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Abstract

Past pandemic experience at an individual or population level may affect
health outcomes in future pandemics. In this study, we focus on how the
influenza pandemic of 1968 (H3N2), which killed up to 100,000 people in
the US, may have produced differential COVID-19 (SARS-CoV-2) outcomes.
Our analysis finds that areas with high influenza-related mortality in 1968
experienced 1-2% lower COVID-19 death rates. We employ an identification
strategy that isolates variation in COVID-19 rates across age cohorts born
before and after 1968. Locales in the US with high 1968 influenza mortality
have lower COVID-19 death rates among older cohorts relative to younger
ones. The relationship holds using county-level and patient-level data, as
well as data from hospitals and nursing homes. Results do not appear to be
driven by systemic or policy-related factors that would affect a population,
but instead suggest a potential individual-level response to prior influenza
pandemic exposure. The findings merit substantial further investigation into
potential biological, immunological, or other mechanisms that can account
for these differential outcomes.
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Background: Past pandemic experience at an individual or population level
could affect health outcomes in future pandemics. In this paper we test
whether people who lived through local outbreaks of the influenza pandemic
of 1968 (H3N2), which resulted in 100,000 deaths in the US, experience better
outcomes when infected by the SARS-CoV-2 virus.

Methods: We employ econometric techniques on county-level and patient-
level data, further validated by aggregated data from hospitals and nursing
home, to explain differential COVID-19 outcomes. Given the cross-sectional
nature of this study, we address endogeneity and omitted variable bias con-
cerns in the relationship between the 1968 flu and COVID-19 outcomes by
utilizing as our outcome variable the difference by age group in death rates,
number of medical procedures, and hospital admissions. We choose the age
cutoff based on whether someone was born before or after 1968 in an attempt
to isolate those people more likely exposed to the 1968 pandemic.

Findings: We find a persistent negative relationship between US locales’ ex-
posure to the 1968 flu pandemic and COVID-19 mortality. This relationship
is robust to various controls and holds across populations (i.e., county level
aggregates, hospital admittees, and nursing home residents, subset of pa-
tients), as well as specifications that exploit age-based variation in exposure.
Further analysis supports a possible individual-level mechanism—rather than
policy-related, systemic, or population-level factors—as drivers of this phe-
nomenon.

Interpretation: Results suggest a potential biological or immunological
mechanism that may mitigate the severity of COVID-19 in individuals who
survived the 1968 flu pandemic. Further research should explore possible
explanations for this phenomenon in the hopes of uncovering new avenues of
prevention and treatment.
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1. Introduction

The COVID-19 pandemic resulted in the global implementation of diverse
public health and economic measures including social distancing and indus-
trial and supply chain innovations, along with widespread emergency use of
novel pharmaceuticals and vaccines. To evaluate the impact of these pan-
demic responses and to better understand how to prepare for and prevent
future pandemics, there is now a broad effort to investigate the novel epidemi-
ological and pathological nature of the SARS-CoV-2 virus in the hope of fully
assessing the global impact of the disease—and, in particular, investigating
the susceptibility of populations to illness.

One strand of research employs empirical analysis to explain the variabil-
ity observed in COVID-19 outcomes among different populations globally.
Attempting to catalogue and learn from epidemiological observation of the
virus, previous work has presented evidence linking demographic, racial, con-
textual, social, and policy factors to the spread and severity of COVID-19
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). In addition, since the beginning of the pan-
demic, there have been unequal responses globally and within the US with
regard to mitigation behavior and compliance, even in the face of similar
governmental policies and regulations. It has been proposed that these dif-
fering behaviors contribute to differential COVID-19 outcomes, but this has
been difficult to demonstrate clearly.

Meanwhile, a substantial body of literature has explored genetic, immuno-
logical, and other biological factors linked to the severity and transmissibil-
ity of COVID-19 (12, 13, 14, 15). Research of this type includes genomic
association studies, an investigation of sex differences in immunity, and a
proposal that a major genetic risk factor can be traced to Neanderthal DNA
(16, 17, 18). This category of work explores whether risk factors, biomarkers,
and cross-reactivities can be identified and used to develop best practices in
prophylaxis, testing, and management.

A third research thread explores how past public crises and their effects can
persist, altering human and institutional responses in such a way that me-
diates the spread, morbidity, and mortality of COVID-19. Such work links
COVID-19 outcomes with past wars or local experience of past pandemic
response (19, 20). Rather than making claims about some particular fac-
tor or mechanism contributing to illness, these studies offer useful context
that helps expose previously unexplored mechanisms. For instance, Lokshin
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et al. found that higher WWII mortality is associated with lower COVID-19
death rates, positing a link between institutional investment, social capital
and pandemic response. Other studies have linked SARS exposure to lower
COVID-19 mortality, which some attributed to mask wearing norms that
made compliance with public health measures ‘easier’ (21, 22, 23).

This type of research has been applied to previous pandemics. One repre-
sentative study links an HIV-resistant gene to exposure to the plague and
smallpox (24, 25). Another study suggested that the 1918 influenza pan-
demic hastened the decline of tuberculosis (26). Others have linked excess
youth mortality during the 1918 influenza pandemic to exposure to the 1889
‘Russian Flu’ virus (27, 28).

1.1. The 1968 influenza pandemic
While many have looked to the 1918 influenza pandemic for insight into the
ongoing epidemiological and economic effects of the COVID-19 pandemic(29,
30), there is a far more recent comparable public health crisis that had broad
public impact. In September 1968, the US was confronted with a novel H3N2
influenza virus that originated in China and was dubbed the ‘Hong Kong Flu’
or ‘Mao Flu’.1 The death toll of the ensuing pandemic was comparable to
that of the COVID-19 pandemic given the smaller US population of the time
of around 200 million people, with 100,000 deaths in the US (compared to
400,000 COVID-19 deaths out of 330 million people as of January 2021).
Globally, the 1968 flu pandemic resulted in between 1 to 4 million deaths.
Paralleling the present day, the flu reached the White House, with both
President Lyndon B. Johnson and Vice President Hubert Humphrey falling
ill (31).

Approximately one third of the US population was alive during the 1968
pandemic (32). As shown in the map in Figure 1, the 1968 flu spread na-
tionwide. Some communities were hit especially hard; a contemporaneous
report estimated that over 40% of the population of Milwaukee was infected
(33). Several cities reported stress on local hospital systems attempting to
manage the influx of patients (33, 34). Unlike SARS-CoV-2 today, the 1968
virus killed many young people, with approximately 40% of the flu-related
deaths estimated to have been among those under 65 (35, 36).

1https://www.cdc.gov/flu/pandemic-resources/1968-pandemic.html
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Despite the widespread disruptions caused by the 1968 flu pandemic, the so-
cial, economic, and public health response at the federal level was somewhat
muted, with much of the country operating as usual. Although 23 states
underwent school and university closures, the US did not implement any
broad social distancing or containment measures. Vaccines were eventually
developed but not in time to blunt the initial spread of the virus (31, 37, 34).

The recency and scale of the 1968 pandemic make it a compelling event to
employ historical analysis of the type seen in the third strand of literature
cited above. Studying any enduring impact of this pandemic helps to further
our understanding of the COVID-19 pandemic and how future pandemics
can be mitigated. More immediately, it may motivate clinical research into
immunological or biological responses to SARS-CoV-2 related to exposure to
the 1968 pandemic.

2. Methods

2.1. Hypothesis and approach
We first test the hypothesis that a residual link exists between 1968 flu sever-
ity and current COVID-19 outcomes. We then assess potential factors that
could explain such a relationship. While identifying precise mechanisms is
outside the scope of this study, we perform several empirical tests to untan-
gle potential policy, social, and individual channels. We limit the analysis to
the end of 2020 to avoid potential confounding effects of differential vaccine
uptake.

A policy channel would include any mechanism whereby an institution, in
response to the 1968 flu pandemic, has put in place some deliberate action
or policy that would have, regardless of its intention, influenced COVID-19
outcomes. Examples could be improved mortality outcomes as a result of
increased hospital investment in counties hit by the 1968 flu.

A social channel would involve local behavioral shifts (e.g., in social distanc-
ing behaviors) in places that experienced high death rates from the 1968 flu,
perhaps resulting in the development of a culture favoring extra precaution
or social (dis)trust. In such cases, we would expect an equivalent shift for
all people living within a geography (i.e., a population-level), as all residents
would be more or less equally affected by these social forces.
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An individual channel, in contrast, involves not a population but rather indi-
viduals for whom a difference in outcomes is expressed. The individual chan-
nel may be biological2 (e.g., learned immunity to the SARS-CoV-2 through
prior exposure to another virus) or behavioral (e.g., individual-level compli-
ance with public health measures), both of which may lessen the likelihood
of infection or death. Along this line, Cheemarla et al. present evidence sug-
gesting that individuals’ previous exposure to rhinovirus lends resistance to
SARS-CoV-2 infection. The individual channel requires heterogeneous effects
across a population, with sub-populations demonstrating unique COVID-19
outcomes based on past exposure.

2.2. Data
County-level mortality estimates of the 1968 influenza pandemic are derived
from Centers for Disease Control and Prevention (CDC) Compressed Mor-
tality files, 1968-1978, accessed via CDC’s WONDER database (43). We
estimate the excess influenza death rate by comparing excess respiratory
deaths in 1968 and 1969 (when the vast majority of 1968 flu deaths occur)
to a baseline period of 1970 and 1971. We use death rates defined as deaths
per thousand people using local population during a given time period. Our
methodology of estimating excess mortality follows that used in previous
work estimating mortality attributable to pandemic flu (44).

COVID-19 death rates come from a county-level dataset of COVID-19 deaths
offered by the New York Times, based on reports from state and local health
agencies (45). Included in counts are both confirmed and probable deaths,
as categorized by states. The five county boroughs of New York City are
grouped into one unit. We limit the analysis to the continental US.

Individual-level data are from CDC’s COVID-19 Case Surveillance Restricted
Access Detailed Data accessed January 2021. The restricted dataset includes
over 12 million records of COVID-19 cases with date, decadal age group, and
county identifiers. Deaths are also reported. Note that because of CDC
reporting delays and state-level data filing practices, aggregate totals are less

2An example of such a channel is how influenza affects age groups differently based on
individuals’ past exposure to a similar viruses (36, 38, 39). Further, prenatal exposure to
the 1918 influenza virus was linked to cardiovascular disease and other long-term effects
(40, 41)
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than those of other sources and records November 2020 onward contain fewer
counties reporting than earlier (46).

Hospital admission data are gathered from the US Department of Health
and Housing Services (HHS). We aggregate weekly-level hospital data for
different decadal age groups to the county-month level (47). Nursing home
data come from the Centers for Medicare Medicaid Services (CMS) Nursing
Home COVID-19 Public File. Nursing home facilities are required to self-
report these data to the CDC.3 Patient-level healthcare data with year-of-
birth information available from Healthjump via the COVID-19 Research
Database consortium (50). The number of hospital beds at the county level
are derived from the Centers for Medicare Medicaid Services. Mask use
survey data come from the New York Times (51). County-level mobility
data were made accessible to COVID-19 researchers by Google (52).

Covariate data include county-level race, ethnicity and age structure data
from the US Census and mean county-level income data from the US Bureau
of Economic Analysis (53, 54). Data on nursing home populations, incarcer-
ated populations, uninsured populations, average household size, and work
commuting methods come from the 2014-2018 American Community Survey
(55, 56, 57, 58). Data on manufacturing establishments come from the Amer-
ican Economic Survey (59). Number of frontline workers were derived from
CEPR data (60), transforming to county level assuming even allocation. The
freight index is from the FHA’s Freight Analysis Framework (61).

2.3. Model
Our baseline linear regression model takes the following form:

outcomei = βflui + θcontrolsi + αs + εi (1)

where outcomei is a COVID-19 outcome in county i at a given month, β is
the coefficient of interest related to flu, which is the excess respiratory death
rate attributable to the 1968 flu as described in the Data section, controlsi
is a vector of county-level covariates, αs is a dummy for fixed effects in state
s, and εi is the error term. Standard errors are clustered at the state level.

3While the CDC successfully consolidated data from nursing homes across the US,
there have been reports that the data received may not be comprehensive (48, 49)
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For outcomes of interest we variously use (1) COVID-19 death rates, (2)
hospital admissions, (3) a subset of patient-level data from Healthjump, and
(4) nursing home death rates. All values are aggregated to the county level
to match our data on 1968 flu intensity. We replicate this cross-sectional
analysis at different snapshots in time representing the progression of the
pandemic, as categorized by end-of-month outcomes.

To address endogeneity and omitted variable bias concerns in the relationship
between the 1968 flu and COVID-19 outcomes, we also employ differences in
death rates and hospital admissions by age group as the outcome variable.
We choose the age cutoff based on whether someone was born before or after
1968 in an attempt to isolate those people likely to have been exposed to the
1968 pandemic.

The bottom panel of Figure 3 displays the identifying variation based on
the age categorizations used in CDC’s COVID-19 case surveillance data
and HHS’s hospital admissions data. This specification acts effectively as
a difference-in-difference model to isolate the extent to which the 1968 flu
affects people born before 1968 relative to those born after 1968. The iden-
tifying assumption relies on the fact that potential confounders are unlikely
to shift the relative degree of COVID-19 morbidity or mortality across prox-
imate age groups within a given county.

To address concerns about the coarse categorization of individuals into decadal
birth cohorts, we validate the results with patient-level data from Healthjump
containing annual year of birth.

3. Results

3.1. Aggregate COVID-19 mortality
Figure 1 shows cumulative COVID-19 death rates over time, averaged by age
cohort and whether the county was among those severely hit by the 1968 flu
pandemic. We see that death rates for the age groups 50-59 and 40-49 are
similar, but the death rate among those aged 60-69 is consistently lower in
high 1968-flu counties.

We next present regression results using the model specified in Equation 1.
Figure 2 plots the coefficients representing the change in cumulative county-
level COVID-19 death rates by month snapshot associated with an increase
in 1968 flu mortality. We find a consistent negative relationship between
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Figure 1: Chart shows average county-level cumulative COVID-19 death rates by age group and month
for control counties, which include all counties except those in the top decile 10% of excess flu deaths in
1968, and those in the top 10%. Map shows distribution of influenza deaths per thousand at the county
level estimated from CDC data of excess respiratory deaths in 1968 and 1969 relative to a baseline of 1970
and 1971.
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the severity of 1968 outcomes and COVID-19 outcomes. Appendix Table A1
provides the full regression results including all the covariates, while Figure
A1 utilizes a treatment dummy variable for counties greatly affected by the
1968 flu. In terms of magnitude, people in counties among the 10% worst hit
by the 1968 flu had COVID-19 death rates 1-2% lower than the average US
county.4

Figure 2: Relationship between county level excess death rates from the 1968 pandemic and COVID-19
death rates per 1,000 (left) and log-transformed death rates (right), which can be interpreted as percent
change. For example, the September point estimate of -0.04 represents a 4% reduction. All models control
for socioeconomic variables and state-level fixed effects. Coefficients are plotted from separately-run
regressions for COVID-19 outcomes by month. Error bars reflect a 95% confidence interval.

We test how health outcomes relate to known confounders, both in the
present and in 1968. Appendix Table A2 presents the relationship of death
rates from both COVID-19 and the 1968 flu on a selection of current and
past covariates. Models (1) and (2) show results broadly in line with the
COVID-19 literature: death rates are weakly correlated with income (neg-
ative), density (negative), the elderly population (positive), and Black pop-
ulation (positive). However, models (3) and (4) show that present-day risk

4Top decile counties had an average 1968 flu death rate of 0.54 per thousand compared
to the US average of 0.07, a difference of 0.47. Multiplying this by the average of the
coefficients on the right panel of Figure 2 (0.023) or the largest and most significant
coefficient in September (0.037), yields a range of 0.011 to 0.017, or roughly 1.1-1.7%

10

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2021. ; https://doi.org/10.1101/2021.10.23.21265403doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.23.21265403
http://creativecommons.org/licenses/by/4.0/


characteristics are not correlated with outcome in 1968, which reduces con-
cerns around confounding variables. Models (5) and (6) regress 1968 flu
outcomes on historical covariates. We see that the size of the elderly popula-
tion is a strong predictor of death rates, supporting past literature (36, 35).
We also note a positive, but much weaker, relationship with a county’s Black
population. This finding indicates that the 1968 flu had differential impacts
by race in line with the disproportionate toll of COVID-19 on the Black
community (62), as well as Hispanics and Native Americans (63).

Appendix Figure A2 plots the mean values of the present-day covariates em-
ployed in our baseline model. Means are separately computed for top-decile
counties in terms of both 1968 flu mortality and 2020 COVID-19 mortal-
ity. Values are normalized relative to a nationwide mean of 0. We see a
broad correlation in average county characteristics. While not statistically
different, there is gap in the average racial and ethnic composition such that
COVID-19 had a more negative impact on Black and Hispanic communities
relatively to the 1968 flu.

3.2. Death rates by age group
Figure 3 plots the coefficients from Equation 1 using differences in COVID-19
death rates across age groups as the outcome variable based on CDC individ-
ual case data aggregated to the county level. There is a consistently negative
point estimate for each of the four methods used to construct differentials
around the age cutoffs. This means that COVID-19 death rates are lower
among older cohorts relative to younger ones in places that experienced high
1968 flu mortality.

Columns (A) and (B) showcase the difference among all those older and
all those younger than 50 and 60 years old, respectively. Columns (C) and
(D) limit the span to single decades. For example, column (C) shows the
difference in death rates between people in their sixties versus those in their
forties, highlighting groups just old enough to have lived through the 1968
pandemic and those not. Column (D) uses people in their fifties as the
control, although it is less obvious how to categorize this cohort, considering
that many were alive in 1968 although flu transmission tends to increase after
age five with the onset of schooling (64).
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Panel A:

Panel B:

Figure 3: Panel A: Differences in county-level COVID-19 death rates per 1,000 across age groups
associated with an increase in excess death rates from the 1968 pandemic, controlling for socioeconomic
variables and state-level fixed effects. Coefficients are plotted from separately-run regressions for COVID-
19 outcomes by month. Error bars reflect a 95% confidence interval. Panel B: Conceptual chart for the
identifying variation used in the analysis. In the first row ‘50-plus less 0-49’ denotes the difference in the
average COVID-19 death rate for the population age 50 or above (blue area) less the average death rate
for the population under age 50 (green area). Multiple cutoffs are used given that the data is aggregated
in decadal age brackets that do not align with exposure to the 1968 pandemic. The dotted line shows the
theoretical age of someone in 2020 who was born in 1968.
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3.3. Hospital admissions
In addition to examining death rates, we look at hospital admissions driven
by COVID-19 as a proxy for case severity. We again test whether there is
a differential effect of 1968 flu exposure on hospitalizations between people
who lived through the pandemic and those who did not. The top panel of
Figure 4 presents results in two ways: first, the proportion of COVID-19
hospital admissions among people over age 60, and second, the difference
in the number hospitalized among those over 60 and those under 60 years
old as a proportion of the population. The 1968 flu has a negative effect on
hospital admissions for the over-60 group as a whole, as well as the difference
in over-60 group relative to the under-60 group (i.e., the older group was
hospitalized relatively less).

3.4. Nursing homes
We replicate our analyses using CMS data on nursing homes. The bottom
panel of Figure 4 plots the effect excess death rates from the 1968 pandemic
on COVID-19 death rates and case fatality rates (deaths as a proportion
of cases) in nursing homes. There is a negative relationship between 1968
mortality and COVID-19 mortality, but the signal is much stronger for the
case fatality rate.

3.5. Patient-level data
Because the prior two age group analyses involved decadal birth cohorts, we
validate the results with patient-level data from Healthjump containing pa-
tients’ birth year. This analysis involves 48,000 unique patient records where
a COVID-19 diagnosis is explicitly linked to a medical procedure within 30
days of the diagnosis. Such procedures include, but are not limited to, hos-
pitalization. Figure 5 plots the ratio of patients in top 10% 1968 flu counties
relative to the count of all patients. Older cohorts (people born before 1968)
are better off in places hit hard by the 1968 flu, whereas younger cohorts are
worse off. The discontinuity appears to be around 1968.

3.6. Behavioral and institutional responses
Next we test a number of potential relationships that would indicate a po-
tential policy, social, or individual response to the 1968 pandemic.
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Panel A: Hospitals

Panel B: Nursing homes

Figure 4: Panel A: Relationship between excess death rates from the 1968 pandemic and the proportion
of COVID-19 hospital admissions among people over 60 (left) and the difference in the number hospitalized
in the over-60 group relative to the under-60 group per 1,000 people (right). Rates are calculated based
on cumulative COVID-19 hospital admissions at the county level. Panel B: Relationship between excess
death rates from the 1968 pandemic and nursing home COVID-19 death rates, defined as cumulative
deaths per 1,000 residents (left), and case fatality rate, defined as cumulative deaths as a proportion
of cumulative COVID-19 cases (right). Models control for socioeconomic variables and state-level fixed
effects. Coefficients are plotted from separately-run regressions for COVID-19 outcomes by month. Error
bars reflect a 95% confidence interval.
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Figure 5: Plot of the ratio of patients in top decile 1968 flu counties relative to the count of all patients in
the Healthjump dataset by patient year of birth. LOESS fit line shaded area representing a 95% confidence
interval.

3.6.1. Hospital beds
One potential explanation is that places with high 1968 flu mortality subse-
quently invested in hospital capacity to be better prepared for future chal-
lenges. Such actions could explain why hard-hit counties saw better outcomes
under COVID-19. To test this, Appendix Table A3 regresses present-day
number of hospital beds at the county level on 1968 flu death rates and
finds no relationship—in fact, the result is a precise zero under each model
specification.

3.6.2. Mask use
Another possibility is that individual behavior responds to an event like the
1968 flu. Adoption of risk-averse behaviors (whether on one’s own volition or
induced through policy or social norms) could explain differential COVID-
19 outcomes. Appendix Table A4 regresses a self-reported measure of mask
use from the New York Times on county-level 1968 flu death rates and finds
a negative relationship; that is, places worse hit by the 1968 flu tended to
wear masks less. The relationship holds even after controlling for state-level
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differences and potential covariates (e.g., income, density, elderly, front line
workers).

3.6.3. Mobility
Finally, we report changes in mobility in response to 1968 flu death rates
using Google mobility data. We look at both mobility involving time spent
commuting to work as well as engaging in retail and recreational activities.
We compute two measures to account for the potential timing of COVID-19
responses. One is a summer average of the baseline change in mobility in a
county from June to August. Another is change in county mobility between
28 days before and 28 days after a counties’ first reported death. Appendix
Table A5 shows a weak but positive relationship between 1968 flu deaths and
mobility, suggesting that, if anything, behavior in counties adversely affected
by the 1968 flu was less compliant with directives to minimize movement
than other counties. Appendix Figure A3 shows a map of mobility changes
in time spent commuting to work.

4. Discussion

Our findings suggest a persistent link between the 1968 flu pandemic and
COVID-19 pandemic outcomes. People in counties among the 10% worst
hit by the 1968 flu had COVID-19 death rates 1-2% lower than the aver-
age US county. This general relationship is robust to controlling for known
confounders and holds across populations (i.e., county level aggregates, hos-
pital admittees, and nursing home residents, subset of patients), as well as
specifications that exploit age-based variation in exposure.

The direction of the relationship—locales with adverse outcomes in 1968 fare
better today—mitigates concerns of a lurking omitted variable. In that case,
we would imagine the opposite relationship in which some characteristic of
places hit hard by the 1968 flu also makes them susceptible to COVID-19.
Such a bias would indicate that the magnitude of our results are in fact
understated.

It is worth noting that our results are generally strongest in the autumn of
2020. The effect of the 1968 flu on COVID-19 outcomes appears to fade
into the winter as COVID-19 becomes widespread, a dynamic also seen in
(20), and vaccines become available. Part of this may be attributable to the
increasing number of US deaths that expands the number of counties making
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up the sample. In terms of the nursing home analysis, the more pronounced
effect earlier in the COVID-19 pandemic may reflect an improvement in treat-
ment of the disease over the course of the pandemic as the standard of care
evolved and more therapeutics were incorporated into treatment (65).

We find evidence that the primary channel through which COVID-19 out-
comes are affected is individual with a possibility of some unknown individual-
level mechanism. To this end, we find no evidence of collective social activ-
ity suggesting better mitigation of COVID-19 outcomes. In fact, we find
modestly lower levels of mask use and social distancing. Moreover, even if
behaviors occurred that limited viral spread, the fact that positive outcomes
were skewed toward age cohorts that lived through the 1968 flu pandemic
suggests an individual rather than societal-level mechanism.

Focusing on nursing homes also allows us to isolate a population that—unlike
the elderly living outside nursing homes—exercises less agency in their social
distancing practices and other risk-mitigating behaviors, instead following
nursing home policy. In addition, epidemiology within nursing homes is in
some ways independent of what is found for the general population. Factors
such as travel patterns of nursing home staff have a large effect on infection
rates in such settings (66). We find that a smaller share of residents who
were infected are dying. Assuming identical distributions of social distancing
policy in nursing homes in counties with adverse 1968 flu histories and those
without, better outcomes for nursing home residents in the former group
are likely to suggest that some non-behavioral and non-policy mechanism
is at play. This accumulated evidence lends support to a potential biologic
mechanism driving differences in outcomes.

It is unclear what biologic mechanisms could be driving these findings, or
whether some other unrecognized factors could be the force behind them.
Direct immunological cross-reactivity seems unlikely, as SARS-CoV-2 coron-
avirus is a different type of virus than H3N2 influenza. However, individuals
may have general innate, nonspecific, anti-viral immune pathways that are
more robust due to factors such as genetics and lifestyle that may have been
selected for during the 1968 pandemic and its aftermath. There is also prece-
dent for generalized immune response experience early in life having an im-
pact on susceptibility to future illness and injury, as has been observed in the
aforementioned work examining the association between 1918 flu exposure
and cardiovascular disease.
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Thus some sort of selective pressure may have occurred over time in those
places where people who survived the 1968 pandemic were generally better
suited to survive the COVID-19 pandemic. This mechanism would not be
unlike that identified in research linking tuberculosis outcomes to the 1918
flu pandemic and is plausible considering that 1968 flu mortality skewed
toward younger people (26, 35). These mechanisms are purely speculative
at this point, and significant research would be required to fully understand
whether the differential outcomes observed here are truly meaningful and
what caused them. Assessing the plausibility of cohort-based resilience to
all respiratory diseases or whether this resilience is more specific to some
element of COVID-19 that would otherwise cause death is certainly difficult,
but may be worth considering as we try to further understand this pandemic
in the coming years.

Our findings also motivate a discussion of broader social themes. It is note-
worthy that the immediate institutional response to the 1968 pandemic was
so muted. The US Surgeon General stated in 1969 that it was time to
“...close the book on infectious diseases, declare the war on pestilence won”
(34). Meanwhile, the 1968 pandemic lacks the salience of the 1918 pandemic,
and recent retellings describe it as a “forgotten” pandemic (67).

Given its large health, economic, and societal impact, the COVID-19 pan-
demic will hopefully spur careful research into the costs and benefits of the
dramatic public health measures taken worldwide, as well as potential struc-
tural and technological changes in society to mitigate or prevent future out-
breaks of this magnitude. In light of our findings, further consideration
should be given to the possibility that actions taken now could materially
influence health outcomes during future pandemics—just as what happened
in 1968 may have in some way reduced COVID-19 mortality among its sur-
vivors.
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5. Appendix

Figure A1: Relationship between counties in the top 5th percentile of excess death rates
from the 1968 pandemic and COVID-19 death rates (left) and log-transformed percent
death rates (right) at the county level, controlling for socioeconomic variables and state-
level fixed effects. Coefficients are plotted from separately-run regressions for COVID-19
outcomes by month. Error bars reflect a 95% confidence interval.
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Table A1: Impact of 1968 flu on county COVID-19 deaths, cumulative by month

Deaths per 1,000 as of month
Jun Jul Aug Sep Oct Nov Dec

(1) (2) (3) (4) (5) (6) (7)

Flu deaths 1968 −0.029∗ −0.034∗ −0.029 −0.045∗ −0.046∗ −0.053 −0.010
(0.015) (0.017) (0.019) (0.023) (0.024) (0.036) (0.063)

Income per capita (log) 0.039 0.016 −0.053 −0.088∗∗ −0.152∗∗ −0.269∗∗∗ −0.369∗∗∗
(0.031) (0.030) (0.033) (0.042) (0.059) (0.073) (0.097)

Density 0.033 0.027 0.023 0.010 −0.009 −0.032 −0.122∗∗
(0.022) (0.024) (0.026) (0.026) (0.033) (0.041) (0.053)

Density-squared −0.006 −0.005 −0.005 −0.004 −0.002 −0.001 0.007
(0.005) (0.005) (0.005) (0.005) (0.006) (0.007) (0.009)

Timing first case −0.285∗∗∗ −0.349∗∗∗ −0.332∗∗∗ −0.327∗∗∗ −0.255∗∗ −0.152 −0.187
(0.064) (0.070) (0.091) (0.114) (0.115) (0.210) (0.250)

Elderly proportion 1.053∗∗∗ 1.302∗∗∗ 1.726∗∗∗ 2.015∗∗∗ 2.419∗∗∗ 2.970∗∗∗ 3.855∗∗∗
(0.285) (0.270) (0.311) (0.397) (0.483) (0.640) (0.927)

Black proportion 0.846∗∗∗ 1.014∗∗∗ 1.176∗∗∗ 1.293∗∗∗ 1.289∗∗∗ 1.132∗∗∗ 0.865∗∗∗
(0.172) (0.173) (0.170) (0.152) (0.147) (0.145) (0.181)

Hispanic proportion 0.139 0.347∗∗ 0.660∗∗∗ 0.809∗∗∗ 0.884∗∗ 0.971∗∗ 1.075∗∗∗
(0.115) (0.133) (0.204) (0.279) (0.329) (0.372) (0.385)

Freight intensity 0.007 0.009 0.009 0.010 0.011 0.015 0.023
(0.009) (0.011) (0.012) (0.014) (0.014) (0.017) (0.018)

Public transit proportion 0.016∗∗ 0.015∗∗ 0.014∗∗ 0.012∗ 0.014∗∗ 0.017∗∗ 0.015
(0.007) (0.007) (0.006) (0.006) (0.006) (0.007) (0.009)

Household size 0.138∗∗∗ 0.188∗∗∗ 0.199∗∗∗ 0.209∗∗∗ 0.189∗∗ 0.077 −0.041
(0.051) (0.056) (0.063) (0.066) (0.075) (0.103) (0.141)

Nursing home proportion 0.00005∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.00005∗∗∗ 0.00004∗∗
(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00002) (0.00002)

Prisoner proportion −0.00001∗ −0.00001∗ −0.00001∗ −0.00001∗ −0.00001 −0.00001 −0.00001
(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

Uninsured proportion 0.002 0.004 0.005∗ 0.007∗∗ 0.010∗∗ 0.016∗∗∗ 0.021∗∗
(0.002) (0.003) (0.003) (0.003) (0.005) (0.006) (0.008)

Frontline proportion −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗ −0.00000∗∗
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Controls X X X X X X X
State FE X X X X X X X
Observations 3,024 3,024 3,024 3,024 3,024 3,024 3,024
R2 0.416 0.437 0.478 0.464 0.382 0.335 0.331

Notes: Linear regression. Standard errors clustered at state level. *p<0.1; **p<0.05; ***p<0.01
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Table A2: Impact of current and past characteristics on COVID-19 and 1968 flu death
rates

Dependent variable:

COVID death rate 1968 flu death rate
–Current covariates– –Current covariates– –1969 covariates–

(1) (2) (3) (4) (5) (6)

Income per capita (log) −0.193 −0.372∗∗∗ −0.024 0.002 0.022 0.044
(0.140) (0.095) (0.032) (0.029) (0.031) (0.034)

Density 0.026 0.079 0.002 −0.002 0.001 0.001
(0.106) (0.055) (0.009) (0.010) (0.007) (0.007)

Elderly proportion 1.333∗ 1.549∗∗ −0.006 0.008 0.957∗∗∗ 1.099∗∗∗
(0.759) (0.682) (0.182) (0.192) (0.266) (0.245)

Black proportion 1.527∗∗∗ 1.070∗∗∗ 0.047 0.014 0.124∗∗ 0.059
(0.299) (0.207) (0.047) (0.052) (0.050) (0.067)

State FE X X X
Observations 3,007 3,007 3,007 3,007 3,007 3,007
R2 0.109 0.298 0.001 0.030 0.012 0.039

Notes: Linear regression. COVID-19 deaths as of Nov 2020. We exclude covariates for which we lack
data in 1968 to ensure similar sample composition. Standard errors clustered at state level. *p<0.1;
**p<0.05; ***p<0.01
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Figure A2: Plot of the mean values of the present-day covariates utilized in our baseline
model. Means are separately computed for top decile counties in terms of both 1968 flu
mortality and 2020 COVID-19 mortality. Values are normalized relative to a nation-wide
mean of 0. We see a broad correlation in average county characteristics.
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Table A3: Impact of 1968 flu on current number of hospital beds

Dependent variable:

Beds per 1,000

(1) (2) (3) (4)

Flu deaths 1968 −0.088 −0.030 −0.009 −0.040
(0.344) (0.326) (0.297) (0.314)

Controls X X
State FE X X
Observations 2,470 2,470 2,470 2,470
R2 0.00002 0.116 0.135 0.201
Adjusted R2 −0.0004 0.098 0.130 0.180
Residual Std. Error 4.322 4.104 4.032 3.913

Notes: Linear regression of county-level hospital beds per 1,000
people on excess 1968 flu death rates. Models control variously for
socioeconomic variables and state-level fixed effects. Sample size
reduced because not all counties have hospitals. Standard errors
clustered at state level. *p<0.1; **p<0.05; ***p<0.01
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Table A4: Impact of 1968 flu on reported mask use frequency

Dependent variable:

Mask use propensity

(1) (2) (3) (4)

Flu deaths 1968 −0.017∗∗ −0.012∗∗ −0.013∗∗ −0.011∗∗
(0.008) (0.005) (0.005) (0.005)

Controls X X
State FE X X
Observations 3,024 3,024 3,024 3,024
R2 0.002 0.374 0.248 0.419
Adjusted R2 0.002 0.364 0.244 0.407
Residual Std. Error 0.088 0.070 0.077 0.068

Notes: Linear regression of county-level mask use defined as propor-
tion of sample responding to wearing masks ‘Sometimes’ or ‘Frequently’.
Models control variously for socioeconomic variables and state-level fixed
effects. Standard errors clustered at state level *p<0.1; **p<0.05;
***p<0.01
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Table A5: Impact of 1968 pandemic on mobility anomalies from Google

Dependent variable:

Commuting Retail
Summer average Pre-post COVID death Summer average Pre-post COVID death
(1) (2) (3) (4) (5) (6) (7) (8)

Flu death 1968 1.100∗∗ 0.774 2.983∗∗∗ 2.870∗∗∗ 6.640∗∗ 4.269 5.301∗ 4.114
(0.540) (0.550) (1.092) (0.965) (3.100) (2.666) (2.820) (2.566)

Covariates X X X X
State FE X X X X X X X X
SE Cluster State State State State State State State State
Observations 2,719 2,719 2,651 2,651 1,757 1,757 1,697 1,697
R2 0.162 0.474 0.185 0.444 0.195 0.403 0.174 0.376
Adjusted R2 0.147 0.461 0.170 0.431 0.173 0.381 0.150 0.352
Residual Std. Error 6.154 4.890 13.184 10.917 14.877 12.867 19.147 16.717

Notes: Linear regression of average mobility responses from data provided by Google. Models (1)-(4)
involve mobility in relation to commuting to work, and models (5)-(8) involve retail and recreational
activities. In models (1), (2), (5), and (6), Summer average is the average baseline change in mobility
in a county over June to August. In models (3), (4), (7), and (8), Pre-post COVID death is the change
in county mobility between the periods 28 days before and 28 days after a counties’ first reported
death. Models control variously for socioeconomic variables and state-level fixed effects. Observations
missing for counties and months with not enough activity for Google to provide an estimate. Standard
errors clustered at state level. *p<0.1; **p<0.05; ***p<0.01
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Figure A3: County-level map of Google mobility data on changes in time spent commuting
to work 28 days before and after the first county death.
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