belong to N1 households where h = N/N1 is the average household size. 

With the assumptions of §3, there are N1 people who belong to social clusters and can contract the virus 

directly; once this happens, each of them transmits to the h − 1 other members of their household (or 

family). Thus we can focus on the disease dynamics only among the N1 socially active people, and add on 

the family cases at the end. The values we have chosen are N = 3,02,400 and h = 3 so that N1 = 1,00,800. 

Our N is chosen to enable a comparison with the results in Ref. [1] where we have used Notional Cities of 

a similar population, while the average household size of three is reasonable. 

In the next step, we divide the N1 socially active people into NC clusters. Here, we assume that all clusters 

have the same size s, so that N1 = sNC. The choice of 1,00,800 for N1 rather than exactly 105 ensures that N1 

is divisible by every number upto 30 except two-digit primes; this enables easy variation of s. The value we 

have gone with is s = 24, so that NC = 4200. To fix the intra-cluster dynamics, we now need some elementary 

characteristics of viral transmission. We assume that the serial interval is 5 days [7,8] i.e. 5 days elapse 

between a primary case and a secondary case’s turning transmissible. We also assume that, once a person 

turns transmissible, s/he spends 3 days at large before recovering. The 3 day transmission interval is an 

average of the weeklong asymptomatic period and the approximately 1 day latent infectious period before 

a symptomatic case seeks quarantine [9]. The assumption of recovery after three days (rather than isolation, 

hospitalization or death) is simply for analytical tractability.  

Our next necessary piece of information is that the basic reproduction number R0 of COVID-19 is 

somewhere between 2 and 5, depending on the viral strain etc [10,11]. This means that in the absence of 

interventions, one person spreads the disease to between 2 and 5 people. Assuming a value of 

approximately 2·5 for intra-cluster transmission, we find that 5 days (serial interval) after the first person is 

exposed, s/he infects 2·5 others, 5 more days later these infect 6·25 further people and so on. The 

reproduction number then starts decreasing rapidly as more and more people in the cluster turn immune. 

Considerations like this (together with a fair amount of heuristics) cause us to define the cluster sequence 

as [1; 3; 6; 7; 5; 1]. This means that 5 days after the virus is seeded into a particular cluster (i.e. the first 

person in the cluster becomes exposed), that cluster develops one case, 10 days after seeding it develops 3 

more cases, 15 days after seeding it develops 6 additional cases and so on until 30 days after seeding it 

develops its final case. One person among the 24 is left immune. We discuss the effects of changing the 

cluster sequence in §13. 

The existence of a cluster sequence means that we can define each cluster to be in one of two states : 

susceptible if all members of the cluster are susceptible, and insusceptible as soon as the first member has 

been exposed, and for ever after (we assume permanent immunity, which seems to be valid so far [12,13]). 

During the 30 days it takes for the 23 cluster members to be infected, we treat the cluster as a whole to be 

insusceptible – we assume that any further exposure of cluster members during this period does not change 

the intra-cluster infection pattern. 

At this point we can introduce the variables in the model. We count a person as a case on the day that s/he 

first turns transmissible. Let yi be the cumulative number of cases occurred upto and excluding day #i and 
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let Δyi be the additional cases occurring on day #i itself, so that yi+1 = yi + Δyi. Similarly, let zi be the 

cumulative and Δzi the daily count of clusters which are seeded upto and on day #i respectively. y and z 

are obviously not independent; by definition of the cluster sequence if Δz100 = 1 then Δy105 gets a contribution 

of 1, Δy110 gets a contribution of 3, Δy115 gets a contribution of 6 and so on. We say “gets a contribution of” 

rather than “equals” because Δy105 will also carry contributions from clusters which have been seeded on 

days #75, #80, #85, #90, #95 and #100. In addition we have the near-dummy variables for family cases fi 

and Δfi; since every active member will infect his/her two household members as soon as s/he turns 

infectious, and since the incubation period is 5 days, we have Δfi+5 = 2Δyi and fi+5 = 2yi. 

Having accounted for the first two transmission mechanisms of §3, we now start work on the latter two i.e. 

the UCT and SEC modes. Our ultimate question is : given the case histories upto day #i and the interaction 

patterns for UCT and SEC, what is the number of susceptible clusters which get seeded on day #i ? This 

number will enable us to move one step forward in time i.e. from day #i to day #i+1. Since the phenomena 

involved are probabilistic but the model is deterministic, we must calculate the expectation value. We now 

demonstrate how to do this. Our baseline premises are : (a) on any given day all the N1 active people are 

equally likely to participate in UCT and SEC events, and (b) at both these events, clusters are mixed at 

random i.e. a case from cluster #101 is as likely to infect a member of cluster #102 as a member of cluster 

#2302. Assumption (b) is the equivalent of homogeneous mixing in classical epidemiological models but 

at the cluster rather than the individual level. As an aside, these assumptions ensure that the most realistic 

domain of validity of our model is a city but not a larger region, such as a state or country (or the world). 

A marriage function or birthday bash held in one city is likely to have maximum guests from the same city, 

and few if any guests from another city in the same state, another state in the same country, or another 

country. Aside over, since all cases remain at large for three days, the total number of at large cases present 

on day #i is α = Δyi−1 + Δyi−2 + Δyi−3. SEC transmission is conceptually more concrete than UCT so we take 

that first. Let nS (constant in time) be the total number of people who participate in SEC events every day 

– it does not matter whether it is a single gathering of size nS people or fifty separate gatherings adding up 

to total nS people which are taking place. We assume that if everyone is susceptible then one case attending 

an SEC event spreads the disease to mS people at the event. We use the value mS = 2. 

The number of cases attending SEC events on day #i can be anything between 0 and α. The probability 

that the number is exactly k is 

 

_1
_

_1
_

C  C
( )

C

N
k n S k

N
n S

P k
α α−

−=    , (1) 

where the combination function nCr denotes the number of ways of selecting a team of r players from a 

pool of size n, and the underscores denote subscript when already in a super- or subscript position. The 

numerator in (1) consists of the number of ways of choosing k cases from the total α cases at large multiplied 

by the number of ways of choosing nS − k healthy people from the N1 − α healthy people; the denominator 

is the total number of ways of choosing nS people from N1 people. 

Given that there are k cases participating in SEC events, by the model assumptions they transmit an 

infective dose of virus to β = 2k people (we say “transmit an infective dose” rather than “transmit the 

disease” since the recipient of the viral dose contracts the infection if and only if s/he is susceptible). The 

next question is, how many distinct clusters do these β people belong to ? This is relevant because if five 

recipients of infective viral dose belong to five different susceptible clusters then there will be five cluster 

sequences manifest over the next 30 days while if all the recipients happen to belong to the same susceptible 

cluster then (by the model assumptions) there will be only one cluster sequence manifest during this period. 

The possible number of clusters can range from between / 24β    (smallest integer greater than or equal to 

β/24) and β, and we must ask what is the probability that the β people belong to exactly b clusters. With 

one caveat, this problem is identical to the following problem : there are NC boxes and β balls; if any ball 

can go into any box, what is the probability that exactly b boxes contain at least one ball ? The caveat is 

that in the balls and boxes problem, a single box might contain all the balls while in the cluster problem, 

one cluster cannot contain more than 24 people. 
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We ignore the caveat for the following reason : in a typical situation, NC >> β,b and there will be a very 

large probability that β people will belong to β or nearly β clusters. The spurious occurrences which we will 

pick up by ignoring the caveat (β people belonging to less than / 24β    clusters) will be extremely 

improbable anyway and the convenience gained will amply recompense the losses incurred. The caveat 

surmounted, the balls and boxes problem happens to be solvable in closed form. The numerator of the 

probability must be the number of ways of putting β balls into exactly b boxes (b ≤ β), while the denominator 

must include all possible ways of putting the balls into the boxes. For the numerator, we first select b boxes 

among the NC ones, which can be done in N_CCb ways. Given the box selection, we must find the number 

of ways to express β as a sum of b natural numbers, including different orderings – this is the restricted 

composition function ( ),p b β . The composition and not the partition function p(b,β) is relevant for the 

following reason : suppose we have 10 boxes in total and want to distribute 5 balls among 3 boxes, and 

suppose we have already selected the boxes number 2, 4 and 7. Then, it makes a big difference whether 

there are three balls in box 4 and one each in boxes 2 and 7 or three balls in box 2 and one each in boxes 4 

and 7. The composition function ( )3,5p  treats 3+1+1 as different from 1+3+1 and accounts for this 

difference while the partition p(3,5) treats the two as identical and fails to account for it. 

The composition ( ),p b β  actually has a simple analytical formula unlike the partition. We can view a 

composition of β into b parts as introducing b −1 slats in between β beads arranged in a row on an abacus. 

So long as there is maximum one slat between two beads and there are no slats to the left or right of the 

row as a whole, the slats split the beads into exactly b parts – each different arrangement of slats corresponds 

to a different way of writing β as a sum of b numbers. In total, there are β −1 gaps between the beads which 

need to be filled by b −1 slats; the number of ways of doing this is β−1Cb−1. Thus, ( ) 1
1, Cbp b ββ −

−= .  

To calculate the denominator of the balls and boxes probability, we imagine the NC boxes lying in a row 

and focus on the walls separating one box from the next. The external walls of the leftmost and rightmost 

box must remain intact; the remaining NC −1 walls plus the β balls can be arranged in a line in any order 

whatsoever. For this, among the total NC −1+β positions which can be filled by either ball or wall, select β 

to fill with balls; the remainder automatically get filled with walls. The number of ways of doing this 

selection is N_C−1+βCβ. Putting all this together, and switching back from balls and boxes to viral recipients 

and clusters, the probability that β recipients belong to b clusters is 

 ( )
_ 1

1
_ 1

C  C
|

C

N C
b b

N C
P b

β

β
β

β
−

−
− +

=    . (2) 

 

There is one more conditional probability to be taken care of. We know that b clusters are infected at SEC 

events, but how many of them are actually susceptible ? As the disease progresses, a higher and higher 

number of the b clusters will actually be insusceptible ones. On day #i there are zi insusceptible clusters and 

NC − zi susceptible ones. The probability that among b randomly selected clusters, exactly j are susceptible 

is calculated just like P (k) in (1); we have 

 ( )
_ _ _

_

C  C
|

C

N C z i z i
j b j

N C
b

P j b

−
−

=    , (3) 

and all the conditional probabilities are on the table. 

Now, the quantity of interest is the expectation value of the number of new susceptible clusters seeded on 

day #i. This can be calculated as  

 ( ) ( )S i

j

E z jP j =     , 
(4) 

where the subscript S reminds us that this is the expected number of clusters seeded during SEC events and 

P (j) is the total probability that j susceptible clusters are seeded on day #i. So far we have the partial 

probabilities, • conditional P (j|b) : given that an infective dose of virus is introduced into b clusters, the 
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probability that j of them are susceptible, • conditional P (b|β) [or equivalently P (b|k) since β = 2k] : given 

that 2k people receive infective viral doses, the probability that they belong to exactly b clusters, and 

• absolute P (k) : the probability that k cases are actually participating in SEC events on the day in question. 

Thus, given a pair k,b the probability of j susceptible clusters’ being seeded is P (j|k,b) = P (k) P (b|k) P (j|b). 

The total probability P (j) will be this summed over all possible k and b. k runs from 1 to a maximum of α 

while b runs from 1 to a maximum of β. Thus we have 

 
1 1

_ _ __1 _ 1
_ 1

_1 _ 1 _
1 1_

( ) ( ) ( | ) ( | )

C  CC  C C  C

C C C

k b

N C z i z iN N C
j b jk n S k b b

N N C N C
k bn S b

P j P k P b k P j b
βα

α α ββα

β
β

= =

−− −
−− −

− +
= =

 
=  

 

 
=  

 
 

 

 

   . (5) 

Now, we must implement the sum (4). For each b, j can run from 1 to b and we can pull the summation 

over j inside the second of the two sums in the above right hand side. Doing so gives us the expectation 

value 

 ( )
_ _ __1 _ 1

_ 1
_1 _ 1 _

1 1 1_

C  CC  C C  C

C C C

N C z i z iN N C b
j b jk n S k b b

S i N N C N C
k b jn S b

E z j
α α ββα

β
β

−− −
−− −

− +
= = =

  
 =   

    
      , (6) 

and the contribution of SEC events has been determined. 

In a similar manner, we can calculate the contribution of UCT events to inter-cluster spread. Let nU be the 

number of people participating in UCT events every day – these are the people who visit crowded markets, 

travel on crowded buses and trains etc. Let a case present at an UCT event transmit an infective dose of 

virus to mU targets. Unlike for SEC, we expect that on the average mU will be less than unity, in which case 

we can also interpret mU as the probability PU that a case successfully transmits an infective dose to a target 

at an UCT event. Since this probability is a parameter present in classical epidemic models as well, we use 

PU rather than mU. However, we treat it just like mS, and keep open the possibility that the parameter value 

might exceed unity (in which case mU is the only interpretation which makes sense). Then, we can repeat 

the argument for the SEC contribution. Given that there are k cases at large on day #i, the expected number 

of people who receive an infective dose is kPU. This is the equivalent of β, with one difference; while 

β = 2k was an integer by definition, kPU will in general not be one, and the entire calculation is cast in terms 

of integers. To tackle this, we introduce the roundoff function. In this function, we define γ to be the integer 

nearest to kPU; since this can cause accumulating errors with increasing i, we also retain the difference 

between γ and kPU and keep incrementing it with every successive i. When this difference exceeds +1 or 

−1, we include the correction to γ. This ensures that rounding errors do not accumulate in time. Roundoff 

apart, everything else is the same. Given that γ people have received an infective dose, we can calculate the 

probability that they belong to b different clusters and then that j of them are susceptible, and arrive at 

 ( )
_ _ __1 _ 1

_ 1
_1 _ 1 _

1 1 1_

C  CC  C C  C

C C C

N C z i z iN N C b
j b jk n U k b b

U i N N C N C
k b jn U b

E z j
α α γγα

γ
γ

−− −
−− −

− +
= = =

  
 =   

    
      . (7) 

 

The expected total number of susceptible clusters seeded through SEC and UCT events is  

 ( ) ( ) ( )i S i U iE z E z E z =  +     . (8) 

Since this will in general be a fraction, we again use the rounding off procedure described above, 

approximating it to the nearest integer and retaining, adding and correcting the error. Thus a roundoff on 

(8) gives Δzi. At once we can implement Δzi times the cluster sequence over the next 30 days. Finally, we 

do yi+1 = yi + Δyi and zi+1 = zi + Δzi to complete one iteration of the map and move from day #i to day #i+1. 

This is the detailed procedure which we follow; we now present it in the form of the algorithm which the 

computer is made to run. 
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§5. The Algorithm. For those who skipped §4, we quickly recall that our model is deterministic but 

discrete in time as well as in population. We recapitulate the variables and parameters and their definitions 

in the below Table; we also give the parameter values corresponding to a default or baseline solution. 

Variable Significance 

yi Cumulative number of socially active cases upto and excluding day #i 

Δyi Number of new socially active cases cropping up on day #i 

zi Cumulative number of insusceptible clusters upto and excluding day #i 

Δzi Number of new clusters turning insusceptible on day #i 

fi Cumulative number of cautious household cases upto and excluding day #i 

Δfi Number of new cautious household cases cropping up on day #i 

 

Parameter Significance Default value 

N Total population 3,02,400 (const.) 

h Household size 3 (const.) 

N1 Socially active population 1,00,800 (const.) 

NC Number of clusters 4200 (const.) 

s Size of the cluster 24 (const.) 

v Cluster sequence [1; 3; 6; 7; 5; 1] (const.) 

T Serial interval 5 days (const.) 

nU Number of people participating 

daily in UCT events 

10,000 

PU Probability of transmission in a 

UCT event 

0·15 

nS Number of people participating 

daily in SEC events 

0 

mS Number of people infected by 

one case at a SEC event 

2 (const.) 

Table 1 : Variables and parameters in the model. By “const.” we mean that the parameter value is kept unchanged in 

all simulation runs in this Article. 

 

The default initial condition is that eight clusters are seeded on the first day. We are now ready to present 

the algorithm itself. 
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Subroutine roundoff : bi = roundoff(ai) 
Initialization 

Step 1 Define total_err=0 
During main loop over i 

Step 1 if ai-floor(ai)<1/2 
    bi = ai 
else 
    bi = ai+1 

Step 2 err_i = ai-bi 
    total_err = total_err+err_i 

Step 3 if total_err>1 
    bi = bi+1 
    total_err = total_err-1  
else if total_err<-1 
    bi = bi-1 
    total_err = total_err+1 

Main Routine 
Starting steps 

Step 1 Allocate space for variables, setting yi = Δyi = zi = Δzi = 0 for all i 
    Set parameter values including kmax 

Step 2 Set initial conditions (nonzero Δyi, Δzi for small i) to seed the system 
Primary loop over i 

Step 1 Define α = Δyi-1+Δyi-2+Δyi-3 
    if α = 0 (beyond the seeding phase) 
        break loop 
    Define kceil = min(α, kmax)  

Step 2 Use (6) to calculate ES 
    Allow sum over k upto kceil 

Step 3 Define γ=roundoff(kPU) for each k 
Step 4 Use (7) to calculate EU 

    Allow sum over k upto kceil 
Step 5 Use (8) to calculate E = E(Δzi) 
Step 6 Define Δzi = roundoff(E) 
Step 7 for h goes from 1 to size of v 

    Define Δyi+5h = Δyi+5h+Δzivh 
Step 8 Define yi+1 = yi+Δyi 

            zi+1 = zi+Δzi 
Final steps 

Step 1 Define fi+5 = 2yi 
            Δfi+5 = 2Δyi 

Step 2 Plot cases vs i 
Algorithm 1 : The actual mathematical model as implemented on the computer. 

 

The parameter kmax in the algorithm does not appear in §4. This is because it is introduced only for the sake 

of computational convenience. The sum over k in (6) and (7) should ideally run all the way upto α. 

However, with nU and nS both being significantly smaller than N1 (typically 1-10 percent), the probability 

that α or nearly α cases will all be participating in UCT or SEC events on the same day will be minuscule. 

Hence, we can define a cutoff kmax above which we shall just treat this probability to be zero, and ignore 

the error. The computational time and effort increase very rapidly with increasing kmax so it is worthwhile 

to choose its value judiciously. For all display results here, we choose kmax = 80. 
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Finally, the expressions (6) and (7) are next to impossible for the computer to handle unless the probabilities 

are inputted in a special manner; we shall describe this in the Appendix. 

---- o ---- 

 

SIMULATION RESULTS 

§6. The default solution. This corresponds to the solution of the model with the default parameter 

values from Table 1. We call these values defaults not because they have been obtained from any data fits 

etc but because variation of each parameter on either side of the default leads to different kinds of interesting 

behaviour. The time trace of the epidemic with these values is below. In all these plots, we shall show the 

cumulative case count as a blue line associated with the right hand y-axis and the daily case rate as grey 

bars associated with the left hand y-axis. 

 

Figure 1 : The default solution. The symbol ‘k’ denotes thousand. 

 

We can see that the epidemic continues for a long time at almost constant daily case rate before eventually 

dying out. This is the plateau solution. 

§7. Variation of PU. Here we present the case trajectories as PU is varied. Keeping all other 

parameters fixed at their default values, we consider three representative values of PU and display the time 

trace of the epidemic in the three panels of the below Figure. We have used the same x- and y-axis scalings 

in all panels so that the contrasts may be visually apparent. 
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Figure 2 : Time traces of the epidemic as PU is varied. The symbol ‘k’ denotes thousand and ‘L’ hundred thousand. 

 

For the lowest value we can see that the rate decreases monotonically starting from approximately the 100th 

day, until the epidemic is eliminated by 250 days. This transitions to the plateau solution at approximately 

PU = 0·135. This plateau is stable upto about PU = 0·165 (this includes the middle panel of Fig. 2), after 
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which it yields to a wave-like solution seen in the bottom panel. The behaviour obtained by increasing nU 

while keeping PU constant is remarkably similar, and we do not repeat the figures here. 

§8. Variation of nS. In this Section, the quantity which we vary is the number nS of people 

participating in SEC events every day. Just as in Fig. 2, we present three plots of case trajectories for 

different values of nS while all other parameters remain at their default values. Again, we use constant 

scalings on the axes across panels, to facilitate visual comparison. The scalings are different from the 

previous Section though. 
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Figure 3 : Time traces of the epidemic as nS is varied. The symbol ‘k’ denotes thousand and ‘L’ hundred thousand. 

 

In the last of the three scenarios, the epidemic progresses to what is conventionally known as herd 

immunity. 
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§9. Effect of initial conditions (IC). The discrete-population nature of the model means that the 

dependence of solutions on initial conditions is also non-trivial. In particular, a sufficiently large seeding 

caseload is required for the epidemic trajectory to be manifest. For example, if the default solution of Fig. 

1 is seeded with four clusters instead of eight, then the epidemic terminates almost immediately instead of 

continuing at constant case rate. A more dramatic example is shown in the below Figure. Here, we choose 

nS = 1000 and stick to the other default parameter values. Extrapolating from Fig. 3, this corresponds to a 

highly dangerous mode of operation and is expected to cause a huge wave. Instead of starting by seeding 

eight clusters however, this time we introduce some numbers of external cases Δyi on days 7, 10 and 13. 

These external cases are not part of any cluster but they participate in UCT and SEC events and spread the 

infection to the local cluster members. The panels of the Figure are titled by the vector [Δy7; Δy10; Δy13]. 

Note that the axis scalings in the three panels this time are NOT the same ! 
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Figure 4 : Time traces of the epidemic as the initial conditions are varied. The symbol ‘k’ denotes thousand and ‘L’ 

hundred thousand. 
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We can see that for the smallest IC, not even one cluster is seeded and the epidemic stops at the imported 

cases. For the intermediate IC, six local clusters are seeded over 50 days before the epidemic runs out of 

steam. For the largest IC, the epidemic proceeds as we would expect it to. At all seeding vectors totalling 

20 cases or more, we found the wave solution; below this threshold, it appeared that the boundaries were 

blurry. For example, the IC [4; 4; 4] actually led to a wave while [6; 6; 6] infected six clusters only. Similarly, 

nine initial cases could seed either zero local cluster or a few, depending on how they were distributed over 

the three days. To some extent, this variation might be the effect of the roundoff routine we are using – we 

shall clarify this in §12. 

As examples of the converse situation where a stable region is seeded with a very high caseload, we consider 

two scenarios in the Figure below. In the top panel, we take the default parameter values and seed it with 

a vector of external cases as above, but we choose this vector to be [120; 120; 120]. In the bottom panel, 

we start from the parameter values of Fig. 4 (default plus nS = 1000) and seed it with the 8 initial clusters of 

Figs. 1-3. One hundred days into the epidemic however, we slash nS to zero to bring all parameters to their 

default values. 

 

Figure 5 : Time traces of the epidemic to demonstrate additional seeding-related effects. In the bottom panel the red 

line at day #100 indicates the abrupt reduction of nS from 1000 to 0. The symbol ‘k’ denotes thousand. 
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In the top panel, the cumulative caseload is higher than in Fig. 1 but the nature of the solution remains 

qualitatively unchanged. In the bottom panel, the cases decrease rapidly after the brakes are hit and the 

epidemic plateaus before petering out. 

---- o ---- 

 

DISCUSSION 

§10. Classical instability. The default plateau, Fig. 1, has first been reported by Thurner et. al. [2]. 

Figure 2 shows the effects of varying PU, the probability that an UCT event actually leads to a transmission 

(or equivalently, the average number of targets to whom one case transmits an infective dose of virus at an 

UCT event). PU is governed by the degree of mask wearing, horizontal separation, hand-washing etc. It is 

a parameter which is closely related to classical epidemiological models – in the S-I-R model, it is 

accommodated into the force of infection while in the DDE model [1] it enters as a multiplicative factor in 

the per-case spreading rate (this is defined as m0 = q0P0 where q0 is the interaction rate and P0 the 

transmission probability). It is expected that a lower PU will lead to a better outcome and vice versa, and 

Fig. 2 shows that this is indeed the case. Upto this point, our model agrees fully with classical models. 

The first point of difference also comes up in Fig. 2. For, while at PU = 0·130 the epidemic dies down in 

time after an initial phase of constant rate (probably caused by the strong seeding), at PU = 0·160 the 

epidemic plateaus, just as it did with PU = 0·150. Thus, the constant solution is actually valid for a range of 

PU instead of just one value of PU as happens in a classical model (the special value corresponding to 

R0 = 1). At sufficiently high PU however, the constant solution is no longer seen, and is replaced by a wave 

solution. As we have already mentioned, the constant remains valid in the approximate range PU belongs 

to [0·135, 0·165]. We shall say that PU < 0·135 corresponds to a super-stable region of parameter space, 

0·135 < PU < 0·165 to a stable region of parameter space, and PU > 0·165 to an unstable region of parameter 

space. Here, the usage of the words super-stable, stable and unstable is somewhat different from 

conventional dynamical systems theory, but this should not cause confusion. Within the stable range, the 

value of the constant rate and the duration of the epidemic both increase with increasing PU. In the unstable 

region, an increase in PU causes the wave height to increase and the duration to decrease, in such a manner 

as to increase the cumulative caseload. This conclusion again agrees with the DDE model [1] and other 

classical models. 

Note also that super-stable, stable and unstable regions of parameter space are all defined with respect to 

the prior infection level; for example, a parameter set which is unstable for fully susceptible population 

might be stable for 25 percent initial infection level and super-stable for 50 percent infection level. Thus, in 

the middle panel of Fig. 2, the mode of operation changes from stable to super-stable at approximately 800 

days while in the bottom panel, the operation changes from unstable to stable/ super-stable at 

approximately 400 days (in the classical model, we say that R decreases across unity at this point). 

Practically, the existence of a constant solution over the entire stable range of parameter values complicates 

the epidemic management process as it implies that, seeing a linear solution in reality, we are not aware of 

how close we are to an instability. However, even after passing the instability, the system behaviour with 

increasing PU remains tractable – a small increase in PU causes only a gradual increase in case rate, which 

gives the authorities enough time to recognize the instability and reintroduce a higher level of NPI. This 

feature is again shared with the DDE model, where a small increase in R across the critical value of 1 

causes a small increase in the case rate. Thus, Figs. 1-2 add no substantively new information beyond what 

can already be obtained from Refs. [1] and [2].  

§11. Cryptogenic instability. The instability in Fig. 3 however has no classical counterpart. We can 

see that even a small nS of 100 can destabilize the plateau into a very broad and shallow wave – the 

cumulative caseload in Fig. 3-top is about six times higher than in Fig. 1. As nS is further increased, the 

height and speed of the wave increase dramatically. What makes this instability even more surprising is 

that from the perspective of classical epidemiological models there is hardly any change at all in the 
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interaction rate between the default solution and the three panels of Fig. 3. In these models, there is only a 

population-averaged spreading rate which is proportional to the average interaction or contact rate [14]. 

Let us calculate the average spreading rate for the situations here, when everyone is susceptible. In the 

default solution with no SEC events, each socially active case spreads the disease to 2 householders and 

approximately 2·5 cluster members (recall that the cluster sequence of [1; 3; 6; 7; 5; 1] is based on a very 

rough intra-cluster R0 of 2·5). In addition, this case participates in UCT on average once every 30 days 

(since nU/N is approximately 30) and spreads to an average of 0·15 person there. Thus, during three days 

(the transmissibility period as per our model), the case further spreads the disease to 0·15×(3/30) = 0·015 

persons via UCT. Adding these two contributions, we can say that every socially active case spreads the 

disease to 4·515 persons or, more realistically, 4·5 persons. Since 1 in 3 cases are socially active and the 

others don’t spread at all, on average one case spreads the disease to 1·5 persons. (This is already a surprise 

since a classical R0 = 1·5 makes us expect a full-blown epidemic and not a constant crawl. But there is more 

to follow.) Dividing by the transmissibility duration gives us an average spreading rate of 0·5 person per 

day. 

Now, consider the situation when nS people participate in SEC events. By definition, each case present at 

these gatherings spreads the disease to 2 people, so the population-averaged spreading rate for SEC events 

is 2(nS/N) per day. For the three panels of Fig. 3, this works out to 0·00067, 0·0033 and 0·01 respectively. 

These increments are negligible relative to the 0·5 person per day contribution of household and intra-

cluster (and UCT) transmission events. Classically, since the contact rate is proportional to the spreading 

rate, the SEC events add a negligible contribution to the contact rate. There is no way in which a 2 percent 

increase in contact rate can result in Fig. 1 being transformed into Fig. 3-bot. Hence, this instability does 

not exist in classical models and we call it cryptogenic instability. 

Cryptogenic instability is dangerous from the viewpoint of epidemic management for two reasons. Firstly, 

unless we are aware of its existence, there is no reason to suspect that trips to restaurants and cinema halls 

constitute COVID-appropriate behaviour while attendance at wedding parties and birthday bashes does 

not. Secondly, unlike the classical instability where a small breach causes a small case growth, even a small 

breach here can cause a huge growth. By the time the authorities become aware of the danger and reimpose 

restrictions, the wave will already have overwhelmed healthcare systems. 

The stark difference from classical formulations arises because in our model, the vast majority of a person’s 

interactions are confined within a small group of people (household and cluster) while the classical models 

assume that any person’s interactions are randomly and uniformly distributed among the entire population 

(this assumption is called homogeneous mixing). Thus, in our model, clusters start off explosively at 

R0 = 2·5, but they quickly turn ‘herd-immune’ and confine the bulk of the infection within themselves. In 

classical models, an outbreak with R0 = 2·5 can subside only after the entire population is herd-immune i.e. 

when nearly the entire region has been infected. The heterogeneity in interaction structure existing in the 

real world has been recognized by prior authors as well [15]. 

§12. Critical mass effect. Figure 4 shows yet another phenomenon which is absent in classical 

epidemiological models. In these models, when the parameters are chosen to generate an instability (for 

example, in the DDE model [1] if the spreading rate m0 is taken above the critical value), even the smallest 

non-zero IC is sufficient to set off a wave of disease. Since the early growth is exponential, it hardly matters 

whether the IC features 100 cases or 1 case or 0·01 case (this latter being perfectly legitimate in a continuous 

model) – a small seeding can at most account for a delay in the peak by a couple of doubling times. Here 

however we see a huge difference. The parameters in Fig. 4 are chosen to lie in the highly unstable region, 

as the bottom panel demonstrates. Even so, it is possible for the outbreak to stop at just the seeding cases 

(top panel) or at the seeding cases plus a handful of clusters (middle panel).  

We have already mentioned an anomaly regarding the ICs [4; 4; 4] vis-a-vis [6; 6; 6]. We believe that this 

is due to errors accumulated in the roundoff process – a lucky combination of values might infect a whole 

cluster and terminate the run while an unlucky combination might keep alive a fractional cluster which 

eventually adds up and perpetuates the epidemic. The presence of a discrepancy warrants a detailed 
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analysis of the IC to verify that the effects shown in Fig. 4 are not spurious. There are two steps where 

rounding off takes place – once when calculating γ as rounded off kPU and again when calculating the 

expectation value E(Δzi). For really small numbers of cases, the concepts of roundoff or expectation value 

do not have too much meaning. A more relevant question is : given that there are α cases at large today, 

what is the probability that the virus is introduced into exactly 0, 1, 2 etc new clusters ? Since we are dealing 

with the start of the outbreak, we assume that all clusters are susceptible. 

The bulk of the calculational framework we have already developed in §4; a few extras needed to be taken 

care of. First is the probability that there are zero infected clusters – this eventuality was not relevant for 

calculating the expectation value as it would have had a null contribution. At SEC events, each case 

transmits to mS = 2 people by definition, so zero transmission can occur if and only if zero cases are present 

at the events. The probability of this happening is 

 

_1
_

SEC 0 _1
_

C

C

N
n S

N
n S

P
α−

= =    . (9) 

The calculation for PUCT=0 has one difference; while successful transmission to two people at SEC events is 

a certainty, transmission at UCT events is probabilistic with a chance of PU. From now onwards, we treat 

PU as a genuine probability and not as an averaged quantity equivalent to mS, i.e. we assume that at each 

UCT event, a case transmits the disease to exactly one person with probability PU and to zero person 

otherwise. Consequently, for PUCT=0, we must take into account not only the situation where there are no 

at large cases attending UCT events but also where there are k such cases and just none of them happen to 

transmit. The probability of there being k cases participating in UCT events has already been calculated in 

§4; the probability that none transmit is (1 − PU)k. The probability of k = 0 is the exact equivalent of (9); 

taking this term and adding all the terms for k going from 1 to α yields 

 ( )
_1 _1

_ _
UCT 0 _1 _1

1_ _

C C  C
1

C C

N N
kn U k n U k

UN N
kn U n U

P P
α α αα− −

−
=

=

= + −    . (10) 

We now focus on infection of non-zero numbers of clusters. 

The probability that SEC events infect exactly b clusters has already been calculated as part of (6); the 

expression is 

 

SEC

_1 _ 2 1
_ 1

_1 _ 1 2
1 _ 2

( ) ( | )
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b
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k n S k b b
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α αα

=

− −
− −

− +
=

=

 
=  

 




   . (11) 

The probability that UCT events infect b clusters consists of three sub-probabilities, • that there are k cases 

at large, • that these k cases infect j new people with j going from 1 to k, and • that these j infectees belong 

to b clusters. The first and third of these probabilities have already been calculated in §4; the second is 

identical to the probability that k tosses of a biased coin with probability PU of heads result in j heads. This 

is ( )C 1
k jk j

j u UP P
−

− ; to obtain PUCT=b we must (as usual) multiply the sub-probabilities and sum over both 

k and j getting 
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= −  
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     . (12) 

 

It is now a simple matter to compute the probability that α at large cases infect a total of b clusters. For b 

taking the values 0, 1 and 2 we have 

 0 SEC 0 UCT 0bP P P= = ==    , (13a) 

 1 SEC 1 UCT 0 SEC 0 UCT 1bP P P P P= = = = == +    , (13b) 

 2 SEC 2 UCT 0 SEC 1 UCT 1 SEC 0 UCT 2bP P P P P P P= = = = = = == + +    . (13c) 
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In the below Figure, we plot these probabilities as a function of α for the latter taking the values from 1 to 

100. We use the parameter values of Fig. 4. We also plot 1 − Pb=0 − Pb=1 − Pb=2, which is the probability that 

three or more clusters are infected. 

 

Figure 6 : Probability of different number of clusters’ getting infected on any particular day, given the number of at large 

cases on that day. 

 

This Figure shows that for low α, the likelihood of zero cluster’s being infected is very close to unity. As 

expected, this likelihood decreases as α increases but even at α = 28 the probability of no new infection is 

1/2. Only at α = 51 does zero infection cease to be the most probable outcome. Thus, at low α, 

corresponding to a small external case influx or 1-2 infected clusters, it is indeed quite possible that the 

infection will not advance further in the population. This provides justification for the findings of Fig. 4. 

Thus, even when a city is operating in the unstable region of parameter space, it needs a small but finite 

minimum number of initial cases to set the wave off. By analogy with nuclear reaction theory where a 

minimum quantity of fissile material is required to initiate the chain reaction, we call the seeding threshold 

the critical mass. From the viewpoint of epidemic management, the existence of critical mass is extremely 

dangerous. Seeded below this minimum, a city which is actually unstable will falsely behave like a super-

stable or stable region, conveying a deceptive impression that the disease is under control when it is actually 

a disaster waiting to happen. 

Figure 5 indicates that the converse of the critical mass phenomenon is not true – when the parameters are 

in the stable region, even a huge seeding cannot turn it unstable. We have checked this result for other 

parameter and seeding combinations as well and found it to be general. This is in agreement with the 

predictions of classical models where stability is independent of initial condition. It is a positive outcome 

from the viewpoint of epidemic management, since it implies that once tight controls are re-established 

following a surge, the presence of an existing huge number of cases will not cause the epidemic to propagate 

by itself like a perpetual motion machine.  

While the general conclusions of Fig. 4 are robust, we do not set too great a store by Fig. 4-bot as an 

indicator of lockdown dynamics, especially if the lockdown is hard. This is because in a lockdown the 

clusters are forcibly broken up – groups of friends do not have the option to meet and socialize at 

entertainment venues. While case counts are expected to remain flat or even increase for a few days 

following lockdown on account of the serial interval and the household transmissions, the sharp increase 

seen in Fig. 4-bot between days #100 and #110 is less realistic as it arises from mechanically implementing 

the cluster sequence on all clusters seeded upto day #99. Similarly, the precipitous decline after day #110 

and the dip near day #130 are also likely to be numerical artefacts. The rather slow decrease in case rate 

from day #150 onwards is however a most robust prediction – when case levels have fallen after a surge, 
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we expect entertainment venues to be reopened which will resume intra-cluster transmission. In this 

regime, a persistent case level might be prevalent for a long time, and vaccination will be the best technique 

to drive it down. 

§13. Limitations and classical limit. Here we discuss the assumptions used in the model. Some 

obvious assumptions are those of constant household and cluster size. A more advanced formulation of 

the model can incorporate a distribution of household and cluster sizes. It can also account for the fact that 

more than one household member is socially active. Another assumption here is the constant cluster 

sequence of [1; 3; 6; 7; 5; 1], which remains valid even if multiple members of the same cluster are infected 

simultaneously. This sequence is a representation of an R0 = 2·5 dynamics in a large population, transferred 

to a small group. Accounting for multiple seeding will make the cluster get infected faster and thus bring 

forward a few cases by a few days; it will not affect the total count however. The basic phenomena we see 

here are independent of the specific choice of cluster sequence, but for a more accurate modeling we must 

use actual data collected from contact tracing activities (together with the necessary permissions). A caveat 

in the expressions (7) and (8) has already been mentioned in §4 while the introduction of the parameter 

kmax has been discussed in §5; these do not generate significant error. 

Although the model incorporates a discrete population with heterogeneous interaction rates, it is eventually 

deterministic. This is necessary for computational tractability – a typical run with high caseload like one in 

Fig. 3 takes about five minutes on a laptop computer. For this purpose, we had no choice but to calculate 

an expectation value, with its rounding error as discussed in §12. A more computationally advanced form 

of the model can be fully agent-based with every event assigned a certain probability. §12 shows the 

beginnings of such an approach, where we calculated the probability of α cases infecting b clusters. A 

sophisticated computer might enable us to answer questions like “Given there are 100 cases today, what is 

the probability that there will be 1000 cases a month later ?” by calculating the probability of occurrence of 

every possible path from 100 to 1000 over 30 days (a daunting task by any standards). Such calculations 

can enable us to estimate best and worst case scenarios of the disease evolution corresponding to any given 

level of NPI. 

Despite the approximations, our model is in excellent agreement with reality. Just as a physical theory is 

eventually vetted by agreement with experiment, so too the ultimate validation of our model is its 

explanation of the widely seen plateau states and their stability transitions to epidemic waves. In addition, 

our model relies on hypotheses – primarily that of cluster-based interaction – which are plausible on an 

absolute scale. 

In addition, we now demonstrate that our model reduces to the classical model in the appropriate limit. 

To incorporate homogeneous mixing (the unstated or at best understated pillar of classical models), we 

consider the situation where households are scrapped (so that N = N1) and clusters are reduced to size unity 

(NC = N, yi = zi and Δyi = Δzi for all i). In this limit, UCT and SEC modes of transmission are equivalent; let 

us merge them into the SEC category. mS remains the number of people to whom one case spreads the 

disease in a day if they are all susceptible. To incorporate continuous mixing (another classical assumption) 

we let nS = N i.e. we allow the entire population to mix every day. Under these assumptions let us run 

through Algorithm 1. 

In a classical model, we do not need rounding off so we discard the subroutine roundoff. In the main 

routine, everything upto the primary loop over i remains unchanged. In Step 1 of the primary loop we let 

go of kmax. In Step 2, (6) as it stands no longer has meaning. Since everyone participates in the ‘SEC’ events, 

k can take only the value α – the first summation and the expression for P (k) both vanish. The number of 

people who receive the infective dose of virus remains β = msα. By definition these β people belong to exactly 

β ‘clusters’ so the second summation in (6) is redundant as well. What remains is the third summation i.e. 

the calculation of the expected number of susceptible clusters which are seeded (or equivalently the 

expected number of susceptible persons who are infected). 

The problem we have on hand is, given that there are N − yi people who are susceptible and yi people who 

are immune, what is the probability P (j) that among β randomly selected people who receive an infective 
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dose, exactly j are susceptible ? Then the expectation value can be calculated as E = Σj jP (j) as previously, 

with j running from 1 to β. The fully accurate expression for P (j) is 

 

_ _C  C
( )

C

N y i y i
j j

N
P j

β

β

−
−

=    , (14) 

as we have already calculated several times in different contexts. However, if β << yi, N−yi, i.e. the daily 

new cases are very low compared to the susceptible and immune populations (a very reasonable 

assumption even in the worst of worst-hit areas unless we are extremely close to the beginning of the 

epidemic), then we can assume that each individual person is susceptible with probability p = 1 − yi/N and 

immune with probability 1− p. (An equivalent problem is that a box contains yi blue balls and N − yi green 

balls; if β balls are drawn at random without replacement, then what is the probability that j balls are 

green ? In the limit yi, N−yi >> β, we can replace this by the situation where the balls are drawn with 

replacement.) With this assumption, P (j) becomes 

 ( )( ) C 1
jj

jP j p p
ββ −

= −    . (15) 

The expectation value of a binomial distribution is a standard formula in probability theory [16]; in our 

problem it evaluates to βp = β (1 − yi/N). Thus, in Step 2 of Algorithm 1, instead of the expression (6) we 

now use the value ES = β (1 − yi/N). 

Since UCT events have been merged with SEC events and since rounding off is no longer significant, we 

skip Steps 3 to 6. Step 7 remains as is with v being the singleton vector [1] (not Reference 1) and h taking 

the value 1. So, putting everything together and using the values of α and β, we have 

 ( )5 0 1 2 31 i
i i i i

y
y m y y y

N
+ − − −

 
 = −  +  +  

 
   , (16) 

where, since SEC and UCT events have lost their separate identities, m0 is more appropriate than mS. We 

now want to express this as a continuous time system or flow rather than a map, so let the continuous 

function y (t) denote the cumulative count of corona cases as a function of time. Step 8 of Algorithm 1 tells 

us that Δyi is the equivalent of dy/dt; the big bracket in the right hand side of (16) above is the number of 

new cases which have cropped up over the last three days, which is y (t) − y (t −3). Using this we have 
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   . (17b) 

Equation (17b) agrees exactly with Equation (29) of Ref. [1]; if we exclude the 5-day delay which merely 

shifts the infection curve rightwards by 5 days, it becomes the standard retarded logistic equation. Thus, 

the classical model emerges as a limiting case of the present model. 

Although the DDE (17b) is a special case of Algorithm 1, and although Algorithm 1 is capable of 

predictions which (17b) is not, there are nonetheless some occasions where (17b) is more useful than 

Algorithm 1. For example, the averaging assumptions allow us to smoothly accommodate asymptomatic 

and symptomatic cases who have different transmissibility durations. This is much harder to implement in 

this model. A detailed theory of contact tracing can be built into the DDE model [1] which is much more 

difficult here – a contact trace is expected to break transmission partway through a cluster, but what 

happens to the susceptible members after the traced cases recover ? Cluster fragmentation is currently not 

incorporated into this model. Age-structuring is another phenomenon which is easier to model using 

differential equations. Finally, as mentioned in §12, rigorous lockdowns (full lock or at least closure of 

entertainment venues) are likely to drastically reduce the cluster size or make the cluster concept irrelevant 

altogether. In such a situation, the socially active people are expected to behave like millions of tiny clusters, 

which is better described by (17b) than by Algorithm 1. 
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§14. Conclusion. In this Article we have proposed a mathematical model for the spread of COVID-

19 which takes into account the heterogeneity in human interaction patterns. This model yields a plateau 

as a generic solution and also demonstrates the pathways by which it can be destabilized into a mountain. 

In future, we shall analyse how the phenomena outlined here lead to an understanding of the case 

trajectories in India as well as other countries. While COVID-19 remains our immediate focus, the concepts 

we have presented are valid for any infectious disease. Hence, our model and findings should have utility 

in the management of future epidemics as well. 

---- o ---- o ---- o ----      ---- o ---- o ---- o ---- 
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APPENDIX 

§A1. Computer evaluation of (5), (6). While running the simulations, we observed that evaluation 

of the expressions (5) and (6) was impossible for the computer unless they were inputted in a special form. 

This happened because each of the probabilities P (k), P (b|k) and P (j|b) features a ratio of two huge 

numbers, both of which are beyond the computer’s calculational capacity. However, each huge number 

here is a product of many smaller numbers, and the computer has no trouble handling these individually. 

Thus, in the expression 

 
1 2

1 2

.....

.....
m

m

n n n n
P

d d d d
= =    , (A1) 

n and d are beyond the computer’s resources while n1, n2, d1, d2 etc are not. To evaluate P, we must enter it 

as (n1/d1) × (n2/d2) × ….. ×(nm/dm) with ni and di preferably being of comparable size, and then the computer 

has no difficulty in the calculation. Analytically opening out the combinations, we have written the 

probabilities P (k), P (b|k) and P (j|b) for easy machine evaluation in the forms described below. 

The analytical formula for P (k) is 
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where we have repeated (1) of the main text as (A2) here just for display convenience. For the computer 

we define this as a function g = prob1(a,k,N,s) where N denotes N1 and s denotes nS. Opening out the 

combinations and rearranging items so that large numerators carry large denominators (note that N is the 

really large number here while the others are much smaller), we find 
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Since k cannot be zero and is likely to be less than s (it is extremely improbable that every single person 

attending SEC gets infected), there are no borderline cases to be taken care of manually. 

The analytical formula for P (b|β) is 
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For the computer we define the function g = prob2(N,b,t) where N denotes NC and t denotes β. This function 

is 
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   . (A5) 

Unlike with (A3), this has marginal cases. If t = 1 (impossible for SEC where β is defined as 2k but quite 

possible for UCT) then b must equal 1 and g must be unity. If b = t (a physically meaningful case) then the 

second product in (A5) is non-existent i.e. it must equal unity. If b = 1 (for whatever t) then the third product 

must be bypassed and set to unity. 

The analytical formula for P (j|b) is 
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For the computer we define the function g = prob3(z,j,N,b) where z denotes zi and N denotes NC. We 

recognize that this is the same as the function g = prob1(z,b-j,N,b) except for the boundary cases which we 

recognize by looking at (A3). If b = j then g can be evaluated manually as 

 

 terms

1 1
.....

1 1

j

N z N z N z j
g

N N N z

− − − − − +    
=     

− − +    
   . 

(A7) 

If z = N i.e. all clusters have been infected then g = 0. In all other circumstances, we define q = b-j and set 

g = prob1(z,q,N,b).  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who(which was not certified by peer review)The copyright holder for this preprint this version posted June 5, 2021. ; https://doi.org/10.1101/2021.06.02.21258243doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.02.21258243
http://creativecommons.org/licenses/by-nc/4.0/

