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In the research, we developed a computer vision solution to support diagnostic radiology in differentiating between COVID-19 pneu-
monia, influenza virus pneumonia, and normal biomarkers. The chest radiograph appearance of COVID-19 pneumonia is thought to
be nonspecific, having presented a challenge to identify an optimal architecture of a convolutional neural network (CNN) that would
classify with a high sensitivity among the pulmonary inflammation features of COVID-19 and non-COVID-19 types of pneumonia.
Rahman (2021) states that COVID-19 radiography images observe unavailability and quality issues impacting the diagnostic process
and affecting the accuracy of the deep learning detection models. A significant scarcity of COVID-19 radiography images introduced
an imbalance in data motivating us to use over-sampling techniques. In the study, we include an extensive set of X-ray imaging of
human lungs (CXR) with COVID-19 pneumonia, influenza virus pneumonia, and normal biomarkers to achieve an extensible and
accurate CNN model. In the experimentation phase of the research, we evaluated a variety of convolutional network architectures,
selecting a sequential convolutional network with two traditional convolutional layers and two pooling layers with maximum function.
In its classification performance, the best performing model demonstrated a validation accuracy of 93% and an F1 score of 0.95. We
chose the Azure Machine Learning service to perform network experimentation and solution deployment. The auto-scaling compute
clusters offered a significant time reduction in network training. We would like to see scientists across fields of artificial intelligence
and human biology collaborating and expanding on the proposed solution to provide rapid and comprehensive diagnostics, effectively
mitigating the spread of the virus.
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1. Introduction

In December 2019, an epidemic caused by severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) broke out in
Wuhan, China. Coronavirus disease, i.e. COVID-19, results from
SARS-CoV-2 infection, has caused human to-human transmis-
sion (HHT) and death worldwide.

As of December 2021, global statistics, reported to the
World Health Organization, demonstrate more than 263 mil-
lion confirmed cases of COVID-19, including more than 5.23
million deaths. The new coronavirus causes severe inflamma-
tion in human lungs, damaging the cells and tissue that line
the air sacs. The main pathologic manifestation of COVID-19
is pulmonary inflammation: radiographic manifestations vary
and include ground-glass opacity (GGO), consolidation, or GGO
mixed with consolidation.

Influenza is a highly contagious disease that occurs world-
wide. Influenza viruses (mostly type A (HIN1), occasionally
type B) cause influenza virus pneumonia, resulting in seasonal
epidemics of community-acquired pneumonia. The main radio-
graphic manifestations of influenza virus pneumonia are GGO
and consolidation with air bronchogram, interlobular septal
thickening, centrilobular nodules, and reticular opacities (“CT
Manifestations of Coronavirus Disease (COVID-19) Pneumonia
and Influenza Virus Pneumonia: A Comparative Study”, 2021).

Radiologists in China and in the United States distinguished
coronavirus disease 2019 from viral pneumonia at chest radio-
graphic pattern with moderate to high accuracy. Compared with
non-COVID-19 pneumonia, COVID-19 pneumonia was more

likely to have a peripheral distribution (80% vs 57%, P < .001),
ground-glass opacity (91% vs 68%, P < .001), fine reticular
opacity (56% vs 22%, P < .001), and vascular thickening (59%
vs 22%, P < .001), but it was less likely to have a central and
peripheral distribution (14% vs 35%, P < .001), pleural effusion
(4% vs 39%, P < .001), or lymphadenopathy (3% vs 10%, P =
.002) (“Performance of Radiologists in Differentiating COVID-
19 from Non-COVID-19 Viral Pneumonia at Chest CT”, 2020).

The recent study on the comparison of the radiographic man-
ifestations of COVID-19 Pneumonia and Influenza Virus Pneu-
monia conducted by Lin (2021) demonstrated that the most le-
sions in patients with COVID-19 pneumonia were located in the
peripheral zone and close to the pleura, whereas influenza virus
pneumonia was more prone to show mucoid impaction and pleu-
ral effusion. The studies conducted by Lin (2021) and Bai (2020)
are aligned in their findings. However, differentiating between
COVID-19 pneumonia and influenza virus pneumonia in clini-
cal practice still remains difficult.

Therefore, we would like to develop an artificial neural net-
work - an algorithmic approach that complements a radiologi-
cal diagnosis. In our experimentation, we consider convolutional
neural network topology and architectures to determine a highly
performant model classifying among normal lung biomarkers,
COVID-19 and influenza virus pneumonia images.

The chest radiograph appearance of COVID-19 pneumonia
is thought to be nonspecific, having presented a challenge to
identify an optimal architecture of a convolutional neural net-
work that would classify with a high sensitivity among the pul-
monary inflammation features of COVID-19 and non-COVID-
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19 types of pneumonia. Rahman (2021) states that COVID-19
radiography images observe unavailability and quality issues
impacting the diagnosis process and affecting the accuracy of
the deep learning detection models. A significant scarcity of
COVID-19 CXR introduces an imbalance in data motivating the
use of over-sampling techniques.

In the research, we employ an extensive set of publicly avail-
able X-ray imaging of human lungs with COVID-19 pneumonia,
influenza virus pneumonia, and healthy biomarkers. We gather
data from Kaggle datasets, created by an online community
of data scientists and machine learning practitioners, and from
Mendeley Data, a secure cloud-based repository.

We chose to perform model experimentation on the Azure
Machine Learning platform since it offers a wide range of pro-
ductive experiences to build, train, and deploy machine learn-
ing models, as well as to foster team collaboration. Leveraging
the auto-scaling compute feature of the Azure Machine Learning
platform allows us to manage compute resources for better train-
ing distribution, rapid testing, and validation, as well as model
deployment. As a part of the experiment design, we compared
the model processing time using available compute resources,
i.e. evaluate model training time on CPU and GPU clusters.

2. Literature Review

In our research, we investigate recently conducted medical re-
search and studies on the differences in computed tomography
manifestations of coronavirus disease (COVID-19) pneumonia
and those of influenza virus pneumonia. Primarily, we lever-
age the findings from the research “Performance of Radiologists
in Differentiating COVID-19 from Non-COVID-19 Viral Pneu-
monia at Chest CT” (Bai et al., 2020) and from the compara-
tive study “CT Manifestations of Coronavirus Disease (COVID-
19) Pneumonia and Influenza Virus Pneumonia: A Compara-
tive Study” (Lin et al., 2021). The discoveries provide points
of reference for distinguishing SARS-CoV-2 infection from in-
fluenza virus infection based on the CT morphologic features
and quantitative parameters of COVID-19 pneumonia and in-
fluenza virus pneumonia. However, it is stated that differenti-
ating between COVID-19 pneumonia and influenza virus pneu-
monia in clinical practice still presents a challenge. Our study
leverages two-dimensional radiography images, we refer to the
findings detected via computer tomography as a reference, and
build a knowledge base around the studied conditions.

Another study titled “Differential Diagnosis of COVID-
19 Pneumonia From Influenza A (HIN1) Pneumonia Using
a Model-Based on Clinicalradiologic Features” demonstrates
analysis and a method that compares the clinicoradiologic data
of the patients with COVID-19 and HIN1 types of pneumonia.
The researchers optimized the clinicoradiologic features by the
least absolute shrinkage and selection operator (LASSO) logistic
regression analysis to generate a model for differential diagnosis.
They used receiver operating characteristic (ROC) curve plots to
assess the performance of the model in the primary and valida-
tion cohorts. Their findings suggest that peripheral distribution
patterns, older age, low-grade fever, and slightly elevated as-
partate aminotransferase (AST) were associated with COVID-19
pneumonia, whereas, a peribronchovascular distribution pattern,
centrilobular nodule or tree-in-bud sign, consolidation, bronchial
wall thickening or bronchiectasis, younger age, hyperpyrexia,
and a higher level of AST were associated with HINI pneu-
monia. At this current stage, our research scope considers fea-
tures manifested and available through X-Rays, and is limited
to considering demographic and physiological symptoms of the
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COVID-19 and HIN1 pneumonia, however, the solution might
be extended by enriching a feature set upon its availability.

As for the newly proposed deep learning solutions in the
researched domain, we reference the paper “Deep Learning-
Driven Automated Detection of COVID-19 from Radiography
Images: a Comparative Analysis” (Rahman et al., 2021) since it
covers challenges due to the unavailability and quality issues re-
lated to COVID-19 radiography images impacting the diagnostic
process and affecting the accuracy of the detection model. The
challenge of the unavailability speaks to having a sufficient num-
ber of X-ray images of pneumonia-affected and normal lungs,
and a significant scarcity of COVID-19 radiography images in-
troducing an imbalance in data. The researchers invoked tech-
niques of Synthetic Minority Over Sampling (SMOTE), border-
line SMOTE, and safe level SMOTE. Among deep learning-
based diagnosis approaches, the researchers discuss transfer
learning, ensemble learning, domain adaptation, cascaded net-
works, along with some other approaches.

The authors are concerned about the limitations of the exist-
ing deep convolutional neural networks like ResNet, DenseNet,
and VGGNet due to having a deep structure with excessively
large parameter sets and lengthy training time. Whereas in
Transfer Learning (TL), knowledge acquired from the training
on one dataset is reused in another task with a related dataset,
yielding improved performance and faster convergence.

Chest X-ray image of a COVID-19 patient has a different
distribution but similar characteristics as that of pneumonia, al-
lowing a promising usage of the domain adaptation technique,
i.e. using feature adversarial adaptation.

The paper speaks to the significant contributions of ensem-
ble learning towards achieving an accurate result for COVID-19
detection as well. For instance, Goodwin combined 12 models
(Resnet-18,50,101,152, WideResnet-50,101, ResNeXt-50,101,
MobileNet-v1, Densenet-121,169,201) demonstrating better re-
sults (Goodwin et al., 2020). Similarly in the study ‘“Pneumonia
detection in chest X-ray images using an ensemble of deep learn-
ing models” (Kundu et al., 2021), the researchers employed deep
transfer learning to handle the scarcity of available data and de-
signed an ensemble of three convolutional neural network mod-
els: GoogLeNet, ResNet-18, and DenseNet-121. A weighted av-
erage ensemble technique was adopted, wherein the weights as-
signed to the base learners were determined using a novel ap-
proach.

The results, discovered in the study “Deep Learning-Driven
Automated Detection of COVID-19 from Radiography Images:
a Comparative Analysis” (Rahman et al., 2021), show that the
DenseNet201 model with Quadratic SVM classifier performs
the best (accuracy: 98.16%, sensitivity: 98.93%, specificity:
98.77%) and maintains high accuracy in other similar architec-
tures as well. The recent findings on the similar detection classi-
fication problem are promising, inspiring, and useful to our ex-
perimentation.

3. Data Collection

In the research, we employ publicly available X-ray imaging of
human lungs with COVID-19 pneumonia, influenza virus pneu-
monia, and health biomarkers. Data was collected from Kag-
gle datasets, created by an online community of data scientists
and machine learning practitioners, and Mendeley Data, a secure
cloud-based repository. The input data are represented by three
classes:
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1. X-ray images of human lungs with COVID-19 pneumonia
(4,152)

2. X-ray images of human lungs with influenza virus pneumo-
nia (4,494)

3. X-ray images of healthy human lungs (10,860)

In the pre-processing step, we manually balanced the orig-
inal data, arriving at an equal number of images in each class,
using the smallest dataset as the baseline (COVID-19 pneumo-
nia at 4,152 images). The classification problem considers three
classes:

1. X-Ray images with healthy human lungs were labeled as 0

2. Influenza virus pneumonia images were labeled as 1
3. COVID-19 pneumonia images - labeled as 2

/I
F 4
»

Fig 3. COVID-19

;'m

Fig 1. Healthy

Fig 2. Influenza

As for image scaling, we addressed it by resizing each image
to 300x300, solving the inconsistency in the image sizing. To
normalize the image vectors, we divided the values within by
255. We split the data into train and test sets with 20% of the
data being retained for the test set. The train and test datasets
maintained a balance in between each of the categories in order
to prevent the overfitting or underfitting in a given category.

The final training set considered 3,374 radiographic images
of healthy human lungs, 3,327 images of lungs infected with
influenza pneumonia, and 3,359 images of lungs infected with
COVID-19 pneumonia whereas the final test set consisted of
818 images of healthy human lungs, 865 images of lungs in-
fected with influenza pneumonia, and 833 images of lungs in-
fected with COVID-19 pneumonia.

Leveraging an instance of Azure Data Lake, we stored the
train and test sets under a single directory for easy access during
the experimentation.

4. Methodology

To analyze visual imagery of CXR images with COVID-19
pneumonia, influenza virus pneumonia, and normal biomarkers,
we have considered a convolutional neural network topology of
deep and shallow architectures.

In the initial experimentation phase, we identified a convo-
lutional neural network with 512 units, followed by a pooling
operation for two-dimensional spatial data with a size of 2x2,
and a flattened layer of 64 nodes resulting in 95% accuracy. We
use the model as an indirect baseline while constructing archi-
tectures for multi-class image classification.

Convolutional networks are a specialized type of neural net-
work that uses a mathematical operation, convolution, in place
of general matrix multiplication in at least one of their layers.
Such networks are characterized with advantageous little data
pre-processing. Besides input layers, hidden layers that perform
convolutions, and output layers, there are special layers such
as a pooling layer with either maximum or average functions,
fully connected layers, and nor malization layers. After passing
through a convolutional layer, the image becomes abstracted to

a feature map with a tensor shape: (number of inputs) x (fea-
ture map height) x (feature map width) x (feature map channels).
Three hyperparameters control the size of the output volume of
the convolutional layer: the depth, stride, and padding size. The
activation function is used in the final layer of a neural network-
based classifier, mapping a vector and a specific index to a real
value (Figure 4).

Feature maps
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Fig. 2: Figure 4. CNN Architecture

In our research, we utilized the sequential convolutional net-
work. The approach that demonstrated the best results takes on
the architecture with two traditional convolutional layers and two
pooling layers with maximum function. The tensor of the in-
put layer takes on a shape of 300 pixels of height, 300 pixels of
width, and 3 input channels. Convolutional layers convolve the
input and pass its result to the next layer. Max pooling layer uses
the maximum value of each local cluster of neurons in the fea-
ture map. Then, we flatten the output of the convolutional layers
to create a single long feature vector. And, the final classification
steps are performed in the fully-connected dense layers activated
by a softmax function.

Below we present the convolutional neural network architec-
ture of the best performing results (Figure 5):

input: | [(?, 300, 300, 3)]
output: | [(?, 300, 300, 3)]

conv2d_input: InputLayer

(2, 300, 300, 3)
output: | (?, 298, 298, 512)

conv2d: Conv2D

[Cinput: [ 2,298, 298, 512) |
\output \ (?, 298, 298, 512) \

input: | (2, 298, 298, 512)
output: | (2, 149, 149, 512)

max_pooling2d: MaxPooling2D

input: [ (?, 149, 149, 512)
(?, 11366912)

flatten: Flatten

output:

input: | (7, 11366912)
output:

dense: Dense

* [oupus [ 03 |

\ input: \(7, 3) |
[output: [ 2,3) |

Fig. 3: Figure 5. Proposed CNN

5. Results

The majority of the algorithms, we have evaluated, took on
somewhat shallow architectures. In the experimentation phase,
among other hyperparameters, we have compared a single-layer
convolutional neural network with a multilayer model, i.e. the
number of convolutional layers being two. We observed a distin-
guishable performance difference between these two main archi-
tectures. The analysis of the performance metrics, architecture
complexity, and training time helped us to select the best model.

As the result of the model selection for the research prob-
lem, the architecture of the best performing model takes on two
convolutional layers. The first convolutional layer is constructed
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with 24 filters and the second comes to 32 filters. The dense
layer has 64 nodes. The processing time of the training phase
demonstrated a promising timing of 33 minutes. The model per-
formance metrics such as validation accuracy shows the value of
93.00%, the validation loss results in 0.53, and an F1 score of
the most optimal model is 0.95 (Table 1).

Run  Conv.Layers Conv. L1 Filters  Conv. L2 Filters  Dense Nodes

1 1 64 128

2 1 32 64

3 1 64 16

4 1 32 16

S5 1 24 10

6 2 128 64 64

7 2 64 32 64

8 2 24 32 64

9 2 64 128 64

10 2 32 64 64

Run  Training Time  Validation Accuracy  Validation Loss ~ F1 Score

1 79.33 89% 534 91

2 40.21 92.5% 436 94

3 16.28 92.6% 357 94

4 22.44 90.2% 320 92

5 12.58 92.8% 314 95

6 69.18 87.9% 427 .89

7 64.13 88.5% 469 .88

8 33.2 93% 531 95
92.7 92.5% 466 94

10 25.43 87.4% 499 90

Fig. 4: Table 1. Experiment details, training duration, and met-
rics

To support our experimentation we leveraged Azure Ma-
chine Learning. We performed model training using the dedi-
cated compute clusters on the Azure Machine Learning platform.
The cluster consisted of Azure NC6 auto-scaling instances, with
each instance having 6 CPU cores, 56 Gigabytes of RAM, and 1
NVIDIA Tesla K80 GPU.

We performed model testing on the balanced dataset consist-
ing of 2,516 COVID-19 pneumonia, influenza virus pneumonia,
and normal lung images. In the confusion matrix below (Fig-
ure 6), we demonstrate the generalization abilities of the most
optimal model during the inference phase. The model classifier,
applied to the unseen data, takes on an F1 score of 0.95.

800

Fig. 5: Figure 6. Trained CNN Confusion Matrix
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We leveraged the model repository of Azure Machine Learn-
ing and deployed the model to an Azure Kubernetes Services
(AKS) endpoint for real-time inference. Such an approach pro-
vides capabilities for a production-ready deployment which
could be leveraged within an application development initiative,
or as a standalone service to return the probability or predicted
value of new chest X-ray images.

‘We made use of the AKS endpoint and simulated a real world
application by developing a simple file upload website where ra-
diologists and researcher could select an image for classification.
The website processes the uploaded CXR image and consumes
the AKS REST API endpoint as a part of the classification solu-
tion.

We performed an inference with the deployed model on
1,000 newly collected and unseen influenza virus pneumonia im-
ages. Of these 1,000 images the model correctly classified 979
images positive for the influenza virus pneumonia, incorrectly
classified 17 images as positive for COVID-19 pneumonia, and
4 images were detected as a class of normal lungs, resulting in
an overall accuracy of approximately 97%.

6. Analysis and Interpretation

In summary, to accurately distinguish the visual feature repre-
sentation in COVID-19 pneumonia and influenza virus pneumo-
nia chest X-rays, we selected a robust deep learning architec-
ture in computer vision, known as a convolutional neural net-
work. The research experimentation was model-centric in na-
ture, focusing on the hyperparameter tuning and adjusting the
network architectures rather than CXR data generation and col-
lection methods. The research benefited from collecting a sub-
stantial amount of relevant imagery data from public reposito-
ries. However, CXR data, gathered from disparate sources, were
not consistent observing skewed images and low resolution.

Despite high sensitivity in diagnosing, the recent study “Per-
formance of Radiologists in Differentiating COVID-19 from
Non-COVID-19 Viral Pneumonia at Chest CT" addressed non-
specificity in the chest radiograph appearance of COVID-19
pneumonia by assessing the performance of the radiologists
from the U.S. and China. Having considered 219 positive and
205 negative COVID-19 patients, the study observed four United
States radiologists demonstrating high specificity percentages
(93-100%) and moderate sensitivities (73-93%). In our research,
the proposed convolutional approach shows the specificity of
97% and the sensitivity of 92-93% in COVID-19 pneumonia.
We also tested the proposed method on the additional CXR im-
ages to further validate the model performance. Our results sug-
gest similarity to the performance in the aforementioned study
by Bai (2020).

In the research, we did not have control in the data collec-
tion methods and patient history, therefore, the model experi-
mentation was performed only on available CXR imagery data.
The additional variables such as patient symptoms, demograph-
ics, chest radiograph equipment details, evolution of patient lung
states, and other factors are unknown to the scope of the study
and have not been considered in the model training process.
However, it is known that radiologists would leverage some or
all of these factors when formulating a diagnosis. For this reason,
we view our solution as a supporting technology to the manual
diagnostic radiology, complementing opinions of radiologists.
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7. Conclusion

In the research, we aimed to devise a deep learning-based so-
lution to aid radiologists in differentiating between COVID-19
pneumonia, influenza virus pneumonia and normal biomarkers
in the CRX data. The architecture of the highly performant
model, determined in our research, yielded 93% test accuracy
and an F1 score of 0.95, consuming only 33 minutes of com-
pute resources during the training phase. Our proposed solution
not only demonstrates strong model performance, but also min-
imizes the compute resources and time required for future re-
training efforts.

Making use of Microsoft Azure Machine Learning service,
we were able to track experiment details, metrics, and charts,
as well as version control of our code and trained models. The
Azure Machine Learning platform offers a collaborative expe-
rience, easier tracking of model comparisons, and a stream-
lined model deployment process. Further, our research explores
an end-to-end solution leveraging the Azure Machine Learning
platform to simulate a model deployment and adaptation by ra-
diologists. We developed a simple file upload website to process
new CXR images by submitting them to our deployed model
hosted in Azure Kubernetes Service. We used our deployed
model to run inference on 1,000 unseen influenza pneumonia
CXR images, resulting in 979 images being correctly classified
and an accuracy of 97%.

Our solution is promising in complementing and supporting
diagnostic radiology to differentiate between COVID-19 and in-
fluenza virus types of pneumonia, in a timely and accurate man-
ner. We would like to see scientists, across various fields of ar-
tificial intelligence and human biology, collaborate and expand
on our solution to provide rapid and comprehensive diagnostics
to mitigate the spread of the virus, its mutations, variants, and
strains.

8. Directions for Future Work

While the current state of our research shows promising re-
sults, COVID-19 continues to mutate which may lead to shifts in
pathologic manifestation and diagnostic methods. The expanded
data collection could benefit future work. In the current research,
we leveraged public repositories to gather available imagery data
which, unfortunately, observed inconsistencies and low resolu-
tion. As a next step, we would like to collaborate with research
medical facilities to gather more relevant data on the subject (e.g.
mutations, variants, strains, etc.) following with reproducing our
best performing model on the newly manifestations and feature
set. Similarly, we are excited to apply our classification network
on other lung pathologies such as chronic obstructive pulmonary
disease (COPD), bronchitis, etc. to determine its validity.

In addition to expanding available data and problem scope,
we would like to explore the impact of more complex and deep
network architectures, such as an increased number of convo-
lutional (2 < n <= 10) and dense layers (2 <n <= 5). This
could prove beneficial as we increase the scope of our classi-
fications to include variants of COVID-19, distinguish between
various stages of the disease, or identify other lung pathologies.
We would also like to explore if there would be potential bene-
fits from dimensionality reduction techniques such as principal
component analysis (PCA) and kernel PCA, as well as additional
network regularization techniques.

From a systematic standpoint, we would like to analyze
changes in performance time by increasing processing capabili-
ties on virtual machines with more powerful CPUs, GPUs, and

RAM. In terms of improving user accessibility of our model, we
would like to create more user-friendly mobile and desktop plat-
forms to complement the work of manual diagnostic radiology
as well as to allow personal utilization of the software.
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