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Abstract 

This study examines the accuracy and applicability of machine learning methods in 

early prediction of mortality in COVID-19 patients. Patient symptoms, pre-existing 

conditions, age and sex were employed as predictive attributes from data spanning 

17 countries. Performance on a semi-evenly balanced class sample of 212 patients 

resulted in high detection accuracy of 92.5%, with strong specificity and sensitivity. 

Performance on a larger sample of 5,121 patients with only age and mortality 

information was added as a measure of baseline discriminatory ability. Stratifying -  

Random Forest - and linear - Logistic Regression - methods were applied, both 

achieving modestly strong performance, with 77.4%-79.3% sensitivity and 71.4%-

72.6% accuracy, highlighting predictive power even on the basis of a single attribute. 

Mutual information was employed as a dimensionality reduction technique, greatly 

improving performance and showing how a small number of easily retrievable 

attributes can provide timely and accurate predictions, with applications for 

datasets with slowly available variables - such as laboratory results. 

Unlike existing studies making use of the same dataset, limitations of the data were 

extensively explored and detailed, as each results section outlines the main 

shortcomings of relevant analysis. Future use of this dataset should be cautious and 

always accompanied by disclaimers on issues of real-life reproducibility. While its 

open-source nature is a credit to the wider research community and more such 

datasets should be published, in its current state it can produce valid conclusions 

only for a limited set of applications, some of which were explored in this study. 
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1 Introduction 

The continuing development of the COVID-19 pandemic has tested the limits of 

hospital resources and staff across the world, placing large importance on effective 

prognosis for triage and management of admitted patients.  

A large number of mortality predictive models that rely on easily available 

diagnostic and demographic information have been proposed to address the issue, 

but to varying degrees of usability. Many such models suffer from mild to severe 

flaws including the lack of patient level variables, training on pneumonia as a proxy 

for COVID-19, (Barda et. al, 2020), depending on less immediately available data 

from blood tests and other monitoring equipment (Knight et. al, 2020), 

unrepresentative – often older skewing (El-Solh, 2020) or mono-localized (An, 2020) 

– population samples, resulting either in low performance or, more worryingly, in 

excessively optimistic expectations of performance that overfit to a certain facet of 

the population. 

While all predictive models will inevitably suffer from issues surrounding quality 

of data or population reproducibility, many of these still generate valuable findings 

that can materially aid in patient profiling and optimization of treatment and have 

been adopted on a supportive level by hospitals. 

In this study, we aim to further the performance of predictive modelling by 

addressing the main shortcomings of previous iterations, namely lack of 

dimensionality reduction pre-processing and data limitations such as lack of 

geographic diversity, representative age range and other baseline characteristics, 

leading to more robust performance on unseen data and real-life application. At the 

same time, we will outline limitations in the data of this study and of a wider number 

of studies that rely on the same source but make scarce mention of flaws or 

representativeness issues. 
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2 Methods 

2.1 Dataset 

Data for this study was obtained from a continuously updated repository (Xu, 2020) 

containing anonymized patient level information on 2,676,311 COVID-19 positive 

individuals across 146 countries. 

2.2 Variable Extraction and Data Pre-Processing 

Symptoms and comorbidities in the dataset were parsed and one-hot encoded into 

fixed variable names. The table (Table 1) below shows all patient variables used in 

the study: 

 

CATEGORY VARIABLES 

SYMPTOMS ▪ Cough 

▪ Fever 

▪ Runny Nose 

▪ Headache 

▪ Diarrhea  

▪ Sore Throat 

▪ Chills 

▪ Difficulty Breathing 

▪ ARDS 

▪ Fatigue 

▪ Chest Symptoms 

▪ Pneumonia 

PRE-EXISTING 

CONDITIONS 
▪ Benign Prostatic 

Hyperplasia and 

other Prostate 

Conditions 

▪ Hypertension 

▪ Diabetes 

▪ Pulmonary Condition 

▪ Coronary Heart Disease or 

Other Cardiac Condition 

▪ Chronic Kidney Disease (CKD) 

and other Kidney Conditions 

▪ Cancer 

▪ Bronchitis 

▪ Conditions Affecting the 

Arteries 

▪ Asthma 

DERIVED ▪ Number of Pre-

existing Conditions 
 

DEMOGRAPHICS ▪ Age 

▪ Sex 

 

Table 1: Attributes used as predictors of mortality by category. 

 

As part of our initial analysis, only patients with full data for each of the outlined 

variables were kept in the study. Of the original 2,676,311 patients, 212 patients 

satisfied the data quality requirement and were retained in the study. The data is 

evenly balanced in its proportion of recoveries and deaths, which is not 

representative. 

Finally, a third data subset is used, which includes patients with information on all 

data categories from Table 1, excluding symptom data. This results in a larger 

sample of 5,121 patients. A full breakdown of sample characteristics is provided in 

later results sections. 
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2.3 Dimensionality Reduction 

Excessive numbers of explanatory variables can compromise model performance, so 

Mutual Information was applied to reduce the original 25 patient variables. 

The use of variable reduction in this study is partly aimed at avoiding the curse of 

dimensionality, but primarily at exploring how a smaller number of variables may 

still carry strong predictive power. Specifically to models that involve laboratory 

tests and mid to long term variables, the ability to rely on patient history or a smaller 

number of more immediate variables could expedite the decision making process or 

act as a first risk screening while results are expected. Two dimensionalities will be 

compared, one with no reduction and one with 7 features. 

2.4 Predictive Models 

Random Forest and Logistic Regression will be employed as classifiers for this 

study, the former for its proven performance in the relevant literature, and the latter 

owing to its statistical nature and to provide a linear counterpart. All classifiers will 

be trained on ex-ante balanced data and tested on unprocessed imbalanced data. 

2.5 Evaluation Criteria 

Model performance will be evaluated on several key metrics. As the dataset is 

imbalanced and recovery outcomes far outweigh death outcomes, accuracy is not a 

reliable measure of performance; a naïve recovery predictor would achieve strong 

accuracy without providing any benefit.  

Sensitivity and specificity will be the focus of model performance. Sensitivity 

measures the proportion of deaths correctly identified by the model, expressed as:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Where death is a positive outcome and recovery is a negative outcome. Specificity 

measures the proportion of recoveries correctly identified, expressed as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Receiver Operator Characteristic curves will be plotted for some classifiers and the 

area under the curve (AUC) will serve as an additional point of comparison. 

All above metrics will be derived from aggregation during 3-fold to 5-fold Cross 

Validation depending on size of each dataset variation mentioned earlier. 
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3 Results 

3.1 Correlation Matrix of Patient Characteristics 

Before analysing prediction model performance, the figure below (Fig. 1) outlines 

the main cross correlation of patient characteristics and their correlation with an 

outcome of death. We note that the most explanatory features that raise mortality 

risk are age (correlation coefficient of 0.51), whether a patient has a pre-existing 

chronic condition (0.59) and the number of pre-existing conditions (0.53). This is 

followed by particularly risk elevating conditions such as diabetes and hypertension 

and specific symptoms of advanced disease progression such as pneumonia and 

ARDS.  

 

Fig. 1: Correlation matrix of patient demographics, symptoms and pre-existing conditions with each 

other and with an outcome of death. 

3.2 Prediction Performance on Fully Populated Data 

3.2.1 Baseline Characteristics 

The fully populated data contains full entries for each category mentioned in the 

methodology, resulting in a sample of 212 patients. The data is geographically 

diverse with representation from 17 countries, though 62 patients (29.2%) originate 

from China alone. The mean (± standard deviation [SD]) age in the sample is 55.9 

years (±21.8). The mean age of patients who died of COVID-19 is significantly higher 

than those who didn’t, at 64.1 (±19.6) against 40.8 (±16.9) respectively. Men 

comprised 67.9% of the sample. A sizeable 49.5% of the sample suffered from some 
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pre-existing condition, which is overrepresented and 64.6% of patients ultimately 

died, rendering the final class balance highly skewed. 

3.2.2 Performance 

The table below (Table 2) outlines the out of sample performance of the two 

classifiers used in this study on both the full 25 features in the data and a reduced 

variation with 7 features, using 3-fold cross validation. Random Forest performs 

better than Logistic Regression across both variations of the data with high accuracy 

and class specific performance. Both classifiers perform better when reducing the 

dataset’s dimensionality, more so for Random Forest (92.5% accuracy vs. 89.6%). The 

best performing model has an AUC of 96.4 and an accuracy of 92.5%, well split 

between specificity and sensitivity. This dataset however is excessively balanced, so 

performance is not guaranteed to be representative of live testing. 

 

 Full 25 Feature Dataset 7 Feature Dataset 

 Random 

Forest 

Logistic 

Regression 

Random 

Forest 

Logistic 

Regression 

Specificity (%) 89.3 86.7 90.7 89.3 

Sensitivity (%) 89.8 76.6 93.4 76.6 

Accuracy (%) 89.6 80.2 92.5 81.1 
AUC (%) 96.1 89.6 96.4 89.8 

Table 2: Performance of mortality prediction across models measured using 3-fold cross validation on 

out of sample imbalanced data. 

3.3 Prediction Performance on Large Symptomless Data 

As a more representative alternative, the requirement to have symptom data was 

dropped, and only patients having populated entries for the remaining data 

categories were kept. This results in greater sample size, but, as will be outlined 

shortly, lacking data on leading causes of death. 

3.3.1 Baseline Characteristics 

In total, 5,121 patients are included in the sample. There is representation from 31 

countries. The mean (± standard deviation [SD]) age in the sample is 45.6 years 

(±19.0). The mean age of patients who died of COVID-19 is significantly higher than 

those who didn’t, at 60.2 (±20.8) against 42.1 (±16.8) respectively. Men comprised 

52.8% of the sample. A small 2.4% of the sample suffered from some pre-existing 

condition, which is underrepresented. Finally, 18.9% of patients ultimately died, 

which is strongly overrepresented, and in particular is highly overrepresented 

compared to the proportion of co-morbidities that might help explain it. 

3.3.2 Performance 

As just mentioned, the proportion of deaths in the sample vastly outweighs the 

proportion of co-morbidities, and as symptom data is largely missing in this 

variation of the data, there is a strong lack of explanatory variables. We thus use this 

sample purely as a large scale, cross-country testing ground for prediction based on 

age alone. This attribute has already been strongly linked to adverse COVID-19 

outcomes, but here it will be specifically benchmarked against the performance of 

earlier models. The new models tested in this section will form their own custom 

stratification or linearization of age for prediction purposes, as opposed to semi-
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arbitrarily drawn age brackets tested for significance in outcome differences, usually 

found in the literature. The table below (Table 3) outlines model performance on the 

data. Both featured models perform surprisingly well considering the single variable 

constraint, with accuracies in the low 70’s and a very favourable breakdown of type 

1 and type 2 error. Particularly interesting is their ability to now discern death better 

than recovery with significantly higher sensitivity than specificity. The data does 

still feature a high initial proportion of deaths, namely 18.9%, so a live 

implementation would likely perform worse, though in a hospital setting mortality 

may remain high. Thus on a large sample of diverse data age is an adequate 

standalone predictor of mortality, though strongly less effective than a combination 

model. 

 1 Feature (Age) Dataset 

 Random 

Forest 

Logistic 

Regression 

Specificity (%) 71.0 70.0 

Sensitivity (%) 79.3 77.4 

Accuracy (%) 72.6 71.4 
AUC (%) 81.9 78.7 

Table 3: Performance of mortality prediction across models measured using 5-fold cross validation on 

out of sample imbalanced data. 
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4 Discussion 

Models trained on a high quality 212 patient dataset obtained strong results, with 

the highest-performing model achieving 93.4% sensitivity and 90.7% specificity on 

mortality prediction. The dataset however is both small and unrepresentative in its 

mortality class balance. Performance on a second dataset of large dimensionality, 

but with slightly overrepresented mortality, was used to gauge how models would 

perform using only age as a discriminatory characteristic. Surprisingly, age alone 

acts as a very strong and balanced predictor, with the best model achieving a 

sensitivity of nearly 80% and an accuracy of nearly 73% on a baseline proportion of 

mortality of 18.9%. Co-morbidities are highly correlated with age, but in spite of the 

inevitable omitted variable bias that age would carry in this context, it is noteworthy 

to find such discriminatory power on the basis of a single attribute. Training the 

models on age as opposed to developing stratifications for it ex-ante allows an 

optimal empirical split capable of informing age risk bracketing, and interestingly 

both Random Forest – which would carry out a more traditional and nonlinear 

stratification – and Logistic Regression – which would carry out linearization – 

perform well. 

Throughout the study, dimensionality reduction methods greatly improved 

performance, implying that these methods are imperative for either model 

discrimination or simply to reduce the number of required variables and patient 

history to reach meaningful conclusions. This is particularly relevant to models in 

the literature that make use of laboratory results and other less immediately 

available data (Knight et. al, 2020). 

Across samples, the data employed in this analysis is more diverse than that of many 

comparable studies, with representation from 17 countries and a comprehensive age 

range. Unlike existing works (Pourhomayoun & Shakibi, 2020) using the same data, 

we wish to increase transparency of its flaws. Some primary shortcomings of the 

dataset are its small size – depending on attribute filtering criteria – the imbalance 

in classes – with mortality rising to 64.6% of the sample for the highest quality 212 

patient dataset – and the prevalence of chronic conditions, which is too high in the 

212 patient dataset and too low in the 5,121 patient dataset. Additionally, most data 

is sourced from the first four months of the pandemic, thus providing no 

information on later variants of interest, some of which have been linked to greater 

mortality risk. These limitations are not minute, and caution should be employed in 

reporting any results based on this widely cited and publicly available dataset. 

While informative conclusions can be reached, they must be followed by proper 

disclosure about issues surrounding how representative or small the filtered, high 

quality data actually is, even if the parent dataset spans millions of entries.  
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5 Conclusion 

This study has shown the substantial accuracy machine learning models can bring 

in the early detection of mortality in COVID-19. The most clinically relevant 

performance was obtained on a high quality sample of 212 patients with accuracy, 

sensitivity and specificity all above 90%, though the sample is biased with a roughly 

even distribution of death and recovery outcomes. As a worst estimate of real life 

performance, a more representative, imbalanced dataset of 5,121 patients was 

assembled on the basis solely of age as a mortality predictor, showing that both 

linear and nonlinear models could reasonably detect death – at 80% sensitivity. The 

limitations of the data employed in this study have been explored and addressed, 

providing a cautious warning on future use in the literature. 
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