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COVID-19 Impact on Power Systems
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Abstract—Intervention policies against COVID-19 have caused
large-scale disruptions globally, and led to a series of pat-
tern changes in the power system operation. Analyzing these
pandemic-induced patterns is imperative to identify the potential
risks and impacts of this extreme event. With this purpose, we
developed an open-access data hub (COVID-EMDA+), an open-
source toolbox (CoVEMDA), and a few evaluation methods to
explore what the U.S. power systems are experiencing during
COVID-19. These resources could be broadly used for research,
policy making, or educational purposes. Technically, our data hub
harmonizes a variety of raw data such as generation mix, demand
profiles, electricity price, weather observations, mobility, con-
firmed cases and deaths. Several support methods and metrics are
then implemented in our toolbox, including baseline estimation,
regression analysis, and scientific visualization. Based on these,
we conduct three empirical studies on the U.S. power systems
and markets to introduce some new solutions and unexpected
findings. This conveys a more complete picture of the pandemic’s
impacts, and also opens up several attractive topics for future
work. Python, Matlab source codes, and user manuals are all
publicly shared on a Github repository.

Index Terms—Extreme event, data-driven assessment, power
system operation, electricity market, open-source

I. INTRODUCTION

A. Background

THE COVID-19 pandemic is a once-in-a-century crisis for
the globe, causing 181.5 million infections and nearly 4

million deaths until the first half of 2021 [1]. Governments
worldwide took a wide range of non-pharmaceutical inter-
ventions in response to the pandemic [2], and as a result,
these restrictions and lockdowns have significantly changed
the electricity consumption patterns, and had a domino effect
through the entire power systems. Although the power sector
has long prepared against a few predictable threats [3], such
kind of large-scale, long-term, and high-intensity interference
is still quite unique.

A systematic perspective [4] and the empirical studies [5]
are both critical to understand the pandemic’s impacts on
power systems. In fact, COVID-19 has opened up an oppor-
tunity for power system operators in assessing the abnormal
operation patterns, and identifying the future pathways for
sustainable recovery [6]. Existing works have discussed part
of these topics, but the complete picture is still unclear.
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This motivates us to record the potential data resources dur-
ing COVID-19, and develop a support toolbox with adequate
built-in methods and metrics for different groups of people,
such as scholars (with diverse backgrounds), policy makers,
educators, students, and the general public.

Such an idea came true as a joint project initiated in May
2020 by Texas A&M University and Tsinghua University. We
soon received constructive feedback from the power commu-
nity, and until now, our work has been successfully applied in
several research works and university courses.

B. Literature Review
Recent advances in the literature have increased our un-

derstanding of COVID-19 with some empirical studies world-
wide. Typical examples include the observations in France [7],
Italy [8], Great Britain [9], the U.S. [10], and Canada [11].
There are extensive works to evaluate the potential impacts
in different energy topics, such as power system opera-
tion [12], household electricity consumption [13], gasoline
demand [14], energy security [15], green recovery [16], and
climate change [17].

But according to current progress, the energy community
has made very limited efforts to standardize the pandemic-
related data and models. While those findings on a case-
by-case basis, e.g., [7]–[9], are still informative, it remains
highly complicated to reproduce a published work, or make
meaningful comparisons among different results (even for the
same country). Below are some more illustrations.

1) Data Issue: Many data resources are not available for the
public, especially the cleaned or fine-tuned data. In this case,
the similar but tedious data prepossessing could repeatedly
dominate the research time of everyone, or even worse,
academic communication might be interrupted due to data
availability. Reference [7] collected the power consumption
and meteorological data from the French system operator RTE
and Meteo-France, but their cleaned dataset was not shared to
the public. Similarly, reference [8], [9], [11] did not directly
share their datasets either. Up to now, two of the most popular
data sources are the U.S. Energy Information Administration
(EIA) [12], and the European Network of Transmission Sys-
tem Operators for Electricity (ENTSO-E) [18]. But users are
still required to get familiar with the complex data category
and storage rules, and implement all the data preprocessing
steps by themselves. For comparison, it would be tougher to
get access to some other rare data sources, e.g., the Indian
electricity market data [19], or the Swedish building standards
and statistics [20].
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Another finding is that most scholars (including the above)
have rarely expanded their data category to consider some
cross-domain data which may inspire interdisciplinary studies.

2) Model Issue: Quite different methods, models, and
criteria are applied in different publications, but very few
of them provides an open-source license. Benchmarking is
so challenging in this condition that one may take a long
time to realize even a basic function. This is, of course, not
friendly to the public, students, and scholars in other fields.
For example, an ordinary least squares model was used in
[13] to analyze the online survey data in California. Since
a few household characteristics and respondent demographics
were mentioned, it would need extra efforts to specify the
detailed expressions. Then a join-point regression was applied
in [21] to assess the electricity load trends in Brazil and its
geographic regions, but the discussion about model details
was somehow limited. Reference [22] developed three time-
series models to determine the impacts on the Spain electricity
market, and reference [23] used a five-year moving average
method to establish a non-pandemic scenario. It is a pity that
both works [22] and [23] didn’t share the codes for public use.

In addition, machine learning approaches become increas-
ingly popular in analyzing the potential impacts on the op-
eration or resilience of power systems [24]. Reference [25]
used five classical machine learning approaches for electric
load forecast in India. Reference [26] established a random-
forest-bagging and board learning system for estimating the
daily confirmed cases. Many other learning models were also
found to be effective, including deep learning models [27],
capsule networks [28], and domain adaptation [29]. Although
powerful, these models made it tougher to reproduce or
benchmark because of their increasing complexity [30].

3) Open Source Efforts: Open source community has ac-
tively involved in combating COVID-19 [31]. Perhaps the
most prominent efforts in tracking the pandemic’s impacts and
sharing open data are made by Johns Hopkins University [1]
and Oxford University [2]. In reference [1], an interactive
dashboard was developed for all affected countries in real time.
And an Oxford COVID-19 Government Response Tracker
(OxCGRT) was established in [2] to assess the policy re-
sponses of over 180 countries and subnational jurisdictions.

Other efforts include CovidCounties (a public health data
tracker at the level of U.S. counties) [32], COVID-ResNet
(a radiography scanner) [33], and OpenABM (an agent-based
model for non-pharmaceutical interventions) [34]. All these
works, however, are mainly conducted in the public health
field, with special focuses on the confirmed cases, deaths,
government responses, and so on.

One of the few examples from the energy community
is reference [35], where the authors have made both their
data and codes available on Github. This is a positive step
forward, but these resources only cover five months and lack
frequent updates. Dynamic data aggregation is thus needed,
but different from the NRGStream (a charged service) in [36],
the resources are preferred to be fully free for use.

To the best of our knowledge, we are the unique team that
develops and constantly upgrades the open-source resources
(both data and toolbox) to track the pandemic’s impacts on

power systems. Not to mention that we have extensively
collected the cross-domain data for interdisciplinary studies.

C. Contributions and Paper Structure

This paper has made a special effort to evaluate the potential
COVID-19 impacts on power system operations. Here, the
major contributions of our work are summarized as follows:
• The proposed data hub and toolbox have unique values

for data-driven analysis on power system operations. A
variety of (cross-domain) data from power system opera-
tion to public health are collected, dynamically updated,
and quality-controlled by a support team. The toolbox is
built on Python and Matlab to cover most users.

• Several novel evaluation methods and metrics are pro-
posed to adapt the classical power system analysis to a
pandemic case. Other typical and popular methods are
involved in the toolbox for comparison as well.

• Three empirical studies are conducted on U.S. power
systems to introduce some new perspectives, solutions,
and unexpected findings. This shows the high potential,
sufficient flexibility, and great convenience of the pro-
posed resources.

Notice that we have established a Github repository [37] to
launch our data hub and toolbox online before finalizing this
paper. The open repository has attracted a special attention
from the power community, and supported over 40 research
groups or individuals up to now, e.g., a team from Florida
State University and New York University [38]. It has also
been successfully applied in two graduate courses at Texas
A&M University and Tsinghua University.

The remainder of this paper is organized as follows: Sec-
tion II introduces the overall framework, main features, and
several quick start guides. Section III demonstrates the details
of data, models, and algorithms, then Section IV discusses the
implementation issues in Python and Matlab. Three empirical
studies are conducted in Section V. At last, Section VI gives
the concluding remarks.

II. FRAMEWORK

A. Overall Workflow

This paper creates a Github repository [37] that consists
of an open-access data hub (COVID-EMDA+) and an open-
source toolbox (CoVEMDA). One can access these resources
from the directories of “data release/” and “toolbox/” re-
spectively. Note that COVID-EMDA+ is the abbreviation for
“Coronavirus Disease – Electricity Market Data Aggrega-
tion+”, and CoVEMDA for “CoronaVirus – Electricity Market
Data Analyzer”.

Fig. 1 demonstrates the latest framework and workflow of
the proposed data hub and toolbox.

As shown, the backend system will routinely run the data
formatter and quality controller to update the data hub. Outliers
and missing data are largely handled with backup data or
historical trends, while we also prepare a data quality report
to record those highly problematic data.

Fig. 1 has listed out three widely used functions in the
toolbox: baseline estimation, regression analysis, and scientific
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Fig. 1. Overall workflow for the proposed data hub and toolbox. All the
processing steps from inputs to outputs are shown, and the main functions
and extensions are demonstrated as well.

visualization. Users are allowed to run this toolbox with
Python or Matlab consoles, and generate a variety of graphic
and statistical outputs if needed.

In addition, external data and user-defined models are all
supported, and this provides great flexibility for special or
advanced extensions.

The whole system, including the data hub and toolbox, is
maintained by a support team from Texas A&M University
and Tsinghua University. The routine maintenance includes
making regular backups, fixing bugs, handling feedback, up-
grading online systems, logging, and so on.

B. Main Features

We summarize the main features of the data hub (COVID-
EMDA+) and toolbox (CoVEMDA) as follows:

• Data Resources: Broad data categories to support the
classical or cross-domain analysis on power systems.

• Baseline Estimation: With a comprehensive collection of
the most typical and popular methods. Rigorous compar-
isons among different baselines are allowed for different
power system measurements.

• Regression Analysis: Two typical and powerful models
with built-in statistical tests. Flexible to support multiple
kinds of model extensions.

• Scientific Visualization: Tailored designs for various
power system applications. Intuitive, convenient and pow-
erful for different users.

C. Getting Started

1) Data and Toolbox Downloads: Users may choose to
download or clone the data and toolbox from our Github repos-
itory, where all built-in methods are flexible for extensions.
Online data entry is allowed when the internet is working.

2) Toolbox Installation: We provide an install script in
the root directory to automate the entire installation process.
Readers may refer to Section IV and the toolbox manuals for
more details.

3) Illustrative Examples: One typical example to show the
usage of our data, method, and toolbox is the baseline load
estimation in New York City, i.e., the possible electricity
consumption without the impacts of COVID-19.

Here is a Python command to make this estimation:

City("nyc").cal_demand_baseline()

By default, this will return a table with the baselines of power
consumption before mid-2020, calculated by the method
of date alignment. Find more technical details in Subsec-
tion III-C.

III. DATA, MODELS, AND ALGORITHMS

A. Data Sources

Our data hub collects raw data from multiple sources:
(i) electricity data from all regional system operators (e.g.,
CAISO for California, NYISO for New York) along with
backup data from EIA and EnergyOnline company, (ii) public
health data from Johns Hopkins University, (iii) meteorological
data from Iowa State University, (iv) mobile device location
data (mobility data) from Safegraph company, and (v) satellite
image data from NASA (for visualization only). Readers may
find all the detailed links for these sources on Github [37].

Most data records in our data hub could be expressed by
Xymdt. Here, X is a placeholder for some variable, and the
indices collectively specify a time—year y, month m, day d,
and hour t. We often use Xymd or Xym to represent different
kinds of mean values, for example:

Xym =
1

N{d,t}

∑
∀d,t

Xymdt (1)

where Xym denotes the mean value of month m in year y.
It is derived by averaging Xymdt along the axes d and t, and
N{d,t} denotes an auxiliary number.

B. Data Structure and Preprocessing

One barrier for merging multiple data sources is the incon-
sistent data structures. This motivates us to standardize and
convert those messy formats to a better one, i.e., the wide
data frame.
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Fig. 2. Demonstration of the proposed data structure and preprocessing steps.
This procedure is already automated and executed by the backend system.

Fig. 2 shows the proposed data structure with details. Here,
a wide data frame refers to a kind of unstacked table that has
more columns than a long frame. This structure enables a more
compact way to store data, and both the row-wise and column-
wise operations have clear physical meanings. Besides, a
variety of basic operations (e.g., filtering, resampling, and
statistical computing) have been developed in Python and
Matlab to handle such a matrix-like structure.

We store the raw data (e.g., {Xymdt ∀y,m, d, t}) as a wide
data frame by assigning a date index (combining axes y, m,
and d) to the rows and an hour index (axis t) to the columns.

Fig. 2 also demonstrates how to finalize the released data
after several preprocessing steps. These clean and regularly-
updated data can be found from the Github repository [37].
Although local and offline data reading is allowed, we strongly
recommend online data retrieval by the toolbox (more elegant,
no data update concerns).

In fact, all the preprocessing steps have been automated by
our backend system which consists of a few web crawlers,
a set of automation and management modules, the workflow
controller and quality controller, and a logging module. This
backend system is scheduled to run periodically, and for each
run, 31 raw data files from 25 sources will be extracted and
cleaned to update 73 spreadsheets. Here, outliers and missing
data are efficiently detected and handled by analyzing the
historical trend or backup data—different rules are specialized
for different variables. We further record some problematic
data (very rare) in a quality control report for ease of reference.

C. Baseline Estimation

Baselines refer to the reference points for comparison.
We are focused on estimating a counterfactual situation that
assumes the absence of COVID-19. The difference between a
counterfactual outcome and an actual observation will natu-
rally substantiate the pandemic’s impacts.

Baseline estimation is recognized as the first-and-foremost
step for any impact assessments, and a bad baseline may distort
our judgment on the impacts’ intensity and duration. We next
summarize the existing practice to select four popular methods
which may hopefully cover most applications.

1) Date- and Week-Aligned Estimation: This method is
simple but effective for many use cases, and the main idea
is choosing the proper historical records to be the baselines.

A date-aligned estimator selects the same date last year or
several years before, shown as:

Xymdt
baseline−−−−−→ Xy′mdt (2)

where y′ ≤ y−1, and the annotated arrow links an observation
(left) with its baseline (right).

A week-aligned estimator selects another historical date
which shares the same week-weekday index as the current
date. This method is technically formulated as follows:

Xymdt
baseline−−−−−→ Xy′m′d′t (3)

where the above two dates should satisfy:

fd2w(y,m, d) = fd2w(y′,m′, d′) (4)

In equation (4), the function fd2w(·) calculates the week
number and weekday for a specific date. For example,
fd2w(2020, 6, 1) = fd2w(2019, 6, 3) because they are both
Mondays of the 22nd week.

2) Trend and Detrend Estimation: This method is designed
to extract or eliminate the trends’ impacts, and thus leads to
a better estimation result. Here, the trend can be estimated by
either of the following formulas:

Tymdt = f trend
w (Xymdt, · · · ) (5)

Tymdt = f̂ trend
w (Xymdt, · · · ; θtrend) (6)

where Tymdt is the trend series, f trend
w (·) and f̂ trend

w (·) are two
estimation functions, w is a given length of the sliding window,
and θtrend denotes the model parameters to be calibrated. For
illustration, weekly moving average is an instance of (5), and
other advanced models may follow the format of (6).

A trend and a detrend estimator calculate the baselines
differently, shown as follows:

Tymdt
baseline−−−−−→ Ty′mdt (7)

Xymdt
baseline−−−−−→ Tymdt (8)

The baselines in (7) use the trend to remove potential noises,
while the baselines in (8) detrend the original data to find any
additional changes, e.g., extra increments.
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3) Backcast Estimation: This method has a complicated
expression based on machine learning, so more data and
computations are required to calibrate the unknown param-
eters. This method is originally used to analyze the electricity
consumption with great improvement in accuracy. Here, a
backcast estimation can be described as follows:

Bymdt = f̂ back
w (Xy′mdt, Yy′mdt, · · · ; θback) (9)

where Bymdt is the backcast outcome calculated by a machine
learning model f̂ back

w (·), and θback denotes the corresponding
model parameters (often high-dimensional). In addition, X and
Y are both placeholders for some variables, and the ellipsis
mark represents other possible inputs.

It is simple to extend (9) to an ensemble backcast model by
averaging the outputs of multiple base models (indexed by i):

f̂ back
w (·) =

1

N{i}

∑
∀i

f̂ back
w,i (·) (10)

Often, a backcast estimation can largely mitigate the ad-
verse impacts of non-pandemic factors to establish a reliable
baseline, shown as follows:

Xymdt
baseline−−−−−→ Bymdt (11)

Note that one distinct advantage of this method is the
flexibility because there are so many possible options and
combinations for the base models.

4) Distribution-based Estimation: This method provides a
new perspective of the data distribution to understand the
underlying patterns. The key point is turning to monitor the
distributions of those fluctuating variables, e.g., electricity
price. This could be surprisingly effective if the sliding win-
dow is well configured.

Technically, we develop a novel fluctuation index to evaluate
the possibility that an observation might be abnormal. The
following expression gives more details:

Iymdt = ffluc
w (Xymdt) =

∣∣1− 2Fw(Xymdt)
∣∣ (12)

where Iymdt is the proposed fluctuation index, ffluc
w (·) is

an estimation function, Fw(·) is the cumulative distribution
function, and the sliding windows for both functions have a
length of w.

Fig. 3 offers a graphic illustration of the fluctuation index
from two aspects, i.e., the highlighted distance and the shaded
area. By definition, 0 ≤ Iymdt ≤ 1, and Iymdt ≥ 0.5 may
rarely happen. It is thus possible to evaluate the abnormal
dynamics by monitoring this fluctuation index.

A distribution-based estimator is able to offer a baseline in
either of the following way:

Iymdt
baseline−−−−−→ Iy′mdt (13)

Iym
baseline−−−−−→ Iy′m (14)

where Iym is derived similarly as (1), and could be used
to analyze the electricity prices because the monthly price
distributions are roughly stable.

This distance =
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Fig. 3. Illustration of the proposed fluctuation index. This index can be
physically explained by a highlighted distance in the cumulative distribution
curve or a shaded area in the probability density curve.

Calculating the difference between two cumulative distribu-
tion functions is another option to study the distributions. A
distance metric to quantify the difference is given as follows:

Sy =
∥∥Fw,y − Fw,y′

∥∥ (15)

where Sy is the propsoed distribution distance, while Fw,y and
Fw,y′ describes the cumulative distribution for year y and y′.

D. Regression Analysis
Regression is widely used in empirical analysis to explore

the potential relationship between different factors. In par-
ticular, regression allows us to answer a few questions on
correlation or causality during COVID-19. We have collected
two popular regression models, along with several useful
statistical tests.

1) Ordinary Least Squares Regression (OLS): This method
offers multiple expressions to check the underlying correlation
or casuality. This method allows linear expressions as well as
a few nonlinear expressions (with quadratic, interaction, or
logarithms terms).

An OLS model can be formulated as follows:

Zymdt = θols
1 Xymdt + θols

2 Yymdt + · · ·+ εols
ymdt (16)

where X , Y , Z are all placeholders for some variables, θols
1 ,

θols
2 denote the regression coefficients, and εols

ymdt represents
the error term. The ellipsis mark indicates that other regression
terms (linear or nonlinear) are fully allowed.

We calibrate an OLS model by determining a set of regres-
sion coefficients to minimize the regression residuals. Here is
the related optimization problem:

min
∑
∀y,m,d,t

(
Zymdt − θols

1 Xymdt − θols
2 Yymdt − · · ·

)2
(17)
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In addition, an OLS model can be further validated by
running a few statistical tests, including t-test, F-test, and
normality-test. R-squared and adjusted R-squared are also
informative to evaluate the goodness of fit.

2) Vector Autoregression (VAR): This method is specialized
to capture the complicated correlation between multiple time-
series data. One can extend this method to restricted vector
autoregression when some regression coefficients are imposed
to be zeros. Both models are powerful and widely adopted in
empirical studies.

A VAR model combines all the variables together and uses
the following formula to model the evolution over time:

Xymdt =

p∑
i=1

θvar
i Xy,m,d,t−i + θvar

0 + εvar
ymdt (18)

where Xymdt should be interpreted as some variable or a
concatenation of several variables. p is called the order of
this VAR model, and the lag terms for the last p periods
are considered above. Besides, θvar

0 , · · · , θvar
p are regression

coefficients, and εvar
ymdt denotes the error term. p is called the

order of this VAR model, and the lag terms for the last p
periods are considered above.

The flowchart for establishing a VAR model can be divided
into four steps: pre-estimation preparation, model calibration,
model verification, and post-estimation analysis.

First, we need to conduct an Augmented Dickey-Fuller
(ADF) test, a cointegration test, and a Granger causality test
to analyze the situations of stationarity, cointegration, and
potential causality respecitvely.

Second, the regression coefficients can be determined by a
series of minimization problems, each of which is similar as
(17). For a p-order VAR model (18), one should run a total
number of p optimizations.

Third, another ADF test is used to test if the residual series
is stationary, while a Ljung-Box test and a Durbin-Watson test
are used to inspect the underlying endogeneity and autocorre-
lation. A robustness test is also preferred to demonstrate the
model performance against coefficient perturbations.

Finally, the calibrated VAR model can provide further
insights by running the impulse response analysis and forecast
error variance decomposition.

E. Scientific Visualization

Scientific visualization is one of the most intuitive way to
exhibit empirical findings, but the methods turn out to be
highly diverse in different applications. We thus specialize the
methods for several classical use cases.

A line chart is probably the most simplest way to show
a series of changing data. It is useful to visualize the raw
data Xymdt, any aggregated data like

∑
tXymdt, and any

filtered data like Xymdt(m ≤ 6). When the x-axis represents
dates, our toolbox further supports labeling the dates of some
selected big events of COVID-19.

A stacked bar chart is able to compare between different
categories. Visually, different bars (representing those cate-
gories) are stacked end-to-end and assigned different colors
for distinction. Assume the raw data Xymdt can be divided

CoVEMDA (Python)

data/

lib/

docs/
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install.py

uninstall.py

README.md

data archive,
pretrained models

source codes

user manual

quick start,
illustrative examples

configuration
script files

CoVEMDA (Matlab)

(similar as above, omitted)

Data Structure

Basic Operations

Low-Level 
Functions

High-Level 
Functions

Users

1

2

3

Fig. 4. Folder structure (left) and three-level programming architecture (right)
for the proposed toolbox.

into several sub-categories Xk
ymdt ∀k, then the corresponding

proportion for Xk
ymdt is calculated as:

Xk%
ymdt =

Xk
ymdt

Xymdt
× 100% (19)

A histogram describes the distribution or frequency features
of a group of fluctuating data. This is helpful to handle a large
amount of observations and detect any possible outliers. To
be specific, our toolbox supports visualizing the cumulative
distribution function and the probability density.

A box plot is designed to graphically display groups of data
through their quantiles. It can effectively handle a data matrix
by calculating the quantiles for each column and visualizing
these quantiles with box labels or color bands. Let F (·)
denotes the cumulative distribution function for one column,
the toolbox will calculate the following five quantiles:

Qi = F−1(qi), i = 1, · · · , 5 (20)

where q1 = 0.1, q2 = 0.25, q3 = 0.5 (mean value), q4 = 0.75,
and q5 = 0.9.

IV. PYTHON AND MATLAB IMPLEMENTATIONS

A. Architecture Design

We next focus on the programming details to implement the
models and algorithms in Section III. It is necessary to start a
discussion about the high-level architecture before diving into
the project details of Python or Matlab.

1) Folder Structure: Fig. 4 shows a concise folder structure
in the left part. Note that all the archived data and pretrained
model are located in the “data/” folder, and the source codes
can be found in the “lib/” folder. Beginners may get started
by reading the user manual or quick start examples.
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Fig. 5. Class inheritance map of the proposed toolbox (Python version).
Different classes are designed with functions of different levels. External data
and models are also supported for further extensions.

2) Programming Structure: Fig. 4 also illustrates a pro-
gramming structure that classifies the entire function family
into three levels: basic operations, low-level functions, and
high-level functions. This structure breaks down large tasks
(user-oriented) into small activities (data-oriented), and helps
clarify the calling relationships and dependencies between
different functions.

B. Python Implementation

1) Data Structure: The toolbox establishes a new DataFor-
matter class to realize the wide data frame structure mentioned
in Subsection III-B. This class wraps the popular DataFrame
class from Pandas package, and extends the built-in function
family with a lot of specialized functions.

2) Object-Oriented Design: Fig. 5 elaborates how to or-
ganize the major classes and their inheritance relationship to
realize the proposed methods. There are four base classes—a
baseline estimator class, a regressor class, a visualizer calss,
and an area class—they mainly build up the fundamental prop-
erties and some key components. A few high-level classes are
then established to specify the method details, and integrated
to construct the RTO and City classes at last. These classes
provide concise and powerful interfaces for ease of use.

As for extensions, users are allowed to develop their own
class based on the predefined classes. External data sources,
special parsers, and user-defined functions could be included
in this new class to support further development.

We follow the folder structure in Subsection IV-A to or-
ganize the Python script files (.py files). The relevant classes
and functions are collected in the same file with increased
readability. We make efforts to keep clean logic so that our
codes can be easily reused or extended.

C. Matlab Implementation

1) Data Structure: The toolbox constructs a new data
structure based on the built-in table array in Matlab. A lot of
efforts are made to simplify and robustify the syntax system,
so that all the basic operations can run smoothly as planned.

2) Functional Design: Functions are carefully assigned to
different abstraction levels (Fig. 4), and the calling relations
remain clean and efficient. Note that many functions share the
same or similar names as those in the Python version, e.g., both
versions have developed cal_demand_baseline(·).

Using the folder structure in Subsection IV-A, the Matlab
script files (.m files) are collected in three different folders
according to the function level. Clear logic and explanatory
comments are useful to increase the readability.

V. EMPIRICAL STUDIES

Among all possible use cases, this section will select three
of them to demonstrate our findings in several questions of
public concerns.

A. Pandemic Impact on Steady State of Power Systems

The very first question for most studies is how much and
how long COVID-19 has influenced the operation of U.S.
power systems. We will next conduct a few use cases to answer
these questions from different perspectives.

1) Peak Demand Changes among Different Regions: For
a given region, the reduction of peak demand is assessed for
each day and averaged for the whole month:

αym =
1

N{d}

∑
∀d

(
Bymd −Dpeak

ymd

Bymd

)
× 100% (21)

where the peak demand Dpeak
ymd has a baseline Bymd, which

can be derived by running the pretrained backcast model in
the toolbox.

Table I collects the estimation results for seven U.S. market-
places. MISO (Midcontinent area) and NYISO (New York) are
the top two markets that have experienced more than 10% drop
in both April and May. According to the average reduction
rates, the situations in June were largely alleviated for all seven
regions, but NYISO appeared to recover much more slowly.

2) Price Distribution Shift in Chicago: We then apply the
fluctuation index to evaluate the price distributions in Chicago.

Results show that the monthly index values in 2020 are
0.80 (March), 0.85 (April), 0.62 (May), and 0.63 (June). The
largest difference between 2019 and 2020 lies in April when
the index value grew up by 90.18%. On average, a 65.70%
increase could be observed, from 0.44 in 2019 to 0.72 in 2020.
All these results validate that Chicago had truly experienced
a period of severe price changes during COVID-19.
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TABLE I
REDUCTION RATES OF PEAK DEMAND IN DIFFERENT REGIONS

Region March April May June

CAISO 2.90% 9.28% 6.23% 3.56%
ERCOT -0.85% 3.36% 2.52% 2.70%
ISO-NE 3.14% 6.76% 9.07% 2.33%
MISO 2.57% 10.23% 10.70% 2.49%
NYISO 4.38% 10.21% 10.46% 7.06%
PJM 1.71% 9.52% 9.08% 1.14%
SPP 0.91% 7.16% 7.08% 1.43%

Average 2.11% 8.07% 7.88% 2.96%

Note: the largest changes among all the regions are highlighted above.

00:00
04:00

08:00
12:00

16:00
20:00

23:00

10

15

20

25

30

00:00
04:00

08:00
12:00

16:00
20:00

23:00

10

15

20

25

30

2019
Before COVID-19

2020
After COVID-19

D
uc

k 
C

ur
ve

 P
ro

fil
es

 fo
r D

iff
er

en
t Y

ea
rs

 ( 
   

   
  M

W
)

 x
10

3

Average Profile
(50th Percentile) 10th - 90th Percentile 

25th - 75th Percentile 

12
.9

4

13
.7

1

Fig. 6. California’s duck curves in 2019 and 2020. The ramping is highlighted
and labeled with specific numbers.

3) Duck Curves and Renewable Energy Share in California:
A duck curve, also known as the residual demand, is derived
by calculating the difference between electricity consumption
and the solar generation.

Rymdt = Dymdt −Gsolar
ymdt (22)

Fig. 6 compares the duck curves in California. Comparing
with 2019, the average duck curve in 2020 has a higher
ramping requirement of 761.90 MW, and a larger fluctuation
range of 3923.24 MW. As shown, the increased peak-valley
difference or peak-valley ratio will call for more flexible
resources for power system balancing.

The share of renewable energy is calculated as follows:

βym = Ghydro%
ym +Gsolar%

ym +Gwind%
ym (23)

We typically consider the monthly proportions in California,
and apply an ARIMA model for trend estimation. This model
is configured by grid searching the best hyperparameters, and
the final setting turns out to be ARIMA(2,0,1). Results show
that the observed share of renewable energy during March–
June is 34.88% on average, while the ARIMA model estimates
a slightly larger baseline of 34.90%. This tiny difference, much
less than the demand drop, is clearly against the statement
that renewables might enjoy extra benefits during COVID-19
because of their low marginal costs. A possible explanation

TABLE II
REGRESSION RESULTS OF EQUATION (24) AND (25)

Parameter Coeff Std t-Test p-Value

θ1θ1θ1 -2.8715 1.083 -2.652 0.009
θ2 0.8714 0.845 1.031 0.304
θ3θ3θ3 5.4063 2.016 2.681 0.008
θ4 -0.6941 1.624 -0.428 0.669

θ5 4.4138 2.562 1.723 0.087
θ6θ6θ6 2.8960 0.996 2.907 0.004
θ7θ7θ7 -1.4503 0.560 -2.591 0.011
θ8 -8.0344 4.548 -1.766 0.079

Note: “Coeff” is the coefficient value, “Std” is the standard deviation.
The top part shows the results for (24), and the bottom part for (25). In
addition, we highlight the rows when the corresponding coefficients are
statistically significant.

for this finding is the conservative dispatch strategies that take
the system safety into consideration.

B. Factor Analysis on Electricity Price Changes

There is an open debate on how the electricity prices were
influenced by COVID-19 and the gas price collapse in 2020,
because both events have a time overlap before mid-2020. We
take Boston as an example, and conduct regression analysis
to demonstrate our findings for this debate.

The first step is selecting proper variables and data for the
prices and the pandemic situations. We calculate the logit value
of the fluctuation index, denoted by LoIymd, to describe the
abnormality of electricity price observations. Often, LoIymd >
3 is highly unusual. We also need to construct a gas price
variable λgas

ymd by importing and organizing the data from an
external source. As for the pandemic modeling, we come up
with two ways: one is the daily confirmed cases Cymd, and
the other is a binary dummy variable δymd that indicates the
absence (δymd = 0) or presence (δymd = 1) of the pandemic.

With the above variables, two OLS regression models are
designed as follows:

LoIymd = (θ1δymd + θ2)λgas
ymd + (θ3δymd + θ4) (24)

LoIymd = θ5λ
gas
ymd + θ6Cymd + θ7λ

gas
ymdCymd + θ8 (25)

The basic idea for (24) and (25) is controlling the effects
of gas prices when assessing the pandemic’s impacts. We are
also curious about the interaction between these two factors.

Table II illustrates the results of model calibration and sta-
tistical tests. We highlight four coefficients that are statistically
significant: θ1, θ3, θ6, and θ7.

Here, the pandemic’s impact is validated to exist according
to a strong statistical evidence that θ1 and θ3 in (24) are
nonzero—no one could deny that LoIymd is dependent on
δymd.

Another finding is that there may exist an offset relation-
ship between the impacts of COVID-19 and gas prices. One
supporting evidence is the negative sign of θ1. This is further
validated by (25) with a negative θ7. While the impacts of both
factors are synergistic rather than additive (because θ7 6= 0),
it is at least statically clear that COVID-19 have truly caused
more abnormal electricity prices (because θ6 > 0).
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C. Improved Load Forecast Using Mobility Data

One severe outcome of COVID-19 is the rapid drop of
electricity consumption. Even worse, most load forecast mod-
els may perform poorly because they can hardly capture this
sudden break caused by the lockdown policy. This calls for
an improved forecasting strategy that could quickly adapt to
the new situation and make more accurate predictions. We will
next show that using mobility data to enhance the load forecast
models might be an effective solution.

This case considers the day-ahead hourly load prediction
tasks. Three typical models are tested here: neural network
(NN), random forest (RF), and support vector machine (SVM).
The inputs for these models include calendar variables, meteo-
rological variables, and the previous load. We also grid search
the hyperparameters for each kind of model carefully.

The above models cannot capture the novel load pattern
during COVID-19, so we improve them in the following two
ways. One is fine-tuning the model with new observations, the
other is using mobility data to enhance the results.

Technically, the latter idea can be described as follows:

D̂ymdt =f̂ pred(Dy,m,d−1,t, · · · ; θpred)

+ ∆f̂ enh(My,m,d−1,t; θ
enh) (26)

where the improved result D̂ymdt has an enhanced item
∆f̂ enh(·) that takes the previous mobility data as its input.
f̂ pred(·) is exactly the same as the original model, but we avoid
listing all inputs here by an ellipsis mark.

For simplification, we only consider a linear regression
formula for f̂ enh(·), and we calibrate its parameter θenh by the
residual error series during COVID-19 (very few are needed).

We pay attention to the forecast task in New York City
on March 21, two weeks after the state-of-emergence order
on March 7, 2020. The main focus is on the prediction
performance of different models in the remaining days before
mid-2020. We also validate the performance gaps between the
normal period (January 1–March 21) and the lockdown period
(March 21–June 30).

Table III gives the comparison results for different models,
whose performances are measured by mean average percent-
age errors (MAPE).

It may not be surprising that the performance gaps between
the normal and lockdown periods are exceeding 5%, and some
errors are almost tripled. Also, there is nearly no difference
when fine-tuning these models with new observations, e.g.,
RF and its updated model RF-Updated has the same error
estimation of 8.20%.

The major message from Table III is that using mobility
data might improve the forecast performance with an accuracy
increase of nearly 25–40% or 2–4 percentage points. This
result can be further improved when obtaining more abnormal
observations (only 14 days in this case) or considering better
enhancement models (only linear regression in this case).

VI. CONCLUSION

Evaluating how COVID-19 has influenced the real-world
power systems is critical to understand the risky conditions as
well as the abnormal operation patterns. But up to now, there

TABLE III
PERFORMANCE OF DIFFERENT LOAD FORECAST MODELS

Models Normal Period Lockdown Period

NN 3.10% 8.63%
NN–Updated — 8.73%
NN–Mobility — 5.25%

RF 2.84% 8.20%
RF–Updated — 8.20%
RF–Mobility — 6.15%

SVM 4.54% 10.79%
SVM–Updated — 10.69%
SVM–Mobility — 6.84%

Note: “NN” is neural network, “RF” is random forest, and “SVM” is
support vector machine. “*–Updated” denotes a updated model, while
“*–Mobility” denotes an improved model that uses mobility data. We
highlight the best estimators of each kind for the lockdown period.

is still a lack of reliable and ready-to-use data, methods, or
toolboxes for empirical studies.

This paper overcomes the above difficulty by developing
an open-access data hub, an open-source toolbox, and several
powerful methods for users with diverse backgrounds, such
as researches, policy makers, and educators. The toolbox is
implemented in Python and Matlab with three key func-
tions: baseline estimation, regression analysis, and scientific
visualization. Further extensions are allowed to handle more
complicated applications.
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