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As the SARS-CoV-2 virus (COVID-19) continues to affect people across the globe, there is limited 

understanding of the long term implications for infected patients1–3. While some of these patients 

have documented follow-ups on clinical records, or participate in longitudinal surveys, these 

datasets are usually designed by clinicians, and not granular enough to understand the natural 

history or patient experiences of ‘long COVID’. In order to get a complete picture, there is a need 

to use patient generated data to track the long-term impact of COVID-19 on recovered patients in 

real time. There is a growing need to meticulously characterize these patients' experiences, from 

infection to months post-infection, and with highly granular patient generated data rather than 

clinician narratives. In this work, we present a longitudinal characterization of post-COVID-19 

symptoms using social media data from Twitter. Using a combination of machine learning, natural 

language processing techniques, and clinician reviews, we mined 296,154 tweets to characterize 

the post-acute infection course of the disease, creating detailed timelines of symptoms and 

conditions, and analyzing their symptomatology during a period of over 150 days. 

Introduction 

During the second surge of acute cases of COVID-19 in countries such as the United States and 

Spain, healthcare systems were overwhelmed with the management of acute cases, giving little 

attention, at the time, to the impact of infections on survivors and the long-term COVID-19 

sequelae. The current wave (Spring 2021) is taking a great toll amongst young people, who are 

less likely to need hospital or intensive care, but more likely to develop long-term symptoms 4. 

The pathogenesis of post-COVID-19 syndrome (“long-COVID”) is still uncertain, and may 

simultaneously include sequelae on different tissues caused directly by COVID-19 infection or 

indirectly by virus-induced immune damage. Initial reports from countries such as Italy5 show that 

many COVID-19 patients were reporting concerning long-term symptoms. These reports mention 

acute organ injury during primo-infection including acute kidney injury in 20% of patients5, 

myocardial injury in 20%-30%, and acute respiratory failure. Since these initial studies, other 

clinical reporters like Elisabeth Mahase6 and Michael Marshal7 started to report similar trends in 

UK and US patients, respectively. While work on acute patient cohorts was initially limited, more 

researchers have started to turn their attention to the long-COVID problem1,2, which have 

informed guidelines8. Many of these studies have mixed classical post-ICU sequelae with post-

COVID-19 symptoms. This is a major limitation of such studies, further complicating the definition 

of the post-COVID-19 syndrome. Opinion pieces from clinicians9 and researchers10 have made it 

clear that anonymous users on the internet, like members of the long-COVID forum11, and similar 

groups in other social media outlets, document their experiences for researchers and medical 

professionals to analyze. Social media platforms have not been created with health-related 

purposes in mind12, however, people publicly share personal health information every day13, thus 

not confounded by recall bias, representing an important source of health information being 

spontaneous, unsolicited and up to date. This data from social media can be monitored and 

analyzed by using natural language processing, providing new ways to better understand users’ 

health. Twitter is a microblogging social media service platform with more than 330 million active 

users worldwide14. Twitter users post short open available messages about facts, feelings, and 

opinions, including health conditions 15. The COVID-19 pandemic has shown a very unique aspect 

of involving patient-led initiatives into creating survey-based ‘long-COVID’ studies alongside 

health care professionals 16, or with special interest groups like Survivor Corps 17 creating 

longitudinal survey based studies 18 to measure the impacts of post-acute sequelae. Our work is 

fundamentally different in the sense that we did not directly contact any COVID-19 survivor, 

patient, or create any survey for people to complete. Instead, we directly identified Twitter 
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messages that use hashtags related to ‘long-COVID’, and ethically19 extracted the publicly 

available timelines for a curated set of users. These timelines narrate the user’s first hand 

experiences, at their own pace and time, documenting their daily lives alongside their disease 

sequelae. We leveraged a team of biomedical experts and clinicians to annotate relevant tweets, 

rather than fully relying on automated machine learning methods for this task. All data points 

presented in this study are identified by domain experts and have only been standardized by 

automated methods with a domain expert always involved in review. This work shows that social 

media data, in particular Twitter combined with the topic of long-COVID, is one additional research 

data source that could be leveraged alongside clinical and survey data to further characterize and 

investigate the disease progression.  

Methods Summary 

The public Twitter stream is a 1% random sample of all tweets on a given day. We used a 

combination of tweets from the dataset curated by Banda et.al. 20, additional tweets gathered 

using the Twitter COVID-19 research endpoint 21, and our own data collection stream set for long-

COVID and related hashtags from 2020-07-04 to 2020-08-10. For these analyses, we included 

users with three or more tweets in English (within this set), with any of the following hashtags: 

#LongCovid, #COVIDPERSISTENTE, #longhaulers, #apresJ20, and #CountLongCovid. All 

retweets were removed at this stage, and never used in our analysis. An important detail to note 

here is that none of the datasets offer complete timelines of all tweets for any of the selected 

users. As a starting point we used two clinicians to identify which users are describing post-

COVID-19 symptoms. From this cohort we then applied a mixture of domain expert review for 

tweet annotation, machine learning (ML) for relevance filtering, and natural language processing 

(NLP) for standardization. Details on these methods are included in the Methods section. Figure 

1 outlines our pipeline to generate the data and insights presented in the following sections. 

 

 
Figure 1. Complete pipeline for the acquisition, extraction, cleaning and evaluation of Twitter user timelines into long-

COVID trajectories.  
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Tweet gathering, long-hauler identification, and 
domain-expert annotation 
We started with the identification of 8,556 unique users, in a total of 31,481 unique tweets. From 

which our clinician review identified 312 users after consensus evaluation, detailed in the 

Methods: Identification of long haulers in Twitter data. We then extracted the timelines for 

306 of these users, as 6 of them had their account set to private (not publicly visible). From these 

306 users, 264,673 tweets were extracted from their Twitter timelines between 2020-01-01 and 

2020-08-17. While this number of tweets is unmanageable to have domain-experts curate, we 

relied on machine learning algorithms to filter only potentially relevant tweets of self-reported 

COVID-19 symptoms, medications, testing and imaging procedures, additional details can be 

found in the Methods: Extraction and annotation of long-haulers Twitter timelines. A 

PRISMA-like diagram is provided as Appendix 1 to detail the record filtering process from start to 

end. 

 

A total of 12,978 unique tweets were annotated by our domain experts, yielding a total of 31,385 

annotations. This step took over 400 domain-expert hours to complete. Additional details on the 

annotation of the user timeline tweets can be found in the Methods: Extraction and annotation 

of long-haulers Twitter timelines. Similarly, additional steps were performed to extract the 

symptom’s index dates to build the patients’ timelines (Methods: Index date extraction and 

assignment) and to normalize the annotations into clinical codes and relevant organ system 

groups (Methods: Annotation Normalization). 

Characterization of self-reported symptoms 

It is noteworthy that symptoms are often under-reported in Electronic Health Records 

(EHR)/Claims datasets as shown in studies across multiple databases from different 

countries22,23, so we believe that our data source contains valuable additional information as it 

has higher granularity, and it allows for symptoms like brain fog and COVID cheeks, to be 

identified as there are not ICD10 codes for them. From the cohort of 306 users identified, 286 

(93.46%) mentioned at least one symptom in their timeline. The remaining 20 users reported 

COVID-19 confirmation, testing, medications, or imaging, but no symptoms. From these 286 

users, the earliest self-reported symptom date (index date) was 2020-01-06 and the latest was 

2020-08-07. All users reported 9.26 distinct symptoms on average, with a minimum of 1 and a 

maximum 59. In terms of users reporting symptoms over time, Figure 2 shows the distribution of 

users reporting symptoms over increasing periods of time after COVID-19 infection. To note, we 

have a high number of users still reporting symptoms between 60 and 120 days from their index 

date (Figure 2), and 15% of them still reporting symptoms well over five months after reported 

infection.  
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Figure 2. Number of users and percentage of cohort reporting symptoms over time (in days).  
 

Like Carfi and colleagues24 in their report of patients hospitalized with COVID-19 in Italy, we also 

found that the most common long-COVID symptoms are fatigue, dyspnea, joint pain and chest 

pain, as shown in Figure 3, both in terms of total reports (top panel) and number of users reporting 

them (bottom panel). Using a mobile application for symptom tracking, Sudre et al.25 found that 

98% of individuals reported long-term fatigue, and 91% reported intermittent headaches25, 

another finding we are able to identify in our Twitter data. Additionally, we show the temporality 

of these symptoms in the stacked bars of Figure 3, indicating that most still continue to appear 

after 120 days.  
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Figure 3. Top 20 symptoms by frequency and user count. Counts are stacked by time ranges, from 0 to 30 days, all 

the way to 200 days. 
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In order to show the temporal reporting of any given symptom group, we present Figure 5, which 

indicates for each symptom group the index days which have reports. Whilst e.g. cardiovascular, 

respiratory and cutaneous symptoms come later (light yellow, purple and orange symptom 

groups), others like fatigue, persistent fever/chills and gastrointestinal symptoms (light red) 

appear early in the patient’s journeys. We also found that fatigue, dyspnea, pain and fever 

dominated reported symptoms early in an individual’s timeline. However, over time, other 

symptoms and conditions such as tachycardia, heart disease, and cognitive dysfunction became 

more commonly reported. This change in the constellation of symptoms and diagnoses reported 

suggest that COVID-19 may cause irreparable end-organ damage after acute infection, as has 

been reported in prior studies26–28. Also be that we are in the beginning stages of identifying 

patterns of recovery from infection. 

 

 
Figure 5. Ridge plot of the temporal distribution of reporting of symptoms. GI is used for Gastro-Intestinal 

and ENT for Ear, Nose and Throat. 

Measurements, imaging, and medications analysis 

While the main focus of this work is characterizing the symptoms of long haulers, we had our 

clinician team annotate measurements, imaging, and medications to try to uncover any interesting 

trends. Based on our expert annotations, only 15 out of 306 users (4.9%) mention a clear COVID-

19 confirmation. This is not surprising as many users in our cohort were diagnosed at a time when 

tests were not readily available for those presenting, at the time, mild symptoms. With regards to 

other tests or measurements being performed, 67 out of 306 users (21.9%) mentioned some sort 

of measurement. The top five most common measurements or tests and their frequencies are 

found in Table 1. Blood pressure, oxygen saturation, and heart rate were the top three clinical 

measurements, in line with the reported cardiovascular and respiratory symptoms above. 

 

Table 1. Top five most common measurements, imaging, and medications per user. 
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Measurement Users (%) Imaging Users (%) Medications Users (%) 

Blood Pressure 34 (11.11%) Chest X-ray 35 (11.44%) NSAIDs 47 (15.36%) 

Oxygen Saturation 28 (9.15%) Chest CT Scan 21 (6.86%) Paracetamol 39 (12.75%) 

Heart Rate 13 (4.25%) MRI 11 (3.59%) Supplements 38 (12.42%) 

D-Dimer 9 (2.94%) Echocardiogram 7 (2.29%) Antibiotics 37 (12.09%) 

Troponin 7 (2.29%) Ultrasound 4 (1.31%) Beta Blockers 33 (10.78%) 
 

 
 

 

Out of 306 users, 36 (11.76%) reported some sort of imaging procedure during their timelines, 

with respiratory and cardiovascular imaging (chest X-ray/CT, echocardiogram) amongst the most 

common. In terms of medication intake, 94 out of 306 users (30.72%) mentioned one or more 

medications during the study time period, including antipyretics and painkillers (NSAIDs, 

paracetamol), vitamin supplements, antibiotics, and beta blockers.  

Conclusion 

Unsurprisingly, the COVID-19 pandemic accelerated a larger trend of increased social media use 

and engagement, with up to 51% of adults in the United States reporting increased use during 

the pandemic29. As the first major/world-wide pandemic in the times of social media, it has been 

a great outlet for people to share their experiences during their time being sick, and more 

importantly after, creating a very large, and detailed set of narratives on their long-COVID journey. 

We have demonstrated that it is possible to curate Twitter data to perform temporal analyses of 

self-reported health events. Incorporating traditional methods of manual review and machine 

learning/data science, we have been able to create a very rich cohort of 306 individuals whose 

documented experiences provide an extremely valuable insight into the days after their COVID-

19 infections. While each narrative is unique in its own way, we have been able to identify 

symptom patterns within our cohort. We hope that these findings are of help to clinicians and long-

COVID clinics in helping their patients through their sequelae, allowing for a proper syndromic 

definition for long-COVID, and that they are validated in a prospective way in multinational 

cohorts. Additionally, these can help with improving access to specific healthcare needs like X-

rays, etc. It is important to note that the richness and frequency of the user’s symptom descriptions 

is unparalleled to any other resource for clinical research, as some people post near-real time 

about their condition. This makes the case to use social media data to capture more longitudinal 

and frequent data on clinical events that would not be possible using traditional means, and allows 

us to better understand the progression of diseases and reoccurring or newly occurring 

symptoms. While the COVID-19 pandemic has brought all these people together to share their 

journeys online, we also see that other groups of users with chronic illnesses like Myalgic 

encephalomyelitis/chronic fatigue syndrome (ME/CFS) share similar narratives online, opening 

future research avenues to explore those cohorts of people and characterize their diseases in a 

non-invasive way.  

Limitations 

Our study has several limitations. First, we rely on patient reported symptoms that are not clinically 

verified. Nevertheless, this is also a strength, as we aimed to collect near-real time, unbiased 
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patient-reported experiences instead of clinically driven information. We also found that most 

patients who report long-COVID symptoms never had definitive testing that attributes their illness 

to COVID-19, which is mostly due to limited testing early in the pandemic. Second, the limitation 

in using social media data is its extreme unstructured nature, which requires multiple hours of 

validation by experts. However, we addressed this by building machine learning models that we 

leveraged to decrease the number of tweets requiring review and adjudication. Lastly, we do not 

have any information about user comorbidities other than the ones self-disclosed, in contrast to 

clinical studies. Aside from these limitations, researchers have been using Twitter data in the 

context of health research for pharmacovigilance30,31, toxicovigilance32, and more recently to 

identify cohorts of pregnant women for safety surveillance33, using user timelines, showing the 

potential of this kind of data for health research.  

Methods  

Identification of long haulers in Twitter data 

We started with the identification of 8,556 unique users, in a total of 31,481 unique tweets. Once 

we narrowed down our potential cohort, we grouped all user tweets by user and ordered them 

sequentially by date. We then presented these groups of tweets per user in an anonymized way 

(no real user name or tweet ID visible) to two clinicians for determination if the user is talking 

about a personal long-COVID journey, or if the user is voicing other’s experiences or 

news/literature mentions of the phenomena. Both clinicians were tasked to make their best 

assumption based on the set of tweets presented, which varied from 800+ tweets to just two. The 

average number of tweets presented was 3.7 as we had many users with only a handful of tweets 

available in our initial dataset. The clinician agreement between potential long haulers was 

evaluated to be 92%, with the other 8% of disagreements being resolved by a third clinician. A 

total of 312 people were determined to be good candidates for long haulers based on our manual 

evaluation. This set of 312 people had an average of 13.4 tweets in our dataset, allowing clinicians 

to make a confident decision based on multiple data points. Note that there are many more 

potential long haulers in this dataset we used, however, we wanted to focus on a high-quality and 

easily identifiable set of users as time and resources for our evaluation were limited.  

Extraction and annotation of long haulers’ Twitter timelines 

After having identified the Twitter users for further evaluation, we needed to extract a longitudinal 

timeline of all of the users’ tweets between the beginning of 2020 (2020-01-01) and the day we 

started our study (2020-08-17), giving us 229 days to look into the users’ tweeting activity before 

COVID-19 was declared a pandemic, and plenty of time after the pandemic declaration, to look 

for persistent symptoms in a span of several months. While the Twitter API only allows free users 

to extract a very limited set of old tweets, we used two scraping Python packages, GetOldTweets 
34 and our own scraper part of SMMT35 to extract the user timelines. These software packages 

allowed us to go back all the way to the beginning of the year for each selected user and extract 

all their tweets over the given period of time. From the 312 users identified, we found that 6 users 

had their timelines set to private, thus we did not extract their timelines and removed them from 

the study. From the remaining 306 users we extracted a total of 264,673 tweets. While the 

average number of tweets per user was ~865, some tweeted with higher frequency than others.  
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We recruited a set of 24 domain expert annotators for this work, however, annotating 264,673 

tweets would have been an unreasonable task as the average annotation rate per hour circled 

around 90-100 tweets. Also, we had two different domain experts annotate the same set of tweets 

to calculate inter annotator agreement for quality control. This process would have taken over 

5,880 domain expert hours. In order to identify relevant tweets and reduce the annotation time by 

presenting highly probable relevant tweets to the annotators, we built a machine learning model 

based on the annotation of an initial set of 150 relevant and 2,453 irrelevant tweets from related 

earlier work 36. We further enhanced this by having our senior clinician reviewer manually annotate 

an additional set of 3,386 tweets (with 474 relevant and 2,912 irrelevant), giving us a total of 624 

relevant and 5,365 irrelevant tweets. Building such models is standard practice 37 and we 

experimented with different classification algorithms and class imbalance scenarios until we 

trained a support vector machine (SVM) model that performed a 75% accurate classification of a 

20% random held-out test set from our manually labeled set. The intricate details of this process 

were out of the scope of this paper, as we focus on evaluating what was annotated/extracted from 

the tweets based on the clinician annotations. Since we split our manual review of the extracted 

timelines into three different rounds, we improved our model in each iteration, achieving 81.5% 

accuracy for all predicted tweets as relevant with a probability higher than 85%. In each iteration 

we selected only the tweets with a probability of 70% or higher to be relevant. As an interesting 

observation, we found that in our initial relevancy annotated set, tweets were at least 110 

characters or longer (on average), when compared to the non-relevant tweets which had an 

average length of 85 characters. All tweets were randomly sorted and fully anonymized (no 

username or identifier) before they were made available to our group of clinicians for annotation.  

 

Our clinicians were tasked with identifying ten different things in each tweet: COVID-19 Testing 

mentions, COVID-19 confirmations, mentions of financial costs related to the disease, Time Index 

mentions of when the user says he got COVID-19, any mentions of a clinical condition, any 

mentions of Imaging studies performed, any mentions of body measurements or tests, any 

mentions of medications they are taking, any mentions of disease symptoms, and lastly, if the 

tweet was not relevant, it would me marked as such. The annotation task was carried out in 

batches of 700-900 tweets, each one annotated by three separate clinicians. Using the docanno 

open source text annotation tool 38, the annotator was tasked with selecting the section (sequence 

labeling) of the tweet’s text that best represented any of the given labels. Figure S1 gives an 

example of the annotation interface with some symptoms and time index annotations. 

 
Figure S1. Docanno annotation tool example.  
 

Each tweet was annotated by at least two domain experts. To evaluate the agreement between 

annotators, we looked at label-level agreement between our clinician reviewers within their 

allocated sets of tweets. We calculated the pairwise Cohen kappa 39 statistic (κ). If both annotators 
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are in complete agreement then κ = 1, in the worst case, if there is no agreement among the 

annotators (other than what would be expected by chance) then κ ≤ 0 40. Table S1 shows the total 

number of annotations produced for every single one of our 10 classes, and their average Cohen 

kappa statistic. Note that these numbers are not unique annotations, but total annotations 

produced for each category.  
 

Table S1. Annotation statistics 

Label Annotations 
Avg. Cohen’s 

kappa - κ 

COVID19Testing 336 0.7124 

COVID19confirmation 307 0.8143 

Financial Costs 66 0.7069 

Not Relevant 8,469 0.8671 

TimeIndex 3,381 0.8429 

Imaging 227 0.8612 

Measurement/testing 1,038 0.7935 

Medication 954 0.8544 

Condition / Symptom 16,607 0.8302 

 

A κ of 0.61 and higher is considered substantial agreement and all our labels had a κ value of 

0.67 at a minimum. In fact, the κ value for most labels of interest was above 0.70, with some even 

reaching values above 0.81, which is considered near perfect agreement 40. 

Index Date extraction and assignment 

In order to perform temporal data analysis for long haulers’ symptoms, we had our clinician 

annotators label parts of tweets that identified how many days/weeks/months the person had 

been experiencing symptoms, the day they estimated they got COVID or the actual day they 

tested positive for COVID, with the TimeIndex label. One interesting fact of tweets from long 

haulers is that many of them keep a very concise track of the number of days they have been 

experiencing symptoms, or report the actual date of their positive tests. Table S2 shows different 

variations of the text found by the TimeIndex label. Our calculated index date is highlighted in 

bold, given the different adjudications scenarios we discuss below. 

 

Table S2. Index Date calculation for users, based on their TimeIndex annotations. 

userName tweetDate annotationText 
Calculated 

Index Date 

User-103 2020-06-01 day 75 2020-03-18 

User-103 2020-07-17 17 weeks in 2020-03-20 

User-105 2020-05-09 14 days 2020-04-25 

User-105 2020-07-05 after 3 months 2020-04-06 

User-105 2020-07-14 i first had covid on 24th april, 2020-04-24 

User-106 2020-05-24 60plus-day 2020-03-25 

User-106 2020-05-28 day67 2020-03-22 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.13.21260449doi: medRxiv preprint 

https://paperpile.com/c/SAhKpG/bGgSL
https://paperpile.com/c/SAhKpG/bGgSL
https://doi.org/10.1101/2021.07.13.21260449
http://creativecommons.org/licenses/by-nc-nd/4.0/


User-106 2020-07-01 100days 2020-03-23 

 

With over 3,381 TimeIndex labels annotated, we created a custom Python software utility, part of 

SMMT 35 to calculate the potential date of COVID-19 start for each user based on the text from 

the annotated label. While the software we created gives us an automatically calculated date 

based on the text, being a specific date, a number of days, or a weeks/months estimate, there 

will be decisions to adjudicate dates or adjust manually. Our algorithm’s rules for index date 

assignments are: If the user reports a specific date, use the given date, if the user reports multiple 

different day estimates, subtract days from the current tweet date and select the one with the 

highest amount of repetition. If there is an uneven number of reports, pick the average date, lastly, 

if the user did not report any specific date, number of days, or weeks estimate, use the date of 

the first tweet with symptoms as the index date. Table S2 shows in the last column the Index date 

assignment based on our algorithm. Out of our set of 306 long haulers, 282 (~90%) had one or 

more TimeIndex labels, allowing for a better Index Date estimation.  

 

Once our domain expert-reviewed standardized annotations and the user’s index dates were 

calculated, we were able to visualize each user and their long hauler journey with plots as 

shown in Figure S2 A and B. 
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Figure S2. Timeline of annotations of two different long haulers. Note that each dot represents one day of 

symptoms/medications/testing extracted from their tweets over time.  

 

As we can see from Figure S2, part A and B, all our users' journeys were very different because 

symptoms/measurements reported vary, the documentation habits of people and the frequency 

they posted their experience on Twitter.  

 

Combining all long hauler timelines, we can characterize all users at a granularity of percentage 

of self-reported symptoms reported on a per-day basis, as seen in Figure S3.  

 
Figure S3. Plot of all symptom groups presented by Twitter users on any day (starting after self-reported diagnosis) 

during their long-COVID journey. The methods section describes all steps to get to this visualization. GI is used for 

Gastro-Intestinal and ENT for Ear, Nose and Throat. 

Annotation Normalization 

One of the major hurdles of using social media data for any kind of research purpose is that the 

quality of the language used tends to be lower than in literature or news articles. Since people 

post messages on the fly or are usually constrained by message sizes (Twitter has a max of 280 

characters per message), there is ample use of short-hand and ad hoc abbreviations, as well as 

the use of colloquialisms or words that are not easily captured by formal controlled vocabularies. 

In previous studies, we have shown that in the case of finding medication names in COVID-19 

chatter 41, one would miss around 15% of relevant data if not taken appropriate measures to 

account for variants in the words used. In order to normalize the annotations made by our 

clinicians, we used the Observational Health Data Sciences and Informatics (OHDSI) vocabulary 

that includes a collection of biomedical controlled vocabularies such as: RxNorm, SNOMED-CT, 

ICD9/10, CPT, among many others. The purpose of doing this is to be able to tie the manual 

annotators to clinically relevant concepts for downstream analysis. This approach has been 

shown to be effective when 41 dealing with COVID-19 Twitter data. Using Spacy 42 and a flattened 

version of the OHDSI vocabulary that only contains unique strings, we tagged our clinician-
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generated annotations, resulting in a total of 22,174 concept codes. This is a considerable 

difference from the number of actual annotated labels, 31,385, mostly due to the previously 

mentioned word variations, misspellings and abbreviations. Additionally, there are text 

strings/words that are not in any of the vocabularies from the OHDSI vocabulary version we used. 

To avoid losing any important data from the annotations, we manually reviewed which annotations 

did not match to any concept, and when needed we either added a new concept or created a 

mapping to an already existing concept. Table S3 contains some examples of these new concepts 

we added, as well as examples of mapped strings to existing terms. 

 

Table S3. Annotation Normalization  

Annotated string concept_id Type 

brainfog 66000004 New Concept 

covid cheeks 66000008 New Concept 

covid toes 66000009 New Concept 

exhausted 66000013 New Concept 

knackered 66000013 Mapped to New Concept - 66000013 

body ache 35843410 Mapped to MedDRA - General body pain 

body aches 35843410 Mapped to MedDRA - General body pain 

racing hearts 36356629 Mapped to MedDRA - Heart rate high 

raised hr 36356629 Mapped to MedDRA - Heart rate high 

 

As one can see from Table S3, the majority of terms added are terms that are not found in clinical 

controlled vocabularies due to their novelty and relatedness to COVID-19 like brain fog, COVID 

cheeks, and COVID toes. Other terms like ‘exhausted’ and ‘knackered’ need to be added since 

the current form is not found in the OHDSI vocabulary. The point of adding new terms is to add 

terms that do not exist or synonyms cannot be found in our vocabulary. For the terms that are 

synonyms or related terms, like ‘body ache’/’body aches’ and ‘racing hearts’/’raised hr’ are 

mapped respectively to ‘General body pain’ and ‘Heart rate high’. The manually added term 

mappings, additional misspellings for certain words, and new concepts total 2,186 new additions 

to our vocabulary. These are needed to fully convert the manual annotations into standardized 

concepts. When using the updated dictionary and Spacy, we are left with 40,474 concepts derived 

from the manual annotations and most importantly, no missing clinician annotation. Lastly, we 

leveraged internal mapping relationships of the OHDSI vocabulary and other external resources, 

to map all symptoms/conditions to ICD10 codes when possible for clarity and cohesion of our 

analysis.  

Organ system groupings 

With our analysis focusing on the long haulers and their lingering symptoms/conditions, we 

wanted to examine the symptoms on two levels. One is the most granulary, and explained above, 

where we identified in all timelines 136 unique symptoms. To look at these in a higher-level and 

by organ system we manually curated all these codes into 25 higher-level categories: 

Anosmia/Ageusia/Parageusia - Arthralgia/Arthritis/Msk pain - Cardiovascular, Other/Unspecific - 

Chest Pain - Cough - Dyspnea - Ent, Other/Unspecific - Fatigue - Fever and/or Chills - GI, 

Other/Unspecific - Headache - Hyperhidrosis, Unspecified - Insomnia/Sleep Disorders - Kidney 
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Issues - Neuropsych, Other/Unspecific - Pain in throat - Pain, Other/Unspecific - Paresthesia of 

skin - Respiratory, Other/Unspecific - Skin, Other/Unspecific - Tachycardia/Palpitations - Tinnitus 

- Unspecific Illness/Symptom - Viral pneumonia, unspecified. 
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