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ABSTRACT
This study examines how social determinants associatedwith COVID-
19 mortality change over time. Using US county-level data from
July 5 and December 28, 2020, the effect of 19 high-risk factors on
COVID-19 mortality rate was quantified at each time point with
negative binomial mixed models. Then, these high-risk factors were
used as controls in two association studies between 40 social deter-
minants and COVID-19 mortality rates using data from the same
time points. The results indicate that counties with certain ethnic
minorities and age groups, immigrants, prevalence of diseases like
pediatric asthma and diabetes and cardiovascular disease, socioe-
conomic inequalities, and higher social association are associated
with increased COVID-19 mortality rates. Meanwhile, more mental
health providers, access to exercise, higher income, chronic lung
disease in adults, suicide, and excessive drinking are associated with
decreased mortality. Our temporal analysis also reveals a possible
decreasing impact of socioeconomic disadvantage and air quality,
and an increasing effect of factors like age, which suggests that
public health policies may have been effective in protecting disad-
vantaged populations over time or that analysis utilizing earlier
data may have exaggerated certain effects. Overall, we continue to
recognize that social inequality still places disadvantaged groups at
risk, and we identify possible relationships between lung disease,
mental health, and COVID-19 that need to be explored on a clinical
level.
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1 INTRODUCTION
The growing prevalence of COVID-19 has forced the pandemic to be
the center of state and national policy in the United States (US). As
of July 5, 2020, the CDC documented over 130,000 COVID-19 deaths
in the US [24], and this number increased to over 300,000 COVID-19
deaths by December 28, 2020 [62]. This increase in deaths is not
uniformly distributed, and several counties are experiencing much
higher-than-average death rates [49]. It is hypothesized that social
determinants have contributed to these disparities in COVID-19
mortality [1], which we investigate. Social determinants, such as
a county’s access to healthcare, rates of education, indicators of
health, and economic status have greatly impacted other diseases
[14], so these factors may play a similar role in COVID-19.

An increasing amount of literature highlights that social de-
terminants of COVID-19 place socioeconomically disadvantaged
populations at heightened risk. Abrams and Szefler reviews emerg-
ing literature to discuss the stark inequality of COVID-19 infection
rates and outcomes among several groups [1]. This work recognizes
that social determinants such as housing problems, race, smoking,
nutrition, overcrowding, poverty, and comorbidities may compro-
mise an individual to COVID-19. Ahmed et al. is another among the
many to describe the disproportionate effects of COVID-19 among
the socioeconomically disadvantaged, highlighting access to health-
care as one of the many determinants that are potentially critical in
COVID-19 mortality [2]. Fielding-Miller et al. studies a few select
social determinants to find that dense population in urban counties,
non-English speakers, farm workers, and impoverished groups in
non-urban counties are at increased risk [22]. Overall, the literature
emphasizes that quantifying the social determinants of COVID-19
is a crucial step in addressing the existing health inequalities. Yet,
there is a lack of well-controlled, diverse screening of the social
determinants associated with COVID-19. Moreover, as the COVID-
19 pandemic is rapidly changing, temporal analysis is needed to
understand how the effects of these socioeconomic factors respond
to the implementation of systemic protections.

To address the gap in the current literature and leverage read-
ily available data, this study identifies and compares which social
determinants are associated with county-level changes in COVID-
19 mortality rates on July 5 and December 28, 2020. Through this
temporal analysis, we uniquely utilize a comprehensive list of co-
morbidities, social determinants, and the impact of differing state
policies to explore the nationwide effect of socioeconomic dispari-
ties.

2 METHODS
This study consists of an initial ecological analysis to establish
which high-risk factors from literature have statistically significant

1
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relationships to COVID-19, using pandemic mortality data updated
to July 5 and December 28, 2020. Then, the high-risk factors are
used as controls for two social determinant association studies - one
using the COVID-19 mortality data updated until July 5 and one
using COVID-19 mortality data updated until December 28. These
dates were selected to avoid the volatile increase in COVID-19 infec-
tions in the two weeks following major US holidays [41]. 40 social
determinants are evaluated at each time point to find which ones
affect COVID-19 mortality. Both the two initial analyses and the
two follow-up association studies utilize negative binomial mixed
models to analyze county level data (n=3093 counties). Results are
statistically corrected for possible false discoveries. Further sensitiv-
ity analysis with different model variants and additional time-series
analysis are also validated. This study design is summarized in
Figure 1.

County-level COVID-19 mortality data on July 5 and December
28, 2020 was sourced from John Hopkins University Center for Sys-
tems Science and Engineering [19].While COVID-19mortality rates
change over the course of this study, the data for high-risk factors
and social determinants are long-term characteristics of a county
and remain constant throughout this study. Data for high-risk fac-
tors and social determinants were sourced from the US Census[10],
County Health Rankings [54], JHU-CSSE [19], the Center of Disease
Control (CDC) Wonder [67], American Lung Association [6], and
several other data sources. The same risk factor and social deter-
minants datasets were used for the July 5 and December 28, 2020
analyses since they were measured before the pandemic. All data
is publicly accessible, and all methods and results are reproducible.
The full R code and a supplementary document with complete list
of data sources can be found on the Rensselaer IDEA Github1.

2.1 Identifying High-Risk Factors For
COVID-19 using July 5 and December 28,
2020 Data

A robust set of controls needed to be established before screening
for social determinants [40]. To find the most important risk factors,
we considered the guidelines from the CDC. Using extensive meta-
analysis, the CDC recognized that those suffering from several
diseases and ethnic minorities are at a higher risk for severe illness
and death due to COVID-19 [26]. Our analysis accounts for these
well-documented risk factors, using available data for the racial
distribution in the US [10], as well as data for several of the highest
risk comorbidities, such as the prevalence of cardiovascular death,
diabetes, and COPD [6, 54, 67]. Income and education levels were
used to briefly explore socioeconomic status [2]. A breakdown of
population density by quartile was used as a proxy to categorize the
urban or rural identity of a county. Additionally, temporal variables
such as days since first infection and days since a mask is required
were included to adjust for disease progression and emerging policy
in each state, as this would greatly affect mortality rates of any re-
gion [19]. As several other metrics of policy were previously tested
and had little significance in aggregate data, they were omitted
from this analysis [18]. Variables were scaled by subtracting the
mean from each data point and dividing by the standard deviation.

1https://github.com/TheRensselaerIDEA/COVIDMINDER/tree/master/social
_determinants_paper

Using county-level data for the entire U.S. (n=3093), negative
binomial mixed models were used to find the significant high-risk
factors. The modeling method was a generalization of those used
in a prior study on the impact of air pollution on COVID-19 mor-
tality [68]. The county COVID-19 mortality rate was used as the
observed variable. The following explanatory variables were used:
percent of county that is African American, percent of county that
is Hispanic, percent of county that is Native American, percent of
county that is Asian, percent of county that is White, percent of
county with less than a high-school education, percent of county
that is above the age of 65, percent of county that has diabetes,
percent of county with COPD, percent of adults in the county who
smoke, population density in quartiles, days since first infection,
days since mask required, available hospital beds per county popu-
lation, median household income of a county, and cardiovascular
death rate. An offset to scale for population and a term to account
for random variance at the state level was also included [18, 68, 69].
This analysis was performed twice, using COVID-19 mortality data
updated up to July 5, 2020 and up to December 28, 2020.

The extracted output from this model is the the ratio of change
in COVID-19 mortality rate per 1 standard deviation increase in
each explanatory variable. We refer to this output as Mortality Rate
Ratio (MRR) [68]. In this initial analysis of high-risk factors, these
explanatory variables reveal the important baseline effects that
must be controlled for when screening for social determinants.

2.2 Screening for Social Determinants
The same high risk factors from the methods above were used as
controls for the two social determinant screenings. This study de-
sign allows for the identification of unique social determinants that
are distinguishable from the already recognized high-risk factors.

For the social determinant screening, 40 negative binomial mixed
models (each with high-risk factors as controls) were used in the
association analysis to individually test 40 variables that represent a
wide range of social determinants. This set of determinants included
metrics of a county’s mental health, physical health, rates of disease,
economic status, housing burdens, education, demographics, and
multiple death rates, sourced from County Health Rankings [54].
The analysis produces a MRR for each of the 40 determinants at
each of the 2 time points. A complete list of the tested explanatory
variables and their sources can be found in the supplementary
document.1

This analysis was performed using the COVID-19 mortality data
from both July 5, 2020 and December 28, 2020, producing two sets of
statistically significant social determinants associated with COVID-
19 mortality.

2.3 Statistical Testing
Each explanatory variable in the high-risk models and each vari-
able in the 40 social determinant association models were tested
for statistical significance using a Wald test [66]. The Benjamini-
Hochberg Procedure [7] was used to adjust p-values for Multiple
Hypothesis Testing in the social determinant screening. Our models
showed robustness in this process, as the false discovery rate was
acceptably below 0.05 at 0.0297 and 0.012 for July 5 and December

2
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Figure 1: Study Design Flowchart. The chart shows the methodology from the data aggregation in the Data Cohort, to the
initial ecological analysis in the High-Risk Factors Identification stage, use of High-Risk Factors in the Social Determinant
Screening, and combination of High-Risk Factors analysis and Social Determinant Screening results into Summary Graphs.
The orange arrows on the left denote the use of COVID-19 mortality data updated until July 5, 2020. The blue arrows on the
right denote the use of COVID-19 mortality data updated until December 28, 2020. The larger orange and blue curved arrows
and the mixed blue border/orange gradient arrow indicates how high-risk factors and social determinants for both dates are
synthesized in the Summary Graphs.

28 models, respectively. A 95% confidence interval was also pro-
duced for each term’s MRR. The 95% confidence interval and the
p-value is indicated displayed on each bar on Figures 2, 3, and 4.

To test performance and fit, the procedure from Wu et al. was
followed [68]. The negative binomial mixed model for the high-risk
factors using July 5, 2020 data was compared to zero inflated, fixed
negative binomial, and spatial correlation variants. These models
were compared to the negative binomial mixed model using AIC
and BIC. The main high-risk model was also analyzed at 16 different
time points for robustness. Additionally, variants of the model that

excluded NewYork city data and excluded counties with less than 10
cases were analyzed for robustness. Statistical variations produced
no significantly different results. Model was also robust to short-
term time-series analysis. Any changes in results due to different
sample stratification can be found in the supplementary document.

All analysis was conducted in R [48] using the lme4 package, and
visualizations were created using Microsoft Excel. Notebooks to
reproduce all results can be found on the Rensselaer IDEA Github.
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3 RESULTS
The results from the high risk analyses on July 5 and December 28
data were aggregated with the results from the two social deter-
minant screenings. Then, this combination of analysis was catego-
rized by relevance into 3 distinct sections for temporal comparison:
"Healthcare", "Socioeconomic Quality of Life", and "Race and Age
Demographics". For each of the corresponding section figures, the
MRR of each term is presented as a multiple of 1. A MRR above
1 indicates a predicted increase in mortality, and a value below 1
indicates a predicted decrease in mortality. A term is considered
statistically significant if its 95% confidence interval does not cross
the threshold of MRR of 1.

3.1 Healthcare
The Healthcare category combines the prevalence of smoking and
prevalence of COPD from the high-risk analyses with several social
determinants related to quality of healthcare and other metrics of
population health. These results are presented in Figure 2.

3.2 Socioeconomic Quality of Life
The Socioeconomic Quality of Life category combines the median
household income, population density, education (percent of adults
in county without high-school education), days since first infection,
and days since mask required variables from the high risk factors
analyses with several social determinants that define a county’s
living and working conditions. These results are presented in Figure
3.

3.3 Race and Age Demographics
The Race and Age Demographics category combines the racial
composition of a county and percent of county above 65 years old
from the high risk analyses with the social determinant of percent of
county that is less than 18 years of age. These results are presented
in Figure 4.

4 DISCUSSION
This study conducts temporal analysis of social determinants and
comorbidities at the national scale with a wide variety of controls
and county level data from July 5 and December 28, 2020. We reveal
the high-risk factors and the specific social determinants of a county
that affect the mortality rate of COVID-19.

4.1 Healthcare
This section discusses the results presented in Figure 2.

4.1.1 Reduced Access to HighQuality Healthcare: On July 5, one
standard deviation increase in preventable hospitalization rate and
percent of uninsured population was associated with a 1.11 and 1.40
times increase in COVID-19 mortality rate, respectively (1.11 and
1.40 MRR). By December 28, only preventable hospitalization rate
had statistical significance (1.06 MRR). These social determinants
are direct indicators of quality of healthcare. Overuse of hospitals
typically indicates that outpatient care is inadequate or that there is
limited available primary care [53]. Counties that were ill-equipped
for their population pre-pandemic may continue to be inadequate
to their populations during a pandemic, leading to more COVID-19

deaths. A high percent of uninsured individuals also indicates poor
access to health care. In general, those without access to health
insurance will not be given thorough preventative care, often result-
ing in undiagnosed health problems or severe illness [30], which
may result in more COVID-19 deaths. As these determinants were
found to have an MRR above 1, we recognize that poor healthcare
is associated with increased COVID-19 mortality.

One standard deviation increase in average number of physically
unhealthy days in the county and percent of county population
with poor or fair health was associated with a 1.29 and 1.47 COVID-
19 MRR on July 5, respectively. By December 28, only the effect of
percent of county with poor or fair health remained statistically
significant (MRR of 1.10). These findings suggest that counties with
poor health outcomes before the pandemic have poor COVID-19
outcomes. Unhealthy counties may have a high prevalence of com-
mon underlying health conditions, which places them at increased
risk to COVID-19, as recognized by the CDC [51]. Poor access to
healthcare also has a likely role in the increased COVID-19 mor-
tality rate in these counties, as poor mental and physical health
has been linked to socioeconomic disadvantage [65]. However, it is
possible that the decreasing statistical significance for physically
unhealthy days and the decreasing MRR of poor or fair county
health indicate that the effect of socioeconomic disadvantage and
poor healthcare decreases throughout the pandemic.

One standard deviation increase in a county’s cancer death rate
was associated with a 1.11 times increase in COVID-19 death rate
on July 5, 2020. This MRR decreased to 1.06 by December 28. Higher
cancer death rate can result both from increased incidence and un-
favorable outcomes due to poor access to healthcare. High cancer
mortality rates indicate that a community has insufficient preven-
tion, early diagnosis, and treatment [60]. Low income communities
are notably at a disadvantage for cancer treatment due to a lack of
resources, as wealth disparities are noted as the most common cause
of health disparities [4]. We recognize cancer prevalence as a likely
comorbidity and predictor of poor healthcare, which increases risk
of COVID-19.

4.1.2 Suicide, Mental Health Provider Rate, and Excessive Drink-
ing: We observed a statistically significant, negative relationship
(MRR<1) between age-adjusted suicide rate and excessive drink-
ing with COVID-19 mortality rate (0.84 and 0.85 MRR by July 5,
respectively). The impact of these effects approached an MRR of
1 by December (0.94 and 0.89 MRR, respectively). Meanwhile, the
relationship between mental health provider rate and COVID-19
mortality, which is statistically insignificant in July, has a statisti-
cally significant MRR of 0.95 in December. This suggests a complex
relationship between the pandemic and the recent epidemic of
"deaths of despair": deaths from suicide, overdose, alcoholism, and
self-harm. Alcohol is a coping strategy for mass stress and isolation,
and consumption increased greatly after the pandemic began [38].
Suicide rates are higher in less urban areas and lower in more urban
areas while the reverse is true for COVID-19 mortality rates [37].
While supporting effective social distancing, social isolation is a ma-
jor risk factor for suicide [11]. The negative relationship of suicide
and alcohol consumption with COVID-19 deaths are likely only
temporary as suicide rates and alcohol abuse are likely to increase

4
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Figure 2: Mortality Rate Ratios Associated with Healthcare. The vertical axis shows Mortality Rate Ratio. The horizontal axis
lists terms related to healthcare. The bars indicate a term’s respective MRRs at each time point. Bars are colored in orange to
indicate analysis from July 5, 2020 data or colored in blue to indicate analysis fromDecember 28, 2020 data. A dotted horizontal
line indicates anMRR of 1, which represents no change inmortality rate. Each bar is labelled with its 95% confidence intervals
and statistically significant, Benjamini-Hochberg corrected p-values are indicated as follows: * = p<0.05; ** = p<0.01; *** =
p<0.001.

during the pandemic [34]. However, the emergence of higher men-
tal health provider rates (indicating better access to mental health
care) as a protective determinant suggests that mental health has a
non-trivial, intricate relationship with COVID-19, and further work
is needed to fully understand what we observe.

4.1.3 Vaccination Rates and Annual Mammogram Rates in Medicare
FFS:. Influenza vaccination rates among Medicare Fee For Service
(FFS) users was determined to have a 1.14 MRR in July but was
not significant in December. Inversely, annual mammogram rates
among Medicare FFS users was statistically insignificant in July
but had a 1.06 MRR in December. One explanation for this result is
that elderly groups in community care and those with pre-existing
conditions like cardiovascular disease vaccinate and get screened
for breast cancer more frequently. 83.1% of Medicare FFS users
are above the age of 65 [43], and flu vaccinations are more com-
mon in individuals above 65 years old (72.3%) compared to those
between 18 and 64 years old (30.7%) [23]. Flu vaccination rates
are also higher in patients with comorbidities like cardiovascular
disease in comparison to patients without cardiovascular disease
[3]. Similarly, as there is an increased risk of breast cancer with
age, increased mammogram screening among FFS users may repre-
sent elderly populations and groups with comorbidities [25]. These
groups are more vulnerable COVID-19 [26], so the overall observed
relationship between mammogram and vaccination rates in FFS

users may reflect an underlying relationship between at-risk groups
and COVID-19. However, as there are severe geographical, racial,
and socioeconomic disparities in influenza vaccination rates [35],
future analysis of vaccination, mammogram rates, and COVID-19
mortality is needed to reveal more about this complex relationship.

4.1.4 Lung Disease: Surprisingly, one standard deviation increase
in adult chronic lung disease in a county was associated with a
statistically significant decrease in COVID-19 mortality rate in De-
cember (0.76 MRR) but was not significant in July. Rather than
protective, the CDC identified several lung diseases (asthma, COPD,
lung cancer) as a possible COVID-19 comorbidity [28]. While pre-
vious literature has observed this effect in asthma, this effect was
not previously reported in other lung diseases [18]. As the tested
COPD factor has no statistical significance at July or December, it
suggests that lung disease other than COPD may have an increased
statistical importance. Moreover, pediatric asthma was observed
to have the opposite effect to adult chronic lung disease. Pediatric
asthma was statistically insignificant on July 5, but was associated
with a 1.15 MRR by December 28. As increased transmission of
COVID-19 has been implicated in youth, the predicted increase in
mortality from pediatric asthma may indicate a risk from greater
youth populations in a county [20]. Overall, further analysis with
specific lung disease subtypes is needed to better characterize the
observed associations with lung disease.
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Figure 3: Mortality Rate Ratios Associated with Socioeconomic Quality of Life. The vertical axis shows Mortality Rate Ratio.
The horizontal axis lists terms related to socioeconomic and regional characteristics. The bars indicate a term’s respective
MRRs at each time point. Bars are colored in orange to indicate analysis from July 5, 2020 data or colored in blue to indicate
analysis fromDecember 28, 2020 data. A dotted horizontal line indicates anMRR of 1, which represents no change inmortality
rate. Each bar is labelled with its 95% confidence intervals and statistically significant, Benjamini-Hochberg corrected p-values
are indicated as follows: * = p<0.05; ** = p<0.01; *** = p<0.001.

4.1.5 Sexually Transmitted Diseases (STDs): One standard devia-
tion increase in chlamydia prevalence rate and HIV prevalence rate
was associated with a 1.09 and 1.07 times increase in COVID-19
mortality rates by July 5. By December, chlamydia and HIV preva-
lence had MRRs of 1.04 and 1.05. Chlamydia prevalence has been
linked to minority women populations, and is related to several
increases in mortality like cervical cancer and various inflammatory
conditions [15, 32]. HIV prevalence is an indirect metric of high-risk
behaviors such as unsafe sex and intravenous drug use [29]. Both
HIV and chlamydia prevalence also indicate significant burdens on
healthcare resources [45, 47]. We theorize that the prevalence of
both of these STDs likely increase a county’s COVID-19 mortality
rate directly and indirectly.

4.1.6 Sleep, hospital beds/population, diabetes, cardiovascular dis-
ease, and exercise: Several other high-risk factors and determinants
that were statistically insignificant by July 5 were observed to be
significant by December 28. Percent of county with insufficient
sleep (less than seven hours a night), hospital beds per population,
prevalence of diabetes, and death rate cardiovascular disease were
all associated with increased COVID-19 mortality (1.11, 1.10, 1.06,
and 1.04 MRR, respectively). Meanwhile, percent of county with
access to exercise opportunities was associated with a decrease
in mortality (0.95 MRR). Diabetes and cardiovascular disease have
been recognized as comorbidities, which may increase risk of severe
complications from COVID-19 infection [26]. Regular exercise has
been previously associated with positive health outcomes, and we
observe that it continues to have a protective role in COVID-19

[17]. In contrast, insufficient sleep has been linked to an increased
chance of severe chronic diseases like diabetes [58], and we find
that this destructive effect may extend to COVID-19. The ratio of
hospital beds per population is one measure of available healthcare
resources, and a higher ratio is traditionally implicated with more
urbanization [13, 61], so our results may suggest an increased risk
of COVID-19 in urban environments, rather than a direct relation-
ship between hospital beds availability and increased COVID-19
mortality rates.

4.1.7 Other health-related factors: The other health-related factors
we tested were statistically insignificant in the high-risk models and
social determinant analyses in both time points. Infant mortality
rate, ratio of primary care physicians to population, ratio of primary
care clinicians other than physicians to population, prevalence of
smoking, and prevalence of COPD appear to lack significance in
aggregate data, despite some of these factors having literature about
interactions with COVID-19 [26]. Including a large number of terms
in the models may have diminished the effect of these factors. It is
also possible that these factors may be regionally significant, and
further analysis is needed at the sub-national level.

4.2 Socioeconomic Quality of Life
This section discusses the results presented in Figure 3.

4.2.1 Disease Progression: The temporal variable of days since
first infection has a high, statistically significant MRR of 2.23 for
July 5 but was not observed to be significant by December 28. We
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likely observe that an early incidence of COVID-19 in a county
is associated with the greatest increase in COVID-19 mortality,
likely due to outlier metropolitan areas like New York City. It is
also possible that as the pandemic progressed, the improved clinical
experience of treating COVID-19, appropriate resources, and better
compliance with social distancing is responsible for the statistically
insignificant finding in December.

4.2.2 Income: One standard deviation increase in county median
income was associated with a 1.23 times increase in COVID-19
mortality (1.23 MRR, July 5). However, this changed to show a
protective value of 0.95 MRR by December. In a traditional view of
social determinants, higher income is associated with lower rates of
disease [9]. One explanation for our initial finding between income
and COVID-19 is that urban counties, where income is higher [8],
were disproportionately affected by COVID-19 in the initial months.
Over time, the traditionally implicated protective benefits likely
had a greater impact on health outcomes, which is responsible for
the protective MRR by December.

4.2.3 Immigrant Communities: One standard deviation increase in
percent of individuals not proficient in English was associated with
a 1.49 increase in COVID-19 mortality in July. This decreased to a
MRR of 1.07 by December. As of 2013, the percentage of Limited
English Proficient (LEP) people who were foreign born was 81.3%
[70]. Hence, these results suggest that immigrant populations are

at higher risk from COVID-19, which is supported by previous
work [22]. Historically, immigrants suffer from poverty, and many
immigrants are barred from receiving healthcare programs such
as Medicare in their first 5 years of living in the US. Additionally,
undocumented immigrants are not eligible for any public programs.
It is estimated that around 45% of documented immigrants and
65% of undocumented immigrants do not receive healthcare. This
leaves the population much more vulnerable. LEP immigrants also
receive lower quality of care and understanding of their medical
condition due to language barriers in treatment [70]. Addition-
ally, the observed decrease in MRR from 1.49 to 1.07 is consistent
with the trend about the effects of socioeconomic disadvantage on
COVID-19, as discussed above. Overall, immigrant populations are
recognized to be at a higher risk for severe outcomes due to lower
access and poorer quality of care.

4.2.4 Poverty & Severe Housing Problems: One standard deviation
increase in overcrowding, a measure of poor socioeconomic status
[16], was associated with a 1.27 COVID-19 MRR by July 5. This vari-
able is defined as the ratio of residences with more than one person
per room to the total number of housing units in a county. Over-
crowding is a metric of severe housing problems, previously associ-
ated with poor mental health outcomes [59], tuberculosis [59], and
several other diseases [46]. Beyond signifying poor socioeconomic
status, there is also physical risk with any infectious disease from
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overcrowding due to close proximity of potential carriers [5]. The
MRR for overcrowding decreased to 1.06 by December 28, which
is consistent with the decreasing trend in other explorations of
socioeconomic disadvantage and COVID-19 in this study. However,
despite the decreasing effect, the MRR of overcrowding in a county
is still associated with a significant increase of COVID-19 mortality.
In contrast, however, percent of county with severe housing bur-
den, defined as families spending more than 50% of their income on
housing, was negatively associated with COVID-19 mortality rate
(0.95 MRR, December 28). Similarly, percent of county that is food
insecure, defined as percent of population without adequate access
to food, was also negatively associated with a COVID-19 mortality
rate (0.93 MRR, December 28). Both of these social determinants
are implicated in socioeconomically disadvantaged counties and
are related to lower access to healthcare [50, 55]. One possibility
is that systemic, socioeconomic intervention during the pandemic
may be responsible for this finding, which some literature highlight
as a possible method to combat the expected, negative effects of
poverty [42].

4.2.5 Air Pollution: One standard deviation increase in average
daily air pollution was associated with a 1.37 increase in COVID-19
mortality rate in July 5, which decreased to 1.11 MRR by December
28. This finding supports Wu et al.’s results, indicating that counties
with long-term air pollution are more likely to fall severely ill [68],
although the impact of air pollution is observed to be decreasing
over time and may need further study.

4.2.6 Education: One standard deviation increase in percent of
adults in county without high school education was associated
with a 1.15 and 1.13 COVID-19 MRR in July and December, respec-
tively. Average grade performance, defined as the outcomes of 3rd
grade reading scores compared to the national average, was associ-
ated with a 0.86 MRR in July, but had no statistical significance by
December. High school graduation rate in a county was associated
with no statistical significance at either time point. Education is a
well-studied determinant of adolescent health [64], and lower high
school graduation has been specifically linked to poorer health
outcomes in the past [39]. Moreover, grade performance is a met-
ric for available educational opportunities [21] and a predictor of
future health outcomes [31]. Our findings suggest that a county’s
educational resources and quality, as reported by average grade
performance and graduation rate, may have some protective effects
in July, but have no measurable effects by December. However, the
consistent, destructive relationship between the percent of adults
without a high school education and COVID-19 still suggests that
poor education can increase health risks.

4.2.7 Motor Vehicle Mortality Rate and Long Commute: One stan-
dard deviation increase in motor vehicle mortality rate was as-
sociated with a 1.13 COVID-19 MRR on July 5. Increased motor
vehicle mortality rate has been associated with counties with high
uninsurance and high concentrations of ethnic minorities [36]. As
discussed above, those with poor health care and certain minorities
have an increased risk to COVID-19. Additionally, increased motor
vehicle mortality rate is also associated with populations under the
age of 18 [36], which we did find to be significantly associated with
increased COVID-19. While this effect of motor vehicle mortality

decreased to 1.05 MRR in December 28, we observed a statistically
significant 0.96 MRR in December for percentage of county that
drives alone and has a commute over 30 minutes. While this so-
cial determinant is traditionally associated increased obesity, less
physical excercise, and worse mental health [52], we hypothesize
that the transition to working from home may have a role in the
protective MRR. While physical health benefits of working from
home still need to be further elucidated, other benefits like mental
health have been well-documented [44]. Overall, it is likely that the
relationship between motor vehicle mortality rate, long commutes
while driving alone, and COVID-19 has factors beyond the scope
of this study, so future work is needed to fully understand this
relationship.

4.2.8 Social Association and Death Rate from All Causes: The re-
lationships from county’s social association rate and cumulative
death rate from all causes were both statistically insignificant in
July but had significant COVID-19 MRRs of 1.09 and 1.11 by Decem-
ber, respectively. Although social association of a county through
membership associations has been previously associated with pos-
itive health outcomes, increased social interaction may lead to a
higher number of COVID-19 deaths [56]. Meanwhile, counties with
high rates of all causes of mortality before the pandemic likely
suffer from a mix of negative underlying living, healthcare, and
working conditions. It is likely that the effects of both of these social
determinants were statistically obscured by other factors in July,
but the larger amount and more reliable data over time reveal their
significance in December.

4.2.9 Other Socioeconomic Factors: The other factors related to
socioeconomic status that we tested were statistically insignificant
in the high-risk models and social determinant associations at both
times. These include percent of county that drives alone to work
(without a long commute), percent of county that are homeowners,
a county’s segregation index, death rate from assault, presence of
water violation, unemployment rates, and days since mask required.
As discussed above, including a large number of terms in the model
may have diminished the effect of these factors and they may need
further analysis at regional levels.

4.3 Race and Age Demographics
This section discusses the results presented in Figure 4.

4.3.1 Race: Our results suggest that race was a better predictor of
COVID-19 in July than in December. Counties experienced 1.25 and
1.18 MRR increases in COVID-19 mortality per standard deviation
increase in Hispanic and Native American populations by July 5,
respectively. These MRRs decreased to 1.11 and 1.07 by December
28, respectively. Additionally, while percent of African Americans
and Asians in a county was associated with 1.39 MRR and 1.02 in
July, there was no statistically significant relationship in December.
Meanwhile, percent of county that is White was not statistically
significant in either time point. Historically, ethnic minorities have
disadvantaged access to healthcare, occupational opportunities,
higher chronic stress, lower access to quality education, and more
housing problems, which can contribute to health outcomes [27].
We conclude these racial inequalities have a role in the increased
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COVID-19mortality rate, but they are observed to have a decreasing
impact throughout the progression of the pandemic.

4.3.2 Age: In contrast, we observe an increasingly strong relation-
ship between age and COVID-19. While neither percent of county
above 65 years old nor percent below 18 years old was significant
by July, both terms were significant by December 28 (1.07 and 1.11
MRR, respectively). While other literature has recognized elderly
populations as at risk [26], we additionally find that an increase
in youth in a county is associated with an increase in COVID-19
mortality. Youth have been suspected to be a source of transmission
[20], which may be responsible for this finding.

5 CONCLUSION
Overall, we identify that counties with Hispanic and Native Ameri-
can ethnic minorities, populations under 18 and above 65 years of
age, worse healthcare resources, higher social association, higher
prevalence of comorbidities like pediatric asthma and diabetes and
cardiovascular disease, more overcrowding, higher motor vehicle
mortality, earlier exposure to COVID-19, higher vaccination rates
andmammogram screenings amongMedicare FFS users, and higher
air pollution continue to have an increased risk of COVID-19 mor-
tality. Like other diseases [14], we recognize that the severity of
COVID-19 is greatly worsened by socioeconomic inequality. Addi-
tionally, the temporal trends observed in this study suggest that the
policies implemented during this pandemic may have been effec-
tive, as the impact of several socioeconomic metrics (overcrowded
housing, immigrant populations, poor health in a county) appear to
significantly decrease over time. However, future analysis is needed
to further support this finding, and to additionally explore the de-
creasing impacts of air pollution and income, and the increasing
impact of age demographics.

Care must be taken in contextualizing these results due to inher-
ent limitations of county-level ecological studies. The relationships
observed in aggregate data cannot be translated from the county
level to individuals from an ecological study alone. Rather, these
studies identify useful trends and hypotheses for future analysis
at the individual level [63]. Accounting for possible confounds is
also essential in ecological studies, which we achieve by includ-
ing several controls in every model. Other limitations of the study
stem from the availability and accuracy of the data. Literature sug-
gests that both the reported counts of infection and the reported
COVID-19-related deaths have inconsistencies [12, 57], and the
lack of proper testing has also been highlighted [33]. Moreover,
changes in reporting measures and standards of care over the study
period may result in a regression to the mean, which should also
be considered in temporal analysis.

As more detailed information becomes available, it would prove
useful for future study to verify our results using clinical and
individual-level data. Further investigation of the relationship be-
tween COVID-19 and adult chronic lung disease may be especially
valuable, as there is currently varying evidence. Additionally, the
relationships between COVID-19, poverty, air quality, income, age,
motor vehicle mortality rate, vaccination rate, breast cancer screen-
ing rate, mental health, and alcohol consumption need to be eluci-
dated in more detail. These analyses may reveal further interactions
between social determinants and COVID-19 mortality.
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