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Abstract. The COVID-19 pandemic has a devastating impact on the
health and well-being of global population. Cough audio signals classifi-
cation showed potential as a screening approach for diagnosing people,
infected with COVID-19. Recent approaches need costly deep learning
algorithms or sophisticated methods to extract informative features from
cough audio signals. In this paper, we propose a low-cost envelope ap-
proach, called CovidEnvelope, which can classify COVID-19 positive and
negative cases from raw data by avoiding above disadvantages. This au-
tomated approach can pre-process cough audio signals by filter-out back-
ground noises, generate an envelope around the audio signal, and finally
provide outcomes by computing area enclosed by the envelope. It has
been seen that reliable datasets are also important for achieving high
performance. Our approach proves that human verbal confirmation is
not a reliable source of information. Finally, the approach reaches high-
est sensitivity, specificity, accuracy, and AUC of 0.92, 0.87, 0.89, and
0.89 respectively. The automatic approach only takes 1.8 to 3.9 minutes
to compute these performances. Overall, this approach is fast and sensi-
tive to diagnose the people living with COVID-19, regardless of having
COVID-19 related symptoms or not, and thus have vast applicability in
human well-being by designing HCI devices incorporating this approach.
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1 Introduction

COVID-19 is a respiratory disease caused by SARS-CoV-2 virus — a novel Coro-
navirus of family Coronaviridae. Coronaviruses of this family, especially viruses
of genus Betacoronavirus (e.g. Middle East Respiratory Syndrome Coronavirus,
aka MERS-CoV, Severe Acute Respiratory Syndrome Coronavirus, aka SARS-
CoV etc) are highly pathogens of respiratory tract diseases and their charac-
teristics of highly variable genetic diversity and diverse host adaptability make
them deadly and devastating around the world [16]. Current COVID-19 pan-
demic and its widespread infection and mortality rate has made SARS-Cov2
virus a hot topic for diverse research communities. Beside developing vaccines
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to cure COVID-19, substantial effort is being made to develop tools to diagnose
COVID-19.

COVID-19 diagnoses tools can be widely divided into two categories. Firstly,
biological tools, which are involved in viral nucleic acid-based detection (e.g. RT-
PCR, LAMP etc.) and protein-based detection (e.g. rapid antigen-based detec-
tion and serological tests). Among the available tools, RT-PCR based nucleic acid
detection is being considered as “gold-standard” for COVID-19 diagnosis because
of its high specificity, sensitivity, and ability to detect at initial stage of infection
[7]. Due to substantial similarity with other sister species of coronavirus, two-
targeted multiplex RT-PCR is adopted to detect SARS-CoV2 virus, where ’first
target’ broadly detects presence of any members of coronavirus, and the ’later
target’ further narrow down to SARS-CoV2. Although this technique is rapid and
highly reproducible, it is labour-extensive, time-consuming, and need molecular
biology expertise with sophisticated laboratory facilities to do certain steps [18].
Different modifications of RT-PCR techniques have been proposed, like one-step
Loop-mediated iso-thermal amplification reaction (LAMP), Microarray-based
methods, bar-coded bead assays [15], which need sophisticated instruments and
are not as sensitive as RT-PCR. On the other hand, protein-based detection tests
are simple and fast alternatives, utilises host immune response to viral antigens.
Currently, numerous serological tests (e.g. Enzyme-linked immunosorbent assay-
ELISA, Indirect immunofluorescence- ITFT) are under development for COVID-
19 diagnosis with variable specificity. Even though host antibodies, generated in
response to viral infection, can be useful tool for COVID-19 diagnosis, there is
a potential chance of producing similar antibodies (cross-reactive antibody re-
sponse), in response to other coronaviruses — resulting in false positive detection
[9]. Besides, antibody-based serological tests are also prone to viral lag-period
of 4 to 7 days, where they does not show any responses, and also show poor
response up to 6 days of infection, which is alarming for public health [5].

Beside biological tests, several clinical feature-based tests are being proposed
and analysed. The initial mild symptoms of the COVID-19 include cough, fever,
fatigue, followed by headache, dyspnea, myalgia, and gastrointestinal complica-
tions with nausea and watery diarrhoea [17], which are being considered during
these tests. Severe COVID-19 infection manifested by pneumonia with acute res-
piratory distress syndrome, severe cough, and infiltrates on chest image. Based
on the features, fever, cough, and dyspnea are considered as potential indicator
of suspicious COVID-19, and numerous machine-learning (ML) algorithms are
being developed as a pre-screening diagnostic tool for COVID-19 detection.

Different ML methods have been used to diagnose various diseases [6, 10]
and similar principle has been adopted for diagnosing COVID-19 from chest
computed tomography (CT scan) images in [14]. On the other hand, audio signals
have been successfully utilised to diagnose various respiratory conditions [12].
Cough detection from the audio signals is a very important and promising process
to detect pathology severity of the people, infected with COVID-19. The audio-
based screening tool could be implemented in residential environments to track
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individuals who are suffering from COVID-19 as a subsystem of remote health
monitoring systems.

ML has been found as a useful method to design the audio-based screen-
ing tool to diagnose coughs [2]. Convolutional Neural Network (CNN) and Re-
current Neural Network (RNN) models were used to detect cough sounds by
varying hyper-parameter values manually in [I]. A real-time cough detection
method was designed, by combining Gaussian Mixture model and Universal
Background model [13], that requires four steps to complete the process: sound
pre-processing, segmentation, feature / event extraction, and cough prediction.
Wavelet decomposition and statistical parameters were used to detect pneumo-
nia cough [14]. Logistic regression was considered to detect tuberculosis cough
from short-term spectral features [3]. Further, Brown et al. [1] used large-scale
crowdsourced dataset of respiratory sounds and extracted various features be-
fore detecting COVID-19 cough using logistic regression, gradient boosting trees
(GBT) and support vector machines (SVM). Laguarta et al. [3] considered CNN
for diagnosing COVID-19 cough from extracted features. In this paper, we pro-
pose a low-cost envelope approach that does not require any prepossessing steps
and extracting features from raw cough signals. In addition, it is a computa-
tionally inexpensive method and easy to develop HCI device for healthcare and
wellbeing of the communal health. As a HCI response to pandemic, such real-
time cough-screening tool will be helpful to pre-screen and later-on diagnose
COVID-19 patients and reduce COVID-19 prevalence around the community.

2 Methods

We collected cough audio signals from a reliable, publicly available data reposi-
tory, and designed an automatic approach, which is capable of diagnosing COVID-
19 from the raw cough signals.

2.1 Cough Dataset

There is insufficient dataset available regarding COVID-19 cough sounds. Among
the available datasets, some lack proper annotation and corresponding confir-
mation. The most reliable and publicly available dataset, used in current study,
was collected by the Medina Medical Group? in Russia.

Table 1. Data specifications with the number of records in parentheses

Asymptomatic (180)
Symptomatic (201)

Verbal Positives (681) Verified Positives (381)

COVID-19 cough records (1322) Verified Negatives (300)
Verified Negatives (438)
Unverified (203)

Verbal Negatives (641)

4 https://fkthecovid.ru/en
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The dataset contains a total number of readable sound data of 1322, collected
in Oct.-Nov.2020 as mentioned in Table 1. It has two types of records — Verbal
Positives: where subjects confirmed their COVID-19 presence verbally, Verbal
Negatives: where subjects confirmed their COVID-19 absence verbally. Further
the verbal confirmations were verified using laboratory-based PCR tests, gener-
ating two types — Verified Positives: where the records had been further con-
firmed to the presence of COVID-19 by laboratory-based PCR tests and Verified
Negatives: where the records confirmed for the absence of COVID-19 by PCR
tests. Verified positives dataset further divisible into two specific groups — Symp-
tomatic: where the subjects exhibit COVID-19 specific symptoms and Asymp-
tomatic: where the subjects did not show any COVID-19 specific symptoms. In
this study, regardless of COVID-19 presence or absence, we formed another type
of dataset, namely ‘Matched’: where verbal confirmation data matched with
the laboratory confirmations. This study found 819 ‘Matched’ records, where
the number of 'Matched Positives’ (i.e. Verbal Positives = Verified Positives)
and ‘Matched Negatives’ (i.e. Verbal Negatives = Verified Negatives) were 381
and 438 respectively. The ‘Matched Positive’ records are further divided into
‘MatchedSymp’ and ‘MatchedAsymp’ based on the observed COVID-19 related
symptoms. There are 201 and 108 records who did not show (‘MatchedAsymp’)
and showed (‘MatchedSymp’) COVID-19 symptoms, respectively.

2.2 CovidEnvelope Approach

We designed an envelope approach for computing area of cough sounds which
take raw cough audio signals as input and provide outcomes as COVID-19 pos-
itive or negative from the computed resultant area. Correct cough-based audio
signals were selected from the raw audio signals and then, filtering was per-
formed to get rid of background noises. A “signal envelope” was generated over
the filtered audio signal, and the envelope-enclosed resultant area was calculated.
Based on the resultant area, decision was made to identify COVID-19 positive
or negative. Each step of this automatic approach is described accordingly and
a resultant signal is illustrated in Figure 1.

Audio signal, as depicted in Figure 1(a), was taken as input to the algo-
rithm. In addition to the original audio signal, the recording may often contain
additional high frequency noisy signals. Correct audio signal was selected by
comparing the sum of variances of the recorded signals, and then filtered using
a three-point moving average filter to remove random fluctuations between sam-
ples of the audio signal as illustrated in Figure 1(b). An envelope of the filtered
audio signal was generated as shown in Figure 1(c), where the upper and lower
boundaries of the audio signal are shown by the red and blue lines, respectively.
The resultant signal was generated by applying equation 1.

Ri=|U;— L; | (1)

where R;, U;, and L; are the amplitudes of the resultant, upper, and lower
boundaries for the iy, sample. A sample resultant signal is depicted in Fig-
ure 1(d). The absolute difference between the upper and lower boundaries was
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Fig. 1. Generating envelope from cough audio signals.

taken to produce positive amplitude enclosed by the signal envelope. The area
enclosed by the envelope was calculated by summing up the sample amplitudes
of the resultant signal by applying equation 2.

A= f:Ri (2)
i=1

where A’ and ’'n’ are the area enclosed by the envelope and number of
samples in the resultant signal, respectively.

3 Results and Discussion

We executed our CovidEnvelope Approach in an Intel (R) Core (TM) i5-1035G4
CPU@1.10GHz 1.50GHz, 8.00 GB of RAM, Operating system 64-bit computer
using MATLAB R2012b and tested with varying thresholds to diagnose COVID-
19 positive coughs. Selecting threshold values play a vital role before computing
the overall performance. We computed various evaluation matrices against three
thresholds for determining optimised threshold values as shown in Figure 2.
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Fig. 2. Determination of the optimum threshold value.

For threshold 6,000, sensitivity (0.92) was found highest but other matrices
were found lowest compared to other two cases. For threshold 4,000, specificity
(0.92) was found highest but other matrices were found lowest compared to
threshold 5,000. On the other-hand, for threshold 5,000, accuracy, Cohen’s kappa
coefficient (k), and area under ROC curve (AUC) were found highest compared
to other two thresholds, which are 0.89, 0.77, and 0.89 respectively. Sensitivity
(0.90) and specificity (0.87) are also found reasonable for threshold 5,000. It is
worthwhile to note that the accuracy and AUC of the CovidEnvelope approach
were calculated from the sensitivity and specificity. Thus, we selected threshold
5,000 for further analyses.

We analysed five conditions as explained in Table 2, namely ‘Verbal’, ‘Veri-
fied’, ‘Matched’, ‘MatchedAsymp’, and ‘MatchedSymp’. The lowest performance
(Accuracy = 0.67, AUC = 0.65) was found for ‘Verbal’ condition where the
dataset consisted of verbal confirmation - verified or unverified with PCR tests.
Verbal confirmations are not often correct, prone to miscommunications or fraud-
ulence among participants, and it could be a reason for the lowest performance.

When ‘Verified” condition was considered for COVID-19 dataset, our ap-
proach performed better (Accuracy = 0.80, AUC = 0.82) than the ‘Verbal’ con-
dition. It is the reliable records where COVID-19 cases were confirmed by labo-
ratory tests. Performance was improved when verbal confirmation was matched
with verified condition (‘Matched’ condition). Sensitivity, specificity, k, accu-
racy, and AUC were observed 0.90, 0.87, 0.77, 0.89, and 0.89, respectively for
the ‘Matched’ condition. For matched asymptomatic (i.e. ‘MatchedAsymp’) and
symptomatic (‘MatchedSymp’) conditions, the CovidEnvelope approach reaches
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Table 2. Performance evaluation of the designed algorithm with different conditions

Conditions N [a, b]! Sensitivity[Specificity|Accuracy[k? [AUC?|Execution time (min)
Verbal 1322 [681, 641]|0.70 0.63 0.67 0.33/0.65 (3.9
Verified 1119 [381, 738]|0.90 0.75 0.80 0.59(0.82 |3.3
Matched 819 (381, 438] 10.90 0.87 0.89 0.77(0.89 |24
Matched Asymp|618 [180, 438] |0.92 0.87 0.89 0.74/10.89 [1.8
MatchedSymp [639 [201, 438] |0.89 0.87 0.88 0.73|0.88 |1.9

INumber of records where a and b represent COVID-19 positive and negative records,
2Cohen’s kappa coefficient,
3 Area under ROC curve, where ROC is Receiver Operating characteristics.

up to accuracies of 0.89 and 0.88 respectively, which is very similar to the
‘Matched’ condition. Our approach takes only 1.8 to 3.9 minutes for diagnosing
COVID-19 cases depending on an applied condition.

A t-test was performed on computed resultant mean areas for measuring
significance tests considering each conditions separately. The computed mean
areas are illustrated in Figure 3. For ‘Verbal’ condition, mean areas of COVID-
19 positive cases were found significantly different (p = 0.004) than COVID-19
negative cases. For other conditions (‘Verified’, ‘Matched’, ‘MatchedAsymp’, and
‘MatchedSymp’), mean areas of COVID-19 positive cases were found highly sig-
nificantly different (p<0.0001) than COVID-19 negative cases as shown in Fig-
ure 3(a). The results indicate that ‘Verbal’ confirmation is less reliable than ver-
ified and matched conditions for designing an efficient and automatic COVID-19
diagnosis tool. In addition, the mean areas of asymptomatic COVID-19 positive
and symptomatic COVID-19 positive cases are illustrated in Figure 3(b) and
the mean areas of these cases were not statistically significantly different (p =
0.26). The results alternatively indicate that the performance of our approach is
independent of the symptoms of COVID-19.

a b
COVID-19 Posiive [ COVID-19 Negative
25000
20000 I l 1 1 20000
15000 I 15000 —
2 T-test, p = 0.26
o « .
> 10000 I : 10000 : .
g '
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= = = =
! 1 C ]
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Fig. 3. Mean areas computed by CovidEnvelope Approach.
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The main challenge of this study was to identify trustworthy and reliable
datasets. There are several publicly available datasets [4, 12], which were verbally
confirmed, but can introduce biases in our approach, as we have seen anomaly
in verified and unverified dataset. Till date, MIT Open Voice dataset is the
largest COVID-19 cough dataset, comprising 5,320 subjects, resulted in highest
sensitivity and specificity of 0.98 and 0.94 respectively, but unavailability of this
dataset hinders us to utilise it [8]. Moreover, current dataset does not mention
about the level of severity of COVID-19 patients. Using well-documented dataset
to validate our approach will enhance both sensitivity and specificity.

Further, our study has shown a compact ML approach, which only needs
raw audio signals, do not need to extract any features, and can be recorded
easily using available devices like cell phones. Unlike existing approaches, it is
computationally inexpensive and requires only less than 4 minutes to screen.
Our approach can distinguish between COVID-19 positive and negative coughs,
regardless the patients show symptoms or not. Our study will help human well-
being by developing tools for hand-hold devices, such as mobile phones, smart
watches etc, which would enable diagnosing COVID-19 immediately and im-
proving human-device interaction in pandemic.

The CovidEnvelope approach can also be utilised to study other respiratory
tract diseases in human, such as tuberculosis, asthma, pneumonia etc. For audio-
signal based studies, like classification and surveillance of animals based on audio
signals [11], this enveloped approach will add a new horizon. As an extension
of current study and potential application in HCI-based healthcare and public
health sectors, real-time low-cost software is possible to design in near future.
Such a sophisticated, end-to-end encrypted application will need considerable
amount of verified COVID-19 records to validate our approach.

4 Conclusion

We developed a fast, low-cost, and reliable COVID-19 cough detection approach,
which can diagnose COVID-19 with the highest accuracy, AUC, sensitivity, and
specificity of 0.89, 0.89, 0.92, and 0.87, respectively. We proved that COVID-19
positive and negative coughs are significantly different in terms of area enclosed
by envelope and highly effective regardless of symptomatic or asymptomatic
cases. Further, verbal confirmation is not a reliable source of information. Due
to the lack of reliable datasets, we are unable to design a pre-trained model. Our
future work will focus on collecting more well-documented datasets, especially
cough sounds resulting from other pulmonary diseases, by collaborating with
relevant authorities, and develop a pre-trained model and a reliable HCI-based
mobile application for screening COVID-19 within short duration of time.

Acknowledgment

The authors would like to thank Medina Medical Group to make the dataset
available for research community.



1]

2]

Bibliography

J. Amoh and K. Odame. Deep neural networks for identifying cough sounds.
IEEFE transactions on biomedical circuits and systems, 10(5):1003-1011,
2016.

C. Bales, M. Nabeel, C. N. John, U. Masood, H. N. Qureshi, H. Farooq,
I. Posokhova, and A. Imran. Can machine learning be used to recognize
and diagnose coughs? In 2020 International Conference on e-Health and
Bioengineering (EHB), pages 1-4. IEEE, 2020.

G. Botha, G. Theron, R. Warren, M. Klopper, K. Dheda, P. Van Helden, and
T. Niesler. Detection of tuberculosis by automatic cough sound analysis.
Physiological measurement, 39(4):045005, 2018.

C. Brown, J. Chauhan, A. Grammenos, J. Han, A. Hasthanasombat,
D. Spathis, T. Xia, P. Cicuta, and C. Mascolo. Exploring automatic diagno-
sis of covid-19 from crowdsourced respiratory sound data. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 3474-3484, 2020.

J. Cohen and K. Kupferschmidt. Labs scramble to produce new coronavirus
diagnostics, 2020.

S. Hicks, M. Riegler, K. Pogorelov, K. V. Anonsen, T. de Lange, D. Jo-
hansen, M. Jeppsson, K. R. Randel, S. L. Eskeland, and P. Halvorsen. Dis-
secting deep neural networks for better medical image classification and
classification understanding. In 2018 IEEE 31st International Symposium
on Computer-Based Medical Systems (CBMS), pages 363-368. IEEE, 2018.

C. Kelly-Cirino, L. T. Mazzola, A. Chua, C. J. Oxenford, and M. D.
Van Kerkhove. An updated roadmap for mers-cov research and product
development: focus on diagnostics. BM.J global health, 4(Suppl 2):€001105,
2019.

J. Laguarta, F. Hueto, and B. Subirana. Covid-19 artificial intelligence
diagnosis using only cough recordings. IEEE Open Journal of Engineering
in Medicine and Biology, 1:275-281, 2020.

H. Lv, N. C. Wu, O. T.-Y. Tsang, M. Yuan, R. A. Perera, W. S. Leung,
R. T. So, J. M. C. Chan, G. K. Yip, T. S. H. Chik, et al. Cross-reactive
antibody response between sars-cov-2 and sars-cov infections. Cell reports,
31(9):107725, 2020.

W. Merrad, A. Héloir, C. Kolski, G. Mark, and A. Kriiger. Towards moni-
toring patients with alzheimer’s disease activity using distributed tangible
tabletops and dual reality. In 2020 IEEE 33rd International Symposium on
Computer-Based Medical Systems (CBMS), pages 142-145. IEEE, 2020.

H. Mukundarajan, F. J. H. Hol, E. A. Castillo, C. Newby, and M. Prakash.
Using mobile phones as acoustic sensors for high-throughput mosquito
surveillance. Elife, 6:e27854, 2017.



10

[12]

[13]

[14]

[15]

[16]

Hossain et al.

L. Orlandic, T. Teijeiro, and D. Atienza. The coughvid crowdsourcing
dataset: A corpus for the study of large-scale cough analysis algorithms.
arXiw preprint arXiv:2009.11644, 2020.

C. Pham. Mobicough: real-time cough detection and monitoring using low-
cost mobile devices. In Asian Conference on Intelligent Information and
Database Systems, pages 300-309. Springer, 2016.

T. H. Pingale and H. Patil. Analysis of cough sound for pneumonia detection
using wavelet transform and statistical parameters. In 2017 International
Conference on Computing, Communication, Control and Automation (IC-
CUBEA), pages 1-6. IEEE, 2017.

M. Shen, Y. Zhou, J. Ye, A. A. A. Al-Maskri, Y. Kang, S. Zeng, and S. Cai.
Recent advances and perspectives of nucleic acid detection for coronavirus.
Journal of pharmaceutical analysis, 10(2):97-101, 2020.

A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and
D. Veesler. Structure, function, and antigenicity of the sars-cov-2 spike
glycoprotein. Cell, 181(2):281-292, 2020.

D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang,
Z. Cheng, Y. Xiong, et al. Clinical characteristics of 138 hospitalized pa-
tients with 2019 novel coronavirus—-infected pneumonia in wuhan, china.
Jama, 323(11):1061-1069, 2020.

M. L. Wong and J. F. Medrano. Real-time pcr for mrna quantitation.
Biotechniques, 39(1):75-85, 2005.



	CovidEnvelope: A Fast Automated Approach to Diagnose COVID-19 from Cough Signals

