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Abstract

PCR testing is an important tool to mitigate outbreaks of infectious diseases. One way of
increasing testing throughput is by simultaneously testing multiple samples for the presence of
a pathogen, a technique known as pooling. During the current COVID-19 pandemic, rapidly
testing individuals for the presence of SARS-CoV-2 is conducted in large amounts. Since
testing is often a bottleneck in mitigating the spread of SARS-CoV-2, pooling is increasing in
popularity. Most analyses of the error rates of pooling schemes assume that including more than
a single infected sample in a pooled test does not increase the probability of a positive outcome.
We challenge this assumption with experimental data and suggest a novel probabilistic model
for the outcomes of pooled tests. As an application, we analyze the false-negative rates of one
common pooling scheme known as Dorfman pooling. We show that the false-negative rates of
Dorfman pooling increase when the prevalence of infection decreases. However, low infection
prevalence is exactly the condition under which Dorfman pooling achieves highest throughput.
We therefore implore the cautious use of pooling and development of pooling schemes that
consider correctly accounting for tests’ error rates.
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Introduction

Reverse transcription polymerase chain reaction (RT-PCR) testing is a key component in breaking
transmission chains and mitigating the COVID-19 pandemic. As such, the need for large-scale
testing has resulted in the development of techniques to increase the the throughput of RT-PCR
tests [2,8, 13, 14, 16]. These techniques, often termed pooling, or group testing, have originated
in the seminal work of Dorfman and his pooling technique [2,7]. Under Dorfman pooling, one
selects N individuals and performs a single RT-PCR test on their combined (pooled) samples.
If the pooled test yields a positive result, then each individual is retested separately; otherwise,
everyone is declared negative. The throughput efficiency of Dorfman pooling has been demonstrated
empirically [2] and its error rates thoroguhly investigated [1, 11, 17].

Studies focused on pooling for SARS-CoV-2 are in a consensus that sample dilution effects [10,21]
are not a concern, even for pools as large as 64 individuals [2,9, 14, 24]. Consequently, studies
assumed that the probability of a true-positive (the test’s sensitivity) does not depend on the
number of infected samples in the pool, but rather on the existence of at least one such sample.
Thus, the probability of a positive result in a pooled test has been (assumed) identical for a pool with
one sample from an infected individual and, e.g., five such samples. This assumption is common
in the group testing literature [1,11], as well as in more specific, COVID-19 focused studies [3,17].
In this study we challenge this commonly made assumption and show how using a more accurate
probabilistic model affects estimation of false-negative rates for Dorfman pooling.

Methods

Formally, we consider a pool containing N individuals {1,..., N}. We denote the true infection
state 6 € {0,1}", so individual i is infected iff ; = 1. The RT-PCR test’s sensitivity (true-positive
rate) is denoted Se, and the test’s specificity (true-negative rate) is denoted S,. Pooled test result
(data) is denoted d € {0, 1}, where d = 0 iff the test returned a negative result.

The common assumption

Previous studies of pooling schemes assumed that the false-negative probability does not depend
on the number of infected samples, but merely on the existence of at least one such sample in
a pool [I,11]. Current studies of pooling in the context of SARS-CoV-2 also employ a similar
assumption [3,17]. Explicitly, these studies assume:

1—.S, disuchthat 6, =1

Sp otherwise

P(d = 0]0) = {

Below, we refer to (1) as the common assumption.

Refuting the common assumption

We refute the common assumption with experimental data collected from [6], and summarized in
Table 1. There, the authors investigate Dorfman pooling and, regardless of the pooled test result,
follow up and test each pool member separately. We focus on 128 pools for which at least one
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subsequent separate test was positive — of which 29 pooled tests were negative and 99 positive. In
the data cited in [6], of the 29 negative pools, subsequent separate testing yielded a single positive
result in 24. In contrast, of the 99 positive pools, 42 yielded a single positive test upon subsequent
separate testing.

The data in Table 1 allows us to test the following null hypothesis Hy: The probability of a
pooled false-negative is equal for pools with one subsequent positively tested member and pools
with two or more such members. Hj is a direct consequence of the common assumption, and
rejecting Hy implies the common assumption is not realistic, at least for SARS-CoV-2.

We apply Fisher’s exact test for the presence of more than one positive individual in correctly
identified pools. Fisher’s test yields an increased odds ratio of 6.4, 95% CI (2.2,23.4), with a p-value
~ 10~%. Thus, we reject Hy, refuting the common assumption.

Negative pool Positive pool

# subsequent positives = 1 24 42
# subsequent positives > 1 5 57
Total 29 99

Table 1: Contingency table of data from [0]

Our model

Since the essence of the refuted common assumption is that amplification of all samples occurs
only once, we assume a more realistic model: amplification of viral RNA succeeds or fails for each
sample independently. Furthermore, according to [1,3,11,17], a false-positive does not depend on
the number of negative samples in a pool. For lack of data pointing otherwise, we incorporate this
assumption into our model with a small modification. We do assume that a false amplification
can occur only once per pool. However, we also assume false amplification is independent of any
other correct amplification. Specifically, it is possible that every correct amplification fails and
an erroneous one occurs simultaneously. This assumption is somewhat specific for the current
application of screening for SARS-CoV-2 via RT-PCR. For example, cross-reactivity with other
coronaviruses would have violated this assumption. However, cross-reactivity was ruled out in [19].
These assumptions lead to the following model, which is illustrated in Figure 1 and summarized in

(2).
N
P(d = 0[6) = S, [ [(1 = )" = Sp(1 — Se) =", (2)

i=1


https://doi.org/10.1101/2020.12.02.20242651
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.12.02.20242651; this version posted April 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

P(d =0]0) = (1 — S.)?S, | «— 5,

Figure 1: Illustration of the revised probabilistic model. A pool contains individuals {1, 2,3} with
state @ = (1,1,0) (i.e., individuals 1 and 2 are infected). A negative pooled test (d = 0) occurs when
three detection paths fail: A false-negative occurs for individuals 1 and 2, each with probability
(1 —S.). Additionally, no false-positive detection occurs, with probability Sp. Individual 3 is not
infected and does not contribute to the probability of the pooled test result.

Application: scheme false-negative rate

We calculate the false-negative rate for a single infected individual, henceforth referred to as ”Don-
ald”, under our model and under the common assumption. We distinguish three types of false-
negative events when performing pooling. A single test’s false-negative is the event of a negative
result upon testing Donald separately, i.e., in an RT-PCR test without pooling. A pooled false-
negative occurs when a pooled test containing Donald’s sample (and other samples) yields a negative
result, i.e., the pooling fails to detect at least one positive result. Lastly, a scheme false-negative
occurs when an entire pooling scheme fails to identify Donald as infected. Our first task is to
calculate Dorfman’s scheme false-negative rate. Equivalently, we ask: what is the probability of
not identifying Donald as infected under Dorfman pooling?

Denote the prevalence of infection in the (tested) population g. We denote Donald as individual
1, so that 6; = 1. Then:
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PA=001=1)= >  P(0...,00)P(d =01 =1,05,...,0x)

N-1
=s,0-50 Y (V) - st gt

k=0
= S,(1— Se)(1 — gSe)N 7t

If the pooled test yields a positive result, Donald is tested separately. Taking a conservative
stand, it is assumed that such a simple procedure poses no risk of introducing contaminant RNA.
Therefore, the separate test yields a positive result with probability S.

We calculate the probability that Donald is mistakenly identified as not infected, henceforth
referred to as the scheme’s false-negative rate and denoted Sg,. In order to correctly identify an
infected individual as infected, both pooled and separate tests have to yield a positive result. Thus,
the scheme’s false-negative rate is:

Sta:=1-SP(d=1[¢) = 1)

=1—5e[1—8p(1—Se)(1—qSe))N . )

Comparison metric

The single test false-negative rate 1 — S, and scheme false-negative rate Sy, are compared via:

Eexact = W - 100. (5)
Floxact is the percentage increase in the pooling scheme false-negative rate, relative to the single test
false-negative rate.
According to the common assumption, the scheme false-negative rate is 1 — S2. A straight
forward calculation shows that this implies the percentage increase in scheme false-negative rate is
FEcommon := 100 - Se.

Results

Scheme false-negative

We plot Fexact for varying prevalence g and sensitivity Se values, and make the comparison with
Ecommon- As recommended by [2], we apply different pool sizes N, for different prevalence values.
We observe that for a false-positive rate S, = 0.95 [2] and a range of reasonable sensitivity and
prevalence values [19,20,22,23], an increase of at least 60% in Eexact can be expected (Figure 2).
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Interestingly, an increase in infection prevalence monotonically decreases the scheme false-
negative rate, as can also be easily seen from (4). For the chosen parameter ranges, the increase
in the single test false-negative rates increases the relative error Fexact- These effects can be seen
in Figure 2 (left panel), upon conditioning on pool size. Extending the range for S, yields no
qualitative differences. We further compare Eeyact t0 Feommon, showing the discrepancy changes as
a function of both prevalence and the single test sensitivity (Figure 2, right panel).
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Figure 2: Relative increase in Dorfman pooling false-negative rates Eexact. Left: Colors represent
FEoxact, the relative percentage increase in the scheme false-negative rates relative to the single test
false-negative rates (5). Right: colors represent the difference between Fcommon and Eexact. The
disease prevalence g, is varied on the x-axis, while the test sensitivity is varied on the y-axis. Pool
size N, was chosen according to ¢ as in [2]. The left panel shows that Feyact is largest for low
prevalence values q. The difference between Ecommon and Eegact can be as large as 30%, as seen in
the right panel.

Discussion

Here, we developed a more realistic and novel probabilistic model for the outcomes of pooled PCR
tests, parametrized for SARS-CoV-2. Contrary to the common assumption, we assume, based on
data (Table 1), that multiple infected individuals increase the likelihood of a positive pooled test
result. A direct consequence of our model is that false-negative rates depend on infection prevalence.
Specifically, low values of infection prevalence increase the false-negative rates of Dorfman pooling.
These results remain qualitatively similar under varying parameter values, in the observed ranges
[12,19,20,22] (Figure 2). Our results give rise to a conflict: low infection prevalence leads to high
efficiency of Dorfman pooling [2], while also increasing false-negative rates.

As the COVID-19 pandemic progresses, the infection prevalence in various tested populations
undergoes frequent changes. Hence, as our results suggest, pooling schemes employed for mass
testing should be used with caution in populations where infection rates are low. Such mass-
tested populations often include air travel passengers [5] or presymptomatic and asymptomatic
individuals [18], and can be crucial for controlling outbreaks [15].

Thus, improving pooling schemes is imperative. An especially important consideration in de-


https://doi.org/10.1101/2020.12.02.20242651
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.12.02.20242651; this version posted April 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

signing such schemes is explicitly taking the intrinsic PCR error rates into account. We [4], as
well as others [16], have developed such models, although they have not yet been implemented in
real-world settings.

To conclude, pooling is an important technique that can increase testing throughput in a cost-
effective manner. Nevertheless, care must be given to pooling schemes’ false-negative rates, espe-
cially under low infection prevalence settings.
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