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Abstract

During the COVID-19 pandemic, the slope of the epidemic curve in Mexico City
has been quite unstable. We have predicted that in the case that a fraction of
the population above a certain threshold returns to the public space, the
negative tendency of the epidemic curve will revert. Such predictions were
based on modeling the reactivation of economic activity after lockdown by
means of an epidemiological model resting upon a contact network of Mexico
City derived from mobile device co-localization. We evaluated the epidemic
dynamics considering the tally of active and recovered cases documented 1in
the mexican government’s open database. Scenarios were modeled 1in which
different percentages of the population are reintegrated to the public space
by scanning values ranging from 5 % (around 350,000; close to the number of
people estimated by the local authorities to be returning to the public space)
up to 50 %. Null models were built by using data from the Jornada Nacional de
Sana Distancia (the Mexican model of elective lockdown) 1in which there was a
mobility reduction of 75 % and no mandatory mobility restrictions. We found
that a new peak of cases in the epidemic curve was very likely for scenarios
in which more than 5% of the population rejoined the public space; The return
of more than 50 % of the population synchronously will unleash a peak of a
magnitude similar to the one that was predicted with no mitigation strategies.
By evaluating the tendencies of the epidemic dynamics, the number of new cases
registered, new cases hospitalized, and new deaths, we consider that under
this scenario, reactivation following only elective measures may not be
optimal. Given the need to reactivate economic activities, we suggest to
consider alternative measures that allow to diminish the contacts among people
returning to the public space. We evaluated that by “encapsulating”
reactivated workers (that 1is, using measures to reduce the number of contacts
beyond their effective community 1in the contact network) may allow a
reactivation of a larger fraction of the population without compromising the
desired tendency in the epidemic curve.



1. Introduction

COVID-19, the disease caused by the novel coronavirus SARS-CoV-2 1is a complex
pathology of 1infectious origins. The pathology 1is contagious via the airway
(very T1likely even air-borne) [Stadnytskyi, et al 2020] and 1is able to
unleash, not only the characteristic severe acute respiratory syndrome (SARS)
both also a series of clinical manifestations of immune and inflammatory type
that may lead to pneumonia and even lead to sepsis induced systemic failure
(SISF) [Zaim, et al, 2020]. Being a nascent infectious epidemic, we have
little dinformation regarding -dts broad clinical manifestations, even less
regarding the molecular mechanisms behind. However, it 1is known that the
disease 1is able to adopt a broad range of forms, from a mild, temporary
respiratory 1infectious disease to a complex pathology with a high mortality
rate, often requiring critical care.

The enormous burden of disease caused by SARS-CoV2 has been a consequence of
the highly intertwined chains of transmission of the epidemic over extensively
interconnected contact networks, local, regional and global [Yamamoto, et al
2020]. For this reason, facing the challenges posed by this disease involves
understanding the way dynamic epidemic processes happen 1in complex human
interaction networks [Altohouse, et al 2020; Kojaku, et al 2020].

1.1 A primer on network epidemiology

Network Epidemiology or Epidemics on Networks (EoN) has been defined as the
study of the spread of disease and risky behaviors among populations founded
in the tenets of network science [Eames and Read, 2007; Kiss, et al 2017].

EoN dis then concerned on the modelisation of disease spreading, as well as
contagion and diffusion processes happening amidst social (especially public)
spaces 1in living systems. Tha main emphasis to date has been applied to human
populations, however similar methods can be easily adapted to deal with animal
plagues, epidemics on livestock and so on. The aim of EoN 1is being able to
build realistic, mechanistic models to explain the spread of human disease by
considering -1individual and collective mobility as well as population and
meta-population features -influencing the contact between -dindividuals leading
to contagion events.

These models may 1in turn be used to forecast the spreading of diseases
(infectious and otherwise) by agents. Such agents may be infectious organisms
such as bacteria, virus, and the likes, both also social behaviors such as the
propensity to smoke, overeating and other factors influencing chronic diseases
with a collective dimension component. As in clinical and social epidemiology,
the goal 1is to be able to determine risks, containment strategies and to be
able to assess targeted interventions [Kiss, et al 2017].

The usual setting of EoN considers the dindividuals in a population as nodes 1in
a network. The -nteractions connecting the individuals (i.e. the 1links) are



such that epidemic behavior emerges from these, such as contacts leading to
the propagation of contagious agents (pathogens). The structure of the network
influences the dynamic behavior of the epidemic and may offer clues as to what
kind of mitigation and containment strategies can be used.

2. Materials and Methods

2.1 Network modelling of human interactions using mobile devices:

Human contact networks are characterized by an heterogeneous connectivity
degree distribution with a long tail. The properties of this type of networks
are the object of study of the discipline called Network Science [Albert &
Barabasi, 2001]. Such heterogeneous connectivity patterns have some
consequences 1in the epidemiological setting such as a high variance 1in the
individual reproductive number and the dominance of the superspreading events
that arise due to the high degree nodes [Kiss, et al 2017].

A major challenge for EoN 1is the accurate representation of contact networks
for a given population. Using a combination of observational and
technology-based methods, it is possible to reconstruct contact networks 1n
limited, well-bound settings such as schools [Stehlé et al, 2011], hospitals
[Isella et al 2011], or conferences [Szomszor et al 2010]. However, the
challenge of reconstructing a contact network at the scale of a city -s
non-trivial. Recently, a contact network for Mexico City was reconstructed
through the use of anonymized mobile device locations throughout a single day
[de-Anda Jauregui et al 2020]. This network was released as open data
[doi:10.17605/0OSF.I0/B6G92] .

In order to be able to effectively run epidemic simulations, we scaled down
the large contact network for Mexico City using a methodology based on the
stochastic blockmodel (SBM) structure of the original network [Peixoto 2014,
Peixoto 2015]. Briefly, we obtained the SBM structure of the largest connected
component of the contact network of Mexico City, and scaled the size of each
individual block to 1/10th of the original. Then, we generated a new network
using the original SBM edge probability on the scaled down blocks. This new
network captures the original’s topology 1in terms of degree distribution and
clustering coefficients, which is necessary for the results of an EoN dynamics
to be representative of the Tlarger one [Kiss, et al 2017]. These network
operations were performed using the {graph-tool} package [Peixoto 2014b].

3. Theory/Calculations

3.1 Model Fundamentals and assumptions

In this study, we will be working under the following set of assumptions:



1. The disease in Mexico City 1is transmitted over a heterogeneous network
reflecting the highly hierarchical and modular structure of urban systems
[Levinson, 2012]

2. Epidemic dynamics is guided, 1in part, by factors intrinsic to the virus
which exhibit stochastic behavior as a product of -interindividual biological
heterogeneity [Zhao and Chen, 2020].

3. In view of assumptions 1 and 2, the distribution of the number of
contagions 1induced by each -infected -individual exhibits a long tail, giving
rise to the existence of certain nodes acting as contagion hubs. This in turn
led to the formation of super-spreading events.

Under these assumptions, we used the previously described contact network for
Mexico City for our modelling purposes. A node 1in this contact network
represents an -inhabitant of Mexico City, and a link represents a close-range
physical -interaction between people; considering the resolution reported -1n
the original manuscript (less than 2 m), these contacts can potentially
transmit the +infectious agent.



Figure 1: A network, with 7216 vertices and 86775 edges, representative of the
close contact dynamics in Mexico City. The color of each node represents -its
“community,” a module of nodes which are more closely connected to each other.
We call this the CDMX network.

Once we have a somewhat reliable model for the human contact network structure
of Mexico City, we are in a position to consider epidemic processes (namely,
COVID-19 epidemics) happening on top of that network structure. The following
subsection will be devoted to this.

3.2 Epidemiological simulation

We performed simulations of the epidemic dynamics by using the Epidemics on
Network package (EoN, https://doi.org/10.21105/j0ss.01731) [Miller & Ting
2020] in order to simulate possible trajectories that the epidemic phenomena
in different economic reactivation scenarios. To do so, we used a stochastic



https://doi.org/10.21105/joss.01731

Susceptible-Exposed-Infected-Recovered model on the Mexico City contact
network.

To capture the interindividual variability in terms of incubation and recovery
times, we used the parameters reported for the official Mexico City’s
government model (https://modelo.covidl9.cdmx.gob.mx/) to generate a uniform
distribution of values, such that each -individual node has an -incubation and
recovery time between within half and twice the value used for the official
model.

Since by the time period studied, general hygiene measures such as widespread
use of face masks have been adopted, we decided to calculate the transmission
rate for our model using the average Rt for the month of June, calculated as
described 1in [Salas, 2020]. We used this value as the mean of a normal
distribution, to account for the fact that certain contact behaviours are more
conductive to disease transmission.

Epidemic dynamic calculations over realistic contact networks allow us for the
modelisation of what may happen under different reactivation scenarios amidst
the ongoing Covid-19 surges. In particular, this may open the way to educated
predictions regarding risks for outbreaks of different magnitudes as we will
see in the next subsection.

3.3 Risk assessment of reactivation schemes

The 1nitial response to the COVID-19 emergency 1in Mexico was a voluntary
lockdown known as Jornada Nacional de Sana Distancia (JINSD; Tliterally:
“Healthy Distance National Period”). During this period, non-essential

economic activities were limited. Based on official figures
[https://covidl9.sinave.gob.mx/], there was a 75% mobility reduction within
Mexico City. We represent the effect of such lockdown in network terms, by

taking the original CDMX network and randomly removing 75% of its edge set; we
refer to this as the JINSD network.

Any economic reactivation following the lockdown period implies that part of
the city’s population will return to its regular work activities. This will
lead to a reemergence of contacts between people returning to the public
space. In network terms, this is akin to the reemergence of links adjacent to
the nodes representing people returning to the public space.
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Figure 2: Schematic representation of the changes in contact networks -induced
by lockdowns and economic reactivation. Lockdowns induce disconnection of some
links between nodes; whereas economic reactivation involves the reconnection
of links adjacent to nodes representing people returning to the public space.

With this 1in mind, we <can represent different scenarios of economic
reactivation, by reconnecting nodes that were removed in the INSD network, and
simulating epidemic dynamics with the aforementioned parameters on them. For
every scenario analysed, we run 100 +iterations of EoN dynamics, and evaluate
the behaviour 1in terms of:

i) whether a peak in the number of active infections occurs: measured as the
number of simulations in which there is at least one day with more infected
nodes than day 0.

ii) Percentage of dinfected population at the peak: measured as the average
magnitude of the peak for all simulations.

iii) Peak time: measured as the average peak time for all simulations.

With these -§ideas in mind, we will present the epidemic risk evaluation under
different reactivation scenarios.

3.3.1 Minimum and maximum contact scenarios - JINSD and CDMX networks

The range of scenarios 1is bound on one end by the minimum level of contact
that happened during the lockdown, and is represented by the INSD network. On
the other side of the spectrum, the maximum level of contact 1is found 1in the
CDMX network, which captures the usual contact patterns of the City without
the constraints induced by the pandemic.

3.3.2 Scenarios of constraint-free reactivation

As we previously mentioned, economic reactivation involves the reintegration
of a fraction of the population back 1into the public space. This renewed
activity can be represented as a reconnection of those contacts that were
removed during the lockdown.



Without any constraint and no additional information, it can be assumed that
the workforce 1is evenly distributed within the population represented 1in the
contact network [Freire 2010]. Therefore, the reactivation of any fraction of
the population will be akin to randomly sampling the nodes of the contact
network, and reconnecting the 1links lost during the lockdown. This s a
conservative assumption due to lack of further dinformation on the
sociodemographic and spatial distribution of the -dindividuals -dinvolved in the
activities that will be reactivated.

We evaluate this scenario for different fractions of population ranging from
% to 50%, using the following algorithm.

For each fraction of reactivated population F:

1) We selected F nodes of the Mexico City contact network

2) We considered that all 1links to nodes adjacent to these nodes are
unrestrictedly re-activated.

3) We considered that the rest of the nodes in F (those with no correspondence
to 1links 1in F) are the ones 1in the network as modeled under Tlockdown
conditions as given by JINSD network.

We used the resulting network to run an EoN dynamic using the parameters
described previously.

3.3.3 Scenarios of modular reactivation

An alternative approach to economic reactivation consists of Tleveraging
network properties 1in order to -1impose limits to the epidemic dynamic. The
concept of modularity in complex networks [Girvan & Newman, 2004] A module 1in
a complex network 1is Tloosely defined as a set of nodes (individuals) with a
higher number of connections among members of the set than with other nodes of
the network, 1i.e. there are more connections within a module than between
modules. An fimportant property of modular networks 1is that dynamic phenomena
(such as a random walk or pathogen propagation) tends to remain 1inside a

module for a longer time before spreading outside the module.

In our proposed modular reactivation, -dinstead of reactivating nodes spread
throughout the network, whole modules are reactivated, until the desired
fraction of the population 1is reactivated. All edges adjacent +to the
reactivated nodes are reconnected as well; it can be proven that this will
include all links within a given module, and a smaller subset of links beyond

the boundaries of the module.



In Figure 3 we 1Jllustrate and contrast a constraint-free and a modular

reactivation strategy.
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Figure 3. Modular 1interconnections and contact structure. Panel A:

constraint-free reactivation. Panel B: modular reactivation. Nodes to be
reactivated are highlighted in red; the rest are shown in black.

In panel A, the contacts of the red nodes may include job and non-job related
contacts with similar probabilities. This way, by being randomly distributed
in the network, contacts are reactivated both, with other essential workers
(red) and with the rest of the population (black nodes) which in principle
must remain under confinement (as during the lockdown).

Panel B, depicts a scenario in which red nodes form a module, hence, it is
more likely that they connect to other essential workers (red nodes). In case
of contagion within the module, the general population is, to an extent,
shielded since the outbreak has a greater probability to keep spreading within
the module. Hence the outbreak will become contained more easily.

We evaluated epidemic dynamics under these modularization scenarios, as
presented in Figure 1 1in the intermediate panels. We can see that allowing
modularized contact network structures by encapsulating essential workers,
the percentage of the population that may return to public space activities
without causing major outbreaks dis sdignificantly higher, up to 25 % with a
“smart modularized” strategy.

It 1is however relevant to highlight that such strategies may require strict
adherence to the confinement scheme. This may 1imply the dimplementation of
measures such as relocation of essential workers +to housing near the
workspaces, dedicated transportation and so on.

3.3.4 Leveraging intermodule connectivity to optimize modular reactivation

While modular reactivation can be accomplished by arbitrarily activating
modules, the -interconnection between modules can also be used to further
refine the modular reactivation. Dynamic processes will tend to remain within
a modular structure; therefore, reactivating smaller, topologically distant
modules 1in the network will further encapsulate the epidemic phenomena and

minimize its spread.



Figure 4: These are module projections of the CDMX contact network; each node
represents a module 1in the contact network, with T1links representing
intermodule connections (that 1is, contacts between nodes belonging to
different modules). In both panels, the sum of nodes in the selected (red)
modules contains roughly 20% of the network’s population. In panel A, this
fraction 1is concentrated in 6 modules, whereas in panel B it is spread over 33

smaller modules.

4. Results

In what follows we will present the results of several reactivation
interventions in the predicted behavior of the epidemic curves in Mexico City.
In order to comply with our scaling without 1imposing ecological fallacy
biases, all our reports of epidemic curves will be expressed as a percentage

of the population.

4.1 Constraint free reactivation quickly approaches the behaviour of a full reactivation

One dnitial, non-surprising result 1ds that unconstrained reactivation of
increasing fractions of the population, with no use of knowledge about the
human contact network structure of Mexico City, rapidly approaches the

epidemic conditions of full reactivation (Figure 5).
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panels B through G represents dynamics on networks with a reactivation of 5%
through 50% of the population, sampled without constraints from the network.

Panel H represents the dynamics on a fully reactivated network.

Summarizing the results of the simulations, Table 1 shows that under different
unconstrained scenarios, as the fraction of the population returning to the

open public spaces increases, the behavior of a full reactivation (high peaks,

longer growth curves and higher likelihood of outbreaks) is recovered.

Table 1: Summary statistics for constraint free reactivation strategies

Reactivation Average Infection [ Average Peak Time | Peak likelihood
scenario Peak Magnitude | (days)
%population)
0% (Lockdown | 2.560421 5.436402 31%
continued as
during JNSD)
% 3.085227 4.668209 34%
10% 6.983370 12.705593 T7%
15& 9.493764 15.403023 97%




20% 9.570953 14.997234 97%
25% 9.802384 15.311280 97%
50% 11.986835 18.733040 100%
100% (full return |12.282289 18.420751 100%
to regular

activity)

Reactivation strategies in which the population is randomly distributed within
the population allow for only a very small fraction of the population to be
reactivated without a high risk for a resurgence of cases. We observe that any
fraction beyond 5% of the population rejoining the public space leads to a
high risk of a new peak to appear. Furthermore, a reactivation of 50% of the
population is virtually dindistinguishable to a full reactivation in terms of

the magnitude, timing, and likelihood of a new peak.

4.2 Modular reactivation is better tolerated in terms of peak magnitude and time

A second, less dramatic scenario occurs whenever we make use of some knowledge
about the human contact network structure of Mexico City, namely 1its modular
character. The height and duration of the peaks as shown 1in Figure 6 -s
diminished (for similar percentages of returning population) with respect to

the epidemic curves in the unconstrained case (Figure 5).

A quick glance at the summary statistics presented 1in Table 2 1in comparison

with Table 1 also reveals that this 1is actually the case.
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representing a full Tlockdown;

panels B through G represents dynamics on networks with a reactivation of 5%

through 50% of the population, achieved through the reactivation of modules -in

the contact network.

network.

Table 2: Summary statistics of modular reactivation

Panel H represents the dynamics on a fully reactivated

Reactivation Average Infection | Average Peak Time [ Peak likelihood
scenario Peak Magnitude | (days)

%population)
0% (Lockdown | 2.560421 5.436402 31%
continued as
during JINSD)
5% 2.599640 5.510503 31%
10% 2.560560 5.408285 31%
15% 2.589800 5.527020 31%
20% 3.046286 7.439762 31%
25% 3.047949 T.723727 31%
50%* 2.720205% 11.197762% 27%*




100% (full return |12.282289 18.420751 100%
to regular
activity)

* Exhibits more than one peak; first peak is described.

Economic reactivation strategies using the modular structure of contact
networks T1imit the spread of the -1dinfectious agent. We can observe that a
reactivation of up to 25% of the population can be achieved with Tlittle
deviation from the full lockdown in terms of magnitude, timing, and likelihood
of a new peak. In the case of a 50% modular reactivation, subsequent peaks are
likely to emerge. It 1ds -tdmportant to note, however, that the magnitude of

these peaks 1is less than that observed in a full reactivation scenario.

Modular reactivation is thus a better alternative in terms of allowing the
incorporation of higher percentages of the population without the risk of
massive outbreaks. However, as we can see later on, there are still better
alternatives nurtured by the use of a deep knowledge of the topological

parameters of the human contact network of Mexico City.

4.3 Topology-guided smart selection further mitigates epidemic dynamics

By taking into account not only the global topological modularity of the human
contact network of Mexico City but also the way the modules are connected (in
the down-scaled version), we have been able to develop an optimized set of

reactivation strategies as 1is presented 1in Figure 6 and Table 3.
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Figure 6: Ensemble visualization of epidemic simulations on networks. The

colored line 1is traced on the average infected population percentage for each
time point. The shadowed area represents =1 standard deviation. Panel A and B

represent the dynamics with 20% population reactivation using a modular

strategy. For panel A, reactivation 1is achieved by reactivating 6 modules;

whereas the same population fraction was spread in 33 modules for panel B.
Panels C and D show the same contrast, this time for a 50% of the population,

distributed in 164 and 247 modules respectively. Notice that by spreading the

reactivation in several smaller modules, the height of new peaks is reduced.

Table 3: Summary statistics of modular reactivation

Reactivation Average Infection | Average Peak Time [ Peak likelihood
scenario Peak Magnitude | (days)
(%population)
20% - 6 modules 3.046286 7.439762 31%
20% - 33 modules 2.496397 4.903131 30%
50% - 164 modules |2.720205% 11.197762% 27%%
50% - 247 modules | 2.300166% 8.815707* 27%*

* Exhibits more than one peak; first peak is described.

If the population to be reactivated

is spread throughout several (smaller)

modules, it is possible to exert more control over the epidemic dynamics. Even




in the case of a 50% population reactivation, this “smarter” modular strategy

decreases the magnitude of subsequent possible peaks.

Hence, by considering the global and local modularity structure of the contact
network and simulating epidemic dynamics compliant with these, we have been

able to devise an optimized progressive de-containment strategy.

5. Discussion:

General Discussion

Epidemic spread of infectious diseases occurs via chains of transmission which
are dynamic processes over networks capturing different human behaviors. In
the case of COVID-19, the disease 1is spread through close contact human
interactions [Shi, et al 2020], which can be modelled as contact networks. The

contact networks

Metropolitan urban environments, in particular large ones such as Mexico City
present special challenges for epidemic network modelisation due to their
intricate modular structure and size. Computationally efficient methods to
scale-down the real (very Tlarge) contact networks to manageable yet still
descriptive sizes, capturing the relevant aspects of the modular structure of
the original networks are needed to perform epidemic dynamic models

representative of the real populations.

Using these scaled contact networks, as well as a stochastic dynamics on
networks approach, we were able to capture the essentials of epidemic spread
in Mexico City. We used the knowledge of said spreading patterns to model
de-confinement scenarios to evaluate reactivation strategies after lockdown 1in
Mexico City. Although these networks exhibit a dynamic dimension themselves,
using a representative network as a baseline on which different lockdown and
reactivation strategies can be modelled provides an efficient tool to explore

different scenarios.

Since human contact networks 1in Tlarge urban environments tend to exhibit a
modular structure, this dinvisible compartmentalization is one of the features
that shapes the transmission chains of an epidemic phenomenon. By optimizing

the modular structure of the re-entrant essential worker population we have



been able to propose schemes that allow for a significant percentage of the

population to return to public space without leading to massive outbreaks.

In this work, we find that economic reactivation 1is feasible without
necessarily resulting 1in a new outbreak. However, for this to work,
reactivation must occur within contact communities. Optimally, these modules
should be small and exhibit minimal connections within them, in order to limit
the spread of the disease. A set of behavioral and regulatory actions are
needed to tightly constrain this contact dynamics; as the alternative shows
that even a small fraction of the population being arbitrarily reactivated
leads to an epidemic behavior similar to that of dimplementing no lockdown at
all.

From the whiteboard to public policy: how to translate

It 1is well known that dimplementing health policy from the findings of
biomedical research 1is not a trivial task. A large gap between the volume of
research-generated public health knowledge and its application in community
settings has been documented. It 1is quite common that public health scholars
find challenging to translate or disseminate their research outcomes +to
distill them -into public policy for use 1in community settings where 1t is

likely to have positive impacts [Browson, et al 2006].

In clinical fields as is the case of medicine and nursing, a similar void s
found between scientific discovery and health policy application. A number of
authors have suggested that in order to attain an effective dissemination of
scientific findings 1it 1is necessary to establish a program with solid
community  foundations, considering time-efficient approaches, ongoing
training, strong organizational values on evidence-based practice.
Furthermore, the -implementation of a research discovery among government
health organizations, clinical practice groups, and the general population s
not immediate, but is expected to proceed in stages. The decision to adopt,
accept, and utilize an innovation is not an instantaneous act, but more often

a process [Giles-Corti, et al 2015].

In the epidemiology of infectious diseases in an open population, such as the
case of COVID-19 this situation 1is actually worsened by the fact that the
contact network is not visible in real time. And even if it was, to see it and

act on it may involve serious privacy issues. Who do you -1interact with, how



much and how often are questions which result central for the transmission
chains to happen. This information may be of a sensible nature or simply, out

of reach.

Therefore,there 1dis a need for multiple approaches +to properly reach
modularization even under such constraints. To this end, modelisation studies
may result in enlightenment. The studies just referred have provided us with
the following dntuitions regarding modularization of the human contact

structure in urban environments such as the one in Mexico City:

i) Residential proximity dinduces communities (people go to the same shops,

etc).
ii) Non-public facing workspaces induce communities.

iii) Commuting induces 1intermodule connections (intermixing 1in public

transportation, recreational outings, etc).
iv) Public facing jobs 1induce intermodule connections.

Since we know which behaviours dinvolve intra and 1inter links, we can try to

use such correlations in order to limit various at the same time:

Interleaved reactivation: different, physically distant neighborhoods every

day.
Delay the return of workers that require long commutes.

Authorities can enforce modularity by closing public transportation needed for
intermodular connections; however other public policies will be needed to
equilibrate so that workers are not penalized by this. This involves a great
degree of logistic complexity (beyond the scope of the paper), that must be

resolved by the competent authorities.

In order to translate the findings of this study 1into actionable policy, it 1s
necessary to take 1into account the aforementioned sources of Tlogistic
complexity. In this regard, some measures that may be implemented to encourage

modularity reactivation are presented in Table 4.



Table 4. Some examples of policies to encourage/enforce modular reactivation

schedule of a
fraction of
public
transportation
spots/hubs

Policy Government Citizenship Expected adoption
actionable actionable
Encouraging local | Suggested Yes Heterogeneous
trade/consumption
habits
Phased workplace Suggested No Suggested:
reactivation or Heterogeneous
Mandatory
Mandatory:
High
Turnover of the Suggested Yes Suggested:
workforce by or Heterogeneous
residential Mandatory
address location Mandatory:
High
Partial Complete shutdown | No Mandatory:
transportation or
shutdown Turned-over High, if combined

with
complementary
policies

Concluding remarks

By considering mechanisms for the reactivation of economic activities
Mexico City, we have evaluated the
epidemic curve may be

reversed by the effect of the

fraction of the population to the public space.

risk that the negative slope of the
incorporation of a

As null models, we ran the epidemic dynamics on the contact network of Mexico

City with no mobility restrictions,
to the start of the
considered was the network corresponding to the IJINSD network which

prevailing prior

pandemic. second

representing a return to the connectivity
null model

in

is a



subgraph of the Mexico City contact network with just the 25 % of active
links, capturing the effect of the reported mobility reduction. In these
models, reactivated nodes are randomly distributed on the network, which is a
conservative assumption due to lack of further dinformation on the
sociodemographic and spatial distribution of the dindividuals dinvolved in the
activities that will be reactivated.

By taking into account the strong need to reactivate economic activities and
following the concept of modularity 1in network theory, we propose the
exploration of encapsulation scenarios for new essential workforce
reactivation.

A module 1in a complex network 1is Tloosely defined as a set of nodes
(individuals) with a higher number of connections among members of the set
than with other nodes of the network, i.e. there are more connections within a
module than between modules. An +important property of modular networks is that
dynamic phenomena (such as a random walk or pathogen propagation) tends to
remain inside a module for a longer time before spreading outside the module.

By being able to translate the findings of network-based analytics and
epidemiological models 1into actionable public policy measures, it 1is possible
to advance 1into incorporating predicted risks dinto the assessment portfolio
for reactivation large urban conglomerates such as Mexico City after lockdown
in the face of the still ongoing Covid-19 pandemic.
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