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Abstract 

With respect to the asymptomatic transmission characteristics of the novel coronavirus that appeared 

in 2019 (COVID-19), a susceptible-asymptomatic-infected-recovered-death (SAIRD) model that 

considered human mobility was constructed in this study. The dissemination of COVID-19 was 

simulated using computational experiments to identify the mechanisms underlying the impact of city 

and residential lockdowns on controlling the spread of the epidemic. Results: The implementation of 

measures to lock down cities led to higher mortality rates in these cities, due to reduced mobility. 

Moreover, implementing city lockdown along with addition of hospital beds led to improved cure 

and reduced mortality rates. Stringent implementation and early lockdown of residential units 

effectively controlled the spread of the epidemic, and reduced the number of hospital bed 

requirements. Collectively, measures to lock down cities and residential units should be taken to 

prevent the spread of COVID-19. In addition, medical resources should be increased in cities under 

lockdown. Implementation of these measures would reduce the spread of the virus to other cities and 

allow appropriate treatment of patients in cities under lockdown.  
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1. Introduction 

A novel coronavirus was identified as the cause of viral pneumonia outbreaks in Wuhan, China, 

in 2019. The World Health Organization officially termed this novel virus COVID-19 and publicly 

announced this on February 11, 2020. Patients infected with COVID-19 can be asymptomatic 

carriers[1] and infect others despite having no obvious symptoms. Because many infected patients 

are not or mildly symptomatic, identification of the chain of transmission and contact tracing have 

become extremely complicated [2]. Some studies of COVID-19 have used mathematical models and 

computer technologies to simulate and predict COVID-19 transmission[3-5]. For example, public 

health investigators evaluated the COVID-19 epidemic in China during the initial phase[6]. 

The Chinese central government implemented lockdown measures in Wuhan and other cities in 

Hubei Province to quarantine core areas of the COVID-19 outbreak on January 23, 2020. Two weeks 

later, measures to lock down residential units started to be implemented in most cities in China. 

However, the virus has spread across national borders to several other countries[7]. After the Chinese 

government decided to lock down cities in January, questions arose regarding the reasons behind a 

nationwide lockdown of residential units that was implemented in February, the impact of these 

measures on the control of COVID-19 dissemination, and whether they could provide any significant 

information that might help other countries faced with a similar situation. Here, computational 

experiments were conducted to identify the mechanisms underlying the impact of the lockdown of 

cities and residential units on the prevention and control of the epidemic. 

2. Background 

The lockdown of core cities and the nationwide lockdown of residential units were important 

measures adopted by the Chinese government to manage the spread of the epidemic. Lockdown 

measures for COVID-19 epidemic regions were first implemented in Wuhan City, Hubei Province, 

on January 23, 2020, followed by the progressive lockdown of other cities in the Hubei Province. By 

February 7, 2020, the number of new confirmed and suspected cases gradually began to decline in 

China (Figure 1A and C). From February 8, 2020, most cities across China had also implemented 

measures to lockdown residential units, and only one person from each household was permitted to 

purchase essential supplies every two or three days. Residents were required to show an “enter and 

exit pass” when entering or leaving their residence, and body temperature had to be checked at both 

entry and exit.A sharp increase in the number of confirmed infections on February 13 (Figure 1A and 

D) was due to adopting the recommendations in the 5th edition of the Diagnostic and Treatment Plan 

issued by the National Health Commission of China, which stated that a clinical diagnosis could serve 

as a basis for confirming a diagnosis.  
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Figure 1. Trends in COVID-19 development between February 8, 2020 and February 21, 2020 in mainland China.  

(A) Numbers of new confirmed and suspected cases and (B) new recovered cases and deaths per day in mainland 

China. Numbers of new cases per day outside (C) and within (D) Hubei Province. 

 

Medical resources are important factors that can determine the capacity of the core epidemic 

regions to provide treatments to patients. The 2019 China Statistical Yearbook states that the number 

of hospital beds per thousand people ranges from 4.56 to 7.19 in mainland China, and is 6.65 in Hubei 

Province (Table 1). However, Hubei was hit hard by the epidemic after the outbreak. A large number 

of confirmed infections and a limited number of hospital beds led to the failure of timely treatment 

for many patients, which resulted in severe illness and death.  

 

Table 1. Epidemic situation and medical resources. 

 

Region 

 

Confirmed 

cases (n) 

Deaths 

(n) 

Hospital 

beds /1,000 
Region 

Confirmed 

cases (n) 

Deaths 

(n) 

Hospital 

beds /1,000 

Hubei 62031 2029 6.65 Guangxi 245 1 5.2 

Guangdong 1332 5 4.56 Shaanxi 245 1 6.57 

Henan 1265 19 6.34 Yunnan 172 1 6.03 

Zhejiang 1175 0 5.79 Hainan 168 4 4.8 

Hunan 1010 4 6.99 Guizhou 146 2 6.82 

Anhui 987 6 5.19 Shanxi 131 0 5.6 
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Jiangxi 934 1 5.37 Tianjin 130 3 4.37 

Jiangsu 631 0 6.11 Liaoning 121 1 7.21 

Chongqing 560 5 7.1 Jilin 91 2 6.18 

Shandong 546 4 6.06 Gansu 91 1 6.17 

Sichuan 520 3 7.18 Xinjiang 76 1 7.19 

Heilongjiang 476 12 6.63 Inner Mongolia 75 0 6.27 

Beijing 395 4 5.74 Ningxia 71 0 5.96 

Shanghai 333 2 5.74 Qinghai 18 0 6.49 

Hebei 307 5 5.58 Xizang 1 0 4.88 

Fujian 293 1 4.88     

Numbers of confirmed infections and deaths were based on data released by the National Health Commission of 

China on 2020-2-20. Numbers of hospital beds/1000 are based on 2019 China Statistical Yearbook. 

3. Model 

Based on the SEIR model and considering asymptomatic COVID-19 carriers, deaths and the 

mobility of individuals, we constructed a model that included S, A, I, R, and D states (SAIRD). The 

status of individuals in the SAIRD model primarily included the following transition modes:  

An S individual who contacts an I individual or an A carrier will have the probability of 

becoming an A carrier.  

An A carrier might transition to the I state after the incubation period.  

An I individual will have a specific likelihood of being quarantined and treated, thus 

transitioning into the R state.  

An I individual who has not been effectively treated after a specific period might transition into 

the D state. 

In addition, the movements of individuals in I and A states across geographic areas during the 

COVID-19 epidemic resulted in rapid spread, resulting in epidemics in other cities. Therefore, the 

spread of the epidemic caused by human movement was simulated using computational means in the 

present study. 

4. Experimental design 

The simulation experiments were conducted using MATLAB R2017a and included simulations 

of locked down cities (LC) and locked down residential units (LU). Table 2 shows the parameter 

settings. 

Computational experiments were conducted in two-dimensional space with a population size of 

NU. In the initial phase, NU was randomly and uniformly distributed in NC; that is, the number of 

individuals in each city was NU/NC. One individual in a major city was randomly selected as the first 

infected person. The simulation program ran 200 timeframes, during which individuals might undergo 

spatial movement and a state change at any time frame (for example, daily). First, without considering 

the status of city and residential unit lockdowns, individuals moved to neighboring cities at a 

probability of the across-community mobility rate of the population (MU). Secondly, individuals in 

all cities either changed or maintained their original states based on the rules of the SAIRD model. 

Table 2. Parameter settings. 

Variables Definitions Value or distribution 

NU Number of users 81,000 
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NC Number of cities 81 

DEI Incubation period, days from E to I Uniform distribution[1,14] (mean 

COVID-19 incubation period: 7 days) 

DID Elapsed time to death, days from I to D 15 (maximum number of days from 

disease onset to death after ineffective 

rescue of infected individual  

MU Cross-community mobility rate of the population 0.1 

NHB Number of initial hospital beds NU ✕ 0.00665 (with reference to hospital 

beds/1,000 persons in China Statistical 

Yearbook) 

AHB Number of available hospital beds Calculated by software 

TLC Elapsed time to implementation of city lockdown 

measures 

5, 10, no lockdown 

TLU Elapsed time to implementation of residential unit 

lockdown measures  

10, 20 ,30 

DLU Degree of implementation of measures to lockdown 

residential units 

0.8, 0.9, 1.0 

THA Elapsed time to hospital bed addition 10, 20, 30 

DHA Degree of hospital bed addition 2, 6, 10 

5. Simulation 

5.1 Simulation of a city under lockdown  

Figure 2 shows differences in the ratios of individuals in the five states in the core locked down 

cities and the ratios of infected users in each city. With respect to timing, if a city was locked down 

after an infected user was confirmed and given no residential unit lockdown and no increase in 

medical resources, the ratio of individuals in S state would be 0% at steady state; that is, all individuals 

would be infected. This was without regard to whether the city was under early (Figure 2C), late 

(Figure 2B), or no lockdown (Figure 2A). Regarding variance in the ratios of D individuals among 

all cities, the earlier a city was locked down (Figure 2F, TLC = 5), the greater the variance in the 

proportions of D individuals state across all 81 cities (VARD ~ 0.05). This indicated that the number 

of deaths in the core cities that were under lockdown was significantly higher than in other cities. By 

comparison, variance in the proportions of D individuals across the 81 cities was lower when no cities 

were locked down (VARD of ~ 0.02; Figure 2D). Overall, the implementation of measures to place 

cities under lockdown could not reduce the ratios of infected individuals in the SAIRD model. The 

implementation of measures to lock down cities would result in larger variances in the number of 

deaths between cities with and without lockdown. These findings were consistent with the perspective 

of Li et al. (2020), who reported that the stringent lockdown policy applied to Hubei Province had 

suspended a nationwide outbreak of COVID-19[8]. However, mortality rates in lockdown cities were 

higher because infected individuals in core cities were unable to move to other cities. 
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Figure 2. Impact of elapsed time to city lockdown on COVID-19 spread.  

 
Figure 3. Impact of city lockdown and hospital bed addition on COVID-19 spread.  
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   We investigated the impact of adding hospital beds on the spread of the epidemic as follows. TLC 

and THA were both set at 10. We then examined the proportions of individuals in the five states when 

the hospital beds were increased 2- (DHA=2), 6- (DHA= 6), and 10- (DHA = 10) fold (Figure 3). The 

addition of hospital beds increased cure rates and reduced the mortality rates, but could not 

significantly reduce infection rates. When fewer hospital beds were added (Figure 3A, DHA = 2), the 

ratios of individuals in the R and D state were about 55% and 45%, respectively, at steady state. When 

more hospital beds were added (Figure 3C; DHA = 10), the ratios of individuals in the R and D states 

were about 85% and 15%, respectively, at steady state.  

We examined variances in the numbers of individuals in D state across 81 cities. Variance in the 

proportions of deaths across these cities at a steady state was larger when fewer hospital beds were 

added (Figure 3D; DHA = 2; variance, ~ 0.04). In contrary, variance in the proportions of deaths 

across these cities at a steady state was smaller when more hospital beds were added to core cities 

(Figure 3F; DHA = 10; variance, ~ 0.005). Overall, after implementing measures to lock down the 

cities, adding more hospital beds effectively improved cure rates and reduced mortality rates. 

Moreover, adding more hospital beds to core cities resulted in a low variance in the ratios (%) of 

deaths in the 81 cities. This indicated that increasing the amount of medical resources (number of 

hospital beds) could effectively reduce mortality rates in cities under lockdown. 

5.2 Simulation of residential unit lockdown  

Figure 4 shows the proportions of individuals in the five states in the SAIRD model and the 

number of available hospital beds after implementing measures to lock down residential units. The 

DLU was set at 0.9 and the TLU at 10, 20, and 30. When residential units were placed under lockdown 

sooner (Figure 4A; TLU = 10), the proportions of individuals in S state when steady state was reached 

was 0.95. This indicated more uninfected, and less infected individuals. Later lockdown (Figure 4C; 

TLU = 30), resulted in ~ 15% of the population being in the S state when steady state was reached. 

This indicated less uninfected individuals and more infected individuals. Later implementation of 

measures to lock down residential units (Figure 4F, TLU = 30), resulted in more I individuals, which 

led to a worsened bed shortage (a greater negative peak of available hospital beds). Sooner 

implementation of residential unit lockdown measures (Figure 4D, TLU = 10), resulted in less 

individuals becoming infected. Thus, a bed shortage did not arise. Overall, the lockdown of residential 

units effectively controlled the spread of the epidemic, particularly when implemented sooner. This 

was reflected by lower infection rates and a sufficient number of hospital beds. 
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Figure 4. Impact of elapsed time to implementation of measures to lock down residential units on 

COVID -19 spread. 

 

Figure 5. Impact of implementation of measures to lock down residential units on epidemic spread. 
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Further, the TLU was set at 20 and the DLU at 1.0, 0.9, and 0.8, and the proportions of 

individuals in the five states and the number of available hospital beds were examined (Figure 5). A 

higher degree of implementation of measures to lock down residential units led to lower infection 

rates (Figure 5A; DLU = 1.0). At steady state, the proportion of S individuals was higher, and almost 

85% of the individuals were not infected. This result showed that stringent implementation of 

measures to lock down residential unit could effectively control the spread of the epidemic. If the 

DLU was relaxed (Figure 5C; DLU = 0.8), the number of infected individuals significantly increased 

to 50% and the hospital bed shortages were prolonged. For example, under the complete lockdown 

of residential units (Figure 5D; DLU = 1.0), hospital bed shortage occurred at time frames of 20 – 40. 

In contrast, hospital bed shortages occurred at time frames 20 – 140 under non-stringent residential 

unit lockdown (Figure 5F; DLU = 0.8). The area under the curve (AUC) for the number of available 

beds that indicated the number of hospital bed shortages in a given period was smaller for complete 

lockdown (Figure 5D; DLU = 1.0) compared with the non-stringent lockdown of residential units 

(Figure 5F; DLU = 0.8). These findings indicated that more stringent implementation of the measures 

to lock down residential units led to lesser hospital bed requirements. 

 

6. Conclusions 

Our findings revealed that solely implementing measures to place cities under lockdown could 

not reduce the proportions of infected individuals in the SAIRD model and would also lead to higher 

mortality rates in these cities. Adding a large number of hospital beds along with city lockdown 

improved cure rates and reduced mortality rates. Residential unit lockdown effectively control the 

spread of the epidemic, and sooner implementation of this measure resulted in more effective 

epidemic control.  

The epidemic control measures adopted by China (city and residential unit lockdown) might 

provide valuable information for other countries. Italy has the worst epidemic situation in Europe. 

From February 23, 2020, Italy imposed quarantine and lockdown measures on > 12 municipalities, 

banned public assembly, and closed venues such as schools and bars; these actions were similar to 

the situation in Wuhan, China. However, the present findings indicate that Italian government should 

recommend that their citizens also undergo stringent home quarantine (residential lockdown). In 

addition, medical resources in the affected regions should be increased as soon as possible, and 

specialized hospitals for patients infected with COVID-19 should be provided. 
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