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Abstract

In this study, we propose and analyze an extended SEIARD model with vacci-
nation. We compute the control reproduction number Rc of our model and study
the stability of equilibria. We show that the set of disease-free equilibria is locally
asymptotically stable when Rc < 1 and unstable when Rc > 1, and we provide a
sufficient condition for its global stability. Furthermore, we perform numerical sim-
ulations using the reported data of COVID-19 infections and vaccination in Mexico
to study the impact of different vaccination, transmission and efficacy rates on the
dynamics of the disease.

1 Introduction

The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coron-
avirus 2 (SARS-CoV-2) has caused a worldwide crisis due to its effects on society and
global economy. Due to the absence of specific anti-COVID-19 medical treatments, most
countries had been relying on non-pharmaceutical interventions, such as wearing of face
masks, social/physical distancing, partial/total lockdown, travel restrictions, and closure
of schools and work centres, in order to curtail the spread of the disease before December
2020. However, these measures have been insufficient to mitigate the pandemic globally
as medical facilities were overstretched and death toll heightened.

Vaccination has been an effective strategy in combating the spread of infectious dis-
eases, e.g., pertussis, measles, and influenza. Historically, the eradication of smallpox has
been considered as the most remarkable success of vaccination ever recorded [1]. Accord-
ing to [2], vaccination is the process of administering weakened or dead pathogens to a
healthy person or animal with the intent of conferring immunity against a targeted form
of a related disease agent; the individuals having the vaccine-induced immunity can be
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distinguished from the recovered individuals by natural immunity. So far, the develop-
ment and testing of vaccines against SARS-CoV-2 has occurred at an unprecedented speed
and, in the last months, several vaccines have been approved for use in many countries,
and their deployment is already underway. In a pandemic situation such as this, current
preventive vaccines consisting of inactivated viruses do not protect all vaccine recipients
equally as the protection conferred by the vaccine is dependent on the immune status of
the recipient [3].

Over the past few decades, a large number of simple compartmental mathematical
models with vaccinated population have been proposed in the literature to assess the
effectiveness of vaccines in combatting the infectious diseases [2, 4–12]. With the recent
development of anti-COVID vaccines, several models have been proposed to provide in-
sight into the effect that inoculation of a certain portion of the population will have on
the dynamics of the COVID-19 pandemic. For instance, an age- and region-structured
model was proposed in [13] to simulate the rollout of a two-dose vaccination programme
in the UK using the Pfizer–BioNTech and Oxford–AstraZeneca vaccines. Another model
was studied in [14] to compare the outcomes of single-dose and two-dose anti-COVID
vaccination regimes, however, this model does not distinguish between symptomatic and
asymptomatic infections. Other COVID-19 models with vaccination have been proposed
in [15–19].

The motivation of this study is derived from the work of the authors in [20, 21], who
considered an SEIARD mathematical model to investigate the outbreak of the coron-
avirus disease (COVID-19) in Mexico. Therefore, in the present study, we incorporate
the vaccination component to the model in [21] to derive an extended SEIARD model to
examine the effectiveness of the COVID-19 jabs which are currently being deployed to
many countries to help combat the raging pandemic situation.

The rest of this paper is organized as follows. In Section 2, we present the equations
and assumptions of the extended SEIARD model with vaccination. In Section 3, we per-
form a theoretical analysis of the model, compute its control reproduction number and
study the stability of the disease-free equilibria. In Section 4, we carry out numerical sim-
ulations using reported data on COVID-19 infections and vaccination in Mexico. Lastly,
we provide some discussions and concluding remarks in Section 5.

2 Model formulation

To derive the mathematical model, we subdivide the unvaccinated population into sus-
ceptible (S), exposed (E), symptomatic infectious (I), asymptomatic infectious (A), and
recovered (R). The number of individuals in each subpopulation at time t is denoted by
S(t), E(t), etc. Susceptible individuals become exposed by contact with symptomatic
infectious individuals at a rate β1 and by contact with asymptomatic infectious individ-
uals at a rate β2. The exposed individuals become infectious at a rate w: a proportion
p1 of them will show symptoms of the disease, while the rest remains asymptomatic.
We assume that the symptomatic class has a disease-induced death rate, denoted by δ1
(our model does not consider deaths not related to COVID-19). Both symptomatic and
asymptomatic infectious people recover at a rate γ.

We also assume that the susceptible population S is vaccinated at a rate v ≥ 0 (the
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Figure 1: Flow diagram of the model with vaccination.

number of first doses administered per day at time t is given by vS(t)). Individuals who
have received only the first dose of the vaccine are included in the class V1, and they
move to the class V2 upon receiving the second dose, which occurs at a rate θ. Both V1
and V2 are considered susceptible. Since the vaccine does not completely remove the risk
of infection, we also assume that the vaccinated population can become exposed (EV ),
symptomatic infectious (IV ) and asymptomatic infectious (AV ). Individuals in the class
V1 (respectively, V2) move to the class EV due to contact with symptomatic infectious
persons at a rate (1−η1)β1 (respectively, (1−η2)β1) and by contact with the asymptomatic
infectious at a rate (1 − η1)β2 (respectively, (1 − η2)β2), where η1 is the efficacy of the
vaccine after one dose (η2 is the efficacy of the vaccine after two doses).

The population in the class EV becomes infectious at a rate w; we assume that the
proportion of people from this class who become symptomatic infectious is p2, which may
be different from that of unvaccinated people due to the effect of the vaccine in reducing
the severity of the infection. Likewise, the disease-induced death rate δ2 is lower for the
vaccinated population. Individuals in the IV and AV classes also move to the R class
upon recovery from the disease at a rate γ.

We will denote by N(t) the total population at time t, which is given by

N(t) = S(t) + E(t) + I(t) + A(t) + V1(t) + V2(t) + EV (t) + IV (t) + AV (t) +R(t).

Hence, our model is described by the following system of differential equations:
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Ṡ = − S
N
β1(I + IV )− S

N
β2(A+ AV )− vS,

Ė =
S

N
β1(I + IV ) +

S

N
β2(A+ AV )− wE,

İ = p1wE − (δ1 + γ)I,

Ȧ = (1− p1)wE − γA,

V̇1 = vS − (1− η1)
V1
N
β1(I + IV )− (1− η1)

V1
N
β2(A+ AV )− θV1,

V̇2 = θV1 − (1− η2)
V2
N
β1(I + IV )− (1− η2)

V2
N
β2(A+ AV ),

ĖV = (1− η1)
V1
N
β1(I + IV ) + (1− η1)

V1
N
β2(A+ AV )

+ (1− η2)
V2
N
β1(I + IV ) + (1− η2)

V2
N
β2(A+ AV )− wEV ,

İV = p2wEV − (δ2 + γ)IV

ȦV = (1− p2)wEV − γAV ,
Ṙ = γ(I + A+ IV + AV ).

(1)

We define an additional variable D(t) that denotes the number of people deceased due
to COVID-19, which is governed by the equation

Ḋ = δ1I + δ2IV . (2)

The flow diagram of the model can be seen in Figure 1. The list of parameters and
their interpretation is as follows:

• β1 > 0: transmission rate by contact with symptomatic infectious individuals.

• β2 > 0: transmission rate by contact with asymptomatic infectious individuals.

• v ≥ 0: vaccination rate.

• 1/θ: time between the application of the first and the second dose of the vaccine.

• η1 ∈ [0, 1]: efficacy rate of the vaccine after the first dose.

• η2 ∈ [0, 1]: efficacy rate of the vaccine after the second dose.

• 1/w: length of the latent period.

• p1 ∈ [0, 1]: proportion of infectious unvaccinated individuals that show symptoms
of the disease.

• p2 ∈ [0, 1]: proportion of infectious vaccinated individuals that show symptoms of
the disease.

• δ1 ≥ 0: death rate of infectious unvaccinated individuals with symptoms.

• δ2 ≥ 0: death rate of infectious vaccinated individuals with symptoms.

• γ > 0: recovery rate.
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3 Theoretical analysis

In this section, we will derive some theoretical results for model (1). Since we are mainly
interested in the long term behaviour of the epidemic, we will focus on the case when the
vaccination campaign is over and hence the vaccination rate v is zero, but the vaccinated
subpopulations (V1, V2, EV , IV , AV ) may have positive initial values.

First, we will determine the disease-free equilibria of the model. It is easy to notice
that system (1) does not have any equilibria when v is positive. On the other hand, when
v is zero, model (1) has a continuum of disease-free equilibria (DFE), given by

P0 : (S,E, I, A, V1, V2, EV , IV , AV , R) ≡ (S∗, 0, 0, 0, 0, V ∗
2 , 0, 0, 0, R

∗) ,

where S∗ ≥ 0, V ∗
2 > 0 and R∗ > 0. These equilibria represent the scenario when the

anti-COVID vaccination program has ended, and a certain number of individuals V ∗
2 has

been vaccinated to achieve herd immunity in the population. We will compute the control
reproduction number Rc of the model based on this expression for the DFE.

Using the notation in [22], we determine the matrix of new infections F and the
transition matrix V , considering only the infected compartments (E, I, A, EV , IV and
AV ). We have

F =



S
N
β1(I + IV ) + S

N
β2(A+ AV )

0
0

(1− η1)V1N
[
β1(I + IV ) + β2(A+ AV )

]
+ (1− η2)V2N

[
β1(I + IV ) + β2(A+ AV )

]
0
0


and

V =


wE

−p1wE + (δ1 + γ)I
−(1− p1)wE + γA

wEV
−p2wEV + (δ2 + γ)IV
−(1− p2)wEV + γAV

 .

The derivative of F at a disease-free equilibrium P0 is

F =



0 S∗

N∗β1
S∗

N∗β2 0 S∗

N∗β1
S∗

N∗β2
0 0 0 0 0 0
0 0 0 0 0 0

0 (1− η2) V
∗
2

N∗β1 (1− η2) V
∗
2

N∗β2 0 (1− η2) V
∗
2

N∗β1 (1− η2) V
∗
2

N∗β2
0 0 0 0 0 0
0 0 0 0 0 0


where N∗ = S∗ +V ∗

2 +R∗ denotes the total population at the equilibrium. The derivative
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of V evaluated at P0 is

V =


w 0 0 0 0 0
−p1w δ1 + γ 0 0 0 0

−(1− p1)w 0 γ 0 0 0
0 0 0 w 0 0
0 0 0 −p2w δ2 + γ 0
0 0 0 −(1− p2)w 0 γ

 .

It follows that

FV −1 =



A11
S∗β1

N∗(δ1+γ)
S∗β2
N∗γ

A14
S∗β1

N∗(δ2+γ)
S∗β2
N∗γ

0 0 0 0 0 0
0 0 0 0 0 0

A41
(1−η2)V ∗

2 β1
N∗(δ1+γ)

(1−η2)V ∗
2 β2

N∗γ
A44

(1−η2)V ∗
2 β1

N∗(δ2+γ)

(1−η2)V ∗
2 β2

N∗γ

0 0 0 0 0 0
0 0 0 0 0 0


,

where

A11 =
S∗

N∗

[
β1p1
δ1 + γ

+
β2(1− p1)

γ

]
,

A14 =
S∗

N∗

[
β1p2
δ2 + γ

+
β2(1− p2)

γ

]
,

A41 =
(1− η2)V ∗

2

N∗

[
β1p1
δ1 + γ

+
β2(1− p1)

γ

]
,

A44 =
(1− η2)V ∗

2

N∗

[
β1p2
δ2 + γ

+
β2(1− p2)

γ

]
.

The control reproduction number Rc of model (1) is given by Rc = ρ (FV −1), where
ρ denotes the spectral radius. Hence,

Rc =
S∗

N∗

[
β1p1
δ1 + γ

+
β2(1− p1)

γ

]
+

(1− η2)V ∗
2

N∗

[
β1p2
δ2 + γ

+
β2(1− p2)

γ

]
. (3)

The quantity Rc measures the average number of new COVID-19 cases generated by
a typical infectious individual introduced into a population where a fraction V ∗

2 /N
∗ has

been fully vaccinated using a vaccine with efficacy η2.
According to [22, Theorem 2], we can obtain the following result about the control

reproduction number.

Theorem 1. The continuum of disease-free equilibria P0 of system (1) with v = 0 is
locally asymptotically stable if Rc < 1, and it is unstable if Rc > 1.

The following theorem gives a sufficient condition for the global stability of the disease-
free equilibria.
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Theorem 2. Suppose that

β1p1
δ1 + γ

+
β2(1− p1)

γ
< 1 and (1− η2)

[
β1p2
δ2 + γ

+
β2(1− p2)

γ

]
< 1. (4)

Then, the continuum of disease-free equilibria P0 of system (1) with v = 0 is globally
asymptotically stable.

Proof. Consider the following Lyapunov function:

L = g1E + g2I + g3A+ g4EV + g5IV + g6AV + g7V1,

where

g1 = γ(δ1 + γ), g2 = γβ1, g3 = (δ1 + γ)β2, g4 =
γ(δ1 + γ)

1− η2
,

g5 =
γβ1(δ1 + γ)

δ2 + γ
, g6 = β2(δ1 + γ), g7 =

γ(δ1 + γ)

1− η2
.

The time derivative of L evaluated at the solutions of system (1) with v = 0 is given
by

L̇ = g1

[
S

N
β1(I + IV ) +

S

N
β2(A+ AV )− wE

]
+ g2

[
p1wE − (δ1 + γ)I

]
+ g3

[
(1− p1)wE − γA

]
+ g4

[
(1− η1)

V1
N
β1(I + IV ) + (1− η1)

V1
N
β2(A+ AV )

+ (1− η2)
V2
N
β1(I + IV ) + (1− η2)

V2
N
β2(A+ AV )− wEV

]
+ g5

[
p2wEV − (δ2 + γ)IV

]
+ g6

[
(1− p2)wEV − γAV

]
+ g7

[
−(1− η1)

V1
N
β1(I + IV )− (1− η1)

V1
N
β2(A+ AV )− θV1

]
.

After cancelling terms and simplifying, we obtain

L = γβ1(δ1 + γ)(I + IV )

(
S

N
+
V2
N
− 1

)
+ γβ2(δ1 + γ)(A+ AV )

(
S

N
+
V2
N
− 1

)
+ wγ(δ1 + γ)

[
β1p1
δ1 + γ

+
β2(1− p1)

γ
− 1

]
E

+
wγ(δ1 + γ)

1− η2

[
β1p2(1− η2)

δ2 + γ
+
β2(1− p2)(1− η2)

γ
− 1

]
EV −

γθ(δ1 + γ)

1− η2
V1.

Since S(t) + V2(t) ≤ N(t) for all t, we have S
N

+ V2
N
≤ 1. Combining this with

the hypothesis (4), we can see that L̇ ≤ 0, and L̇ = 0 if and only if E(t) = 0 and
E2(t) = 0. Substituting E(t) = 0 and E2(t) = 0 in system (1) with v = 0 shows that
(S,E, I, A, V1, V2, EV , IV , AV , R) → (S∗, 0, 0, 0, 0, V ∗

2 , 0, 0, 0, R
∗) as t → ∞. Hence, the

largest positively invariant set where L̇ = 0 is the continuum of disease-free equilibria.
Therefore, by LaSalle’s invariance principle, we conclude that P0 is globally asymptotically
stable.
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Table 1: Baseline values for the parameters used in the simulations.

Parameter Value Source

β1 0.2 day−1 Fitted to data
β2 0.0330 day−1 Fitted to data
v Variable Assumed
θ 1/84 day−1 Assumed
η1 0.463 [25]
η2 0.557 [25]
w 0.25 day−1 [24]
p1 0.12 [21]
p2 0.089 Estimated
δ1 3.2135× 10−3 day−1 Fitted to data
δ2 0 Assumed
γ 3.6987× 10−2 day−1 Fitted to data

4 Numerical simulations

In this section, we perform some numerical simulations for model (1) to provide estimates
for the evolution of the COVID-19 outbreak in Mexico.

4.1 Data fitting and estimation of parameters

We used cumulative data provided by the Johns Hopkins University repository [23] to
fit the parameters of model (1) in the absence of vaccination. We considered the data
for reported COVID-19 infections, deaths and recovered cases during the period from 12
November 2020 to 24 December 2020, which is before the vaccination program in Mexico
began.

For this part, we considered system (1) with v = 0 and the vaccinated subpopulations
V1, V2, EV , AV and IV equal to zero. We regarded as fixed parameters w = 0.25, which
corresponds to a latent period of 4 days [24], and a proportion p1 = 0.12 of symptomatic
infections [21]. The set of differential equations was solved using Matlab 2016b with the
ode45 solver, and the values for β1, β2, δ1 and γ were estimated by fitting the model
solutions to the above mentioned dataset using the method described in [21]. The best fit
values for these parameters are shown in Table 1. Figure 2 depicts a comparison between
the model solutions and the observed cumulative COVID-19 data before the vaccination
period.

4.2 Simulations for the model with vaccination

We will now simulate the solutions to model (1) to assess the impact of the vaccination
program that started in Mexico in December 2020 to combat the COVID-19 pandemic.

As of early April 2021, five COVID-19 vaccines have received Emergency Use Au-
thorization for their deployment in Mexico: BNT162b2 (Pfizer–BioNTech), AZD1222
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Figure 2: Reported cumulative number of symptomatic cases, COVID-19 deaths and
recovered cases in Mexico for the pre-vaccination period, and simulations using model (1)
with the parameters in Table 1 and v = 0.
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Table 2: Estimated values for the vaccination rate v.

Date Value (day−1)
24 Dec. 2020 – 11 Jan. 2021 4.0× 10−5

12 Jan. 2021 – 15 Jan. 2021 7.9× 10−4

16 Jan. 2021 – 14 Feb. 2021 6.0× 10−5

15 Feb. 2021 – 7 Mar. 2021 7.3× 10−4

8 Mar. 2021 – 14 Mar. 2021 0.0021
15 Mar. 2021 – 31 Mar. 2021 0.0017

(Oxford–AstraZeneca), Sputnik V (Gamaleya Institute), CoronaVac (Sinovac) and Ad5-
nCoV (CanSino); all of them except the last one require two doses [26].

Efficacy estimates for each vaccine based on data from clinical trials are subject
to change with the emergence of new analyses. An interim analysis for the Oxford–
AstraZeneca vaccine [25] estimated an efficacy against infection (symptomatic or asymp-
tomatic) of 46.3% (31.8%–57.8%), considering people who had a nucleic acid amplification
test (NAAT)-positive swab more than 21 days after a single dose, and 55.7% (41.1%–
66.7%) for people who tested positive more than 14 days after a second dose of the
vaccine. However, a more recent study [27] estimated an efficacy of 63.9% (46.0%–76.9%)
after one dose and 59.9% (35.8%–75.0%) after two standard doses given 12 or more weeks
apart.

Due to longer dose intervals being associated with greater efficacy against symptomatic
infection, the WHO has recommended to administer the Oxford–AstraZeneca vaccine with
an interval of 8 to 12 weeks between first and second doses [28]. Based on the above, we
will assume in our simulations an average length of 1/θ = 84 days for the inter-dose
period, and we will use η1 = 0.463 and η2 = 0.557 as baseline values for the efficacy
parameters.

For computing the proportion of infectious vaccinated individuals that show symptoms
of the disease (p2), we follow [25], who reported 37 cases of symptomatic COVID-19 disease
out of a total of 68 NAAT-positive swabs in the group of people vaccinated with AZD1222,
and 112 symptomatic cases out of 153 NAAT-positive cases in the control group. This
yields a reduction from 0.732 to 0.544 in the symptomatic proportion after vaccination.
Since we have chosen p1 = 0.12, we will take p2 = 0.089 so that p1 : p2 = 0.732 : 0.544.
Furthermore, we assume that the death rate δ2 of infectious vaccinated people is zero since
it is widely accepted that current anti-COVID vaccines provide full protection against
severe infections.

We used the daily data on COVID-19 vaccinations in Mexico obtained from [29] to
estimate the value of the vaccination rate v over six different date ranges, as shown in
Table 2. We plot in Figure 3 a comparison of the reported number of vaccinated people
and the simulations obtained with model (1) for the period 24 December 2020 – 31 March
2021. In these graphs, we considered the total population of Mexico as 127 090 000 people.

In order to obtain long-term projections for the vaccination coverage in Mexico, we
simulated two different scenarios. First, we assumed that the vaccination rate is kept
constant at its baseline value on 31 March 2021 (0.17% of susceptible population per day,
which equals roughly 175 000 first doses applied every day for an estimated susceptible
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Figure 3: COVID-19 vaccination coverage in Mexico from 24 December 2020 to 31 March
2021. Circles represent real data, continuous lines represent model simulations using the
vaccination rate in Table 2.
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Figure 4: Long-term projections of COVID-19 vaccination coverage in Mexico. Circles
represent real data, continuous lines represent simulations using the baseline vaccination
rate, and dashed lines represent simulations using 200% vaccination rate from May 2021
onwards.
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population of 103 million people). Second, we assumed that the vaccination rate increases
to twice its baseline value starting on May 2021 (which translates to slighly more than
300 000 first doses per day). Figure 4 shows that, if vaccines continue to be delivered at
their baseline rate, only about 48% of Mexican population will have received their first
dose by January 2023, while only 44% will be fully vaccinated by that date. On the other
hand, if the vaccination rate is doubled, around 63% of the population will be vaccinated
with at least one dose and 60% with two doses by the same date.

4.2.1 Assessing the effect of vaccination and different transmission rates

We will next compute the solutions of model (1) to simulate the evolution of the pandemic
in Mexico as the vaccination campaign takes place. We consider the initial date for
simulations as 24 December 2020. Based on the results obtained in Subsection 4.1, we
use the initial conditions

S(0) = 1.1622× 108, E(0) = 3.4415× 105, I(0) = 2.1247× 105,

A(0) = 1.6521× 106, R(0) = 8.5421× 106, D(0) = 1.2128× 105,

and V1(0) = V2(0) = EV (0) = IV (0) = AV (0) = 0. In these subsection, we will consider
different values for the transmission rates β1 and β2 to account for the possibility that the
number of infectious contacts between people may increase or decrease due to resump-
tion of economical activities, compliance with social/physical distancing, wearing of face
masks, etc. Hence, we consider three cases: when β1 and β2 are kept with the values in
Table 1, when both of them decrease to an 80% of these values, and when they increase
to a 120%. The values for other parameters are fixed as in Tables 1 and 2.

Figure 5 depicts the time evolution of the number of infectious COVID-19 cases with
symptoms (I(t) + IV (t)) and the death toll (D(t)) for each of the above cases. In each
graph, we have plotted the solutions assuming the baseline vaccination rate and the 200%
vaccination rate, as well as a counterfactual case with no vaccination.

Figure 5(a) shows that, in the case of low transmission rate, the number of active cases
would start to decrease in the early months of 2021, and the epidemic would be almost
extinguished by March 2022. In the cases with higher transmission rate (Figures 5(b)
and (c)), the epidemic curve would reach its peak around May 2021, and the number of
active symptomatic cases would be less than 1000 by September 2022. Figures 5(d)–(f)
show that the cumulative number of deaths would be around 270 000 for low transmission,
more than 400 000 for baseline transmission, and more than 600 000 for high transmission
rate.

We can also see that an increase in the vaccination rate to double its baseline value will
result in 36 000 less deaths than in the baseline case (Figure 5(e)). However, comparing
Figures 5(d) and (e) shows that more than 160 000 deaths can be avoided by reducing
the transmission rate to 80%, while a 20% increase in the transmission rate would result
in 200 000 additional deaths (Figure 5(f)). This suggest that decreasing the number of
infectious contacts by complying with preventive measures is more effective than simply
accelerating the deployment of vaccines.
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Figure 5: Simulations of model (1) using different values for the transmission rates. (a)
and (d): 80% transmission rate. (b) and (e): baseline transmission rate. (c) and (f): 120%
transmission rate. Top row: number of active symptomatic infectious cases. Bottom row:
Cumulative number of deaths.

4.2.2 Assessing the effect of different vaccine efficacy rates

Given that there is still uncertainty regarding the efficacy of anti-COVID vaccines against
infection, including asymptomatic cases, we will also simulate the solutions of model (1)
using different values for the parameters η1 and η2.

Figure 6 shows the number of active infectious cases with symptoms (I(t)+IV (t)) and
without symptoms (A(t)+AV (t)), as well as the death toll (D(t)), using different efficacy
rates: in addition to the baseline case (η1 = 0.463, η2 = 0.557), we include a case with
lower efficacy (η1 = 0.4, η2 = 0.45) and a case with higher efficacy (η1 = 0.6, η2 = 0.65).
For these simulations, we plotted all solutions using baseline vaccination rate. We can see
that lower efficacy results in an additional 11 903 symptomatic cases (2.83% increase) and
118 387 asymptomatic cases (3.52% increase) at the peak of the infection curve, compared
with the case with higher efficacy. However, this does not significantly affect the time
when the peak occurs. Lower efficacy also results in 20 058 additional deaths.

4.3 Impact of vaccination coverage on the control reproduction
number

Next, we will study how the control reproduction number Rc is affected by some of the
model parameters.

By equation (3), we know that Rc does not only depend on the parameters of system
(1), but also on the final proportions of unvaccinated susceptible people (S∗/N∗) and fully
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Figure 6: Simulations of model (1) using different values for the vaccine efficacy rates.
Left panel: number of active symptomatic infectious cases. Central panel: number of
active asymptomatic infectious cases. Right panel: cumulative death toll.

vaccinated people (V ∗
2 /N

∗) at the time when vaccines are no longer being deployed to the
population.

We recall that a disease-free equilibrium takes the form P0 = (S∗, 0, 0, 0, 0, V ∗
2 , 0, 0, 0, R

∗),
where the total population is N∗ = S∗ + V ∗

2 +R∗. If we define

x =
V ∗
2

N∗ (the proportion of vaccinated people),

y =
R∗

N∗ (the proportion of people recovered from the disease),

we can rewrite the expression for the control reproduction number as

Rc(x, y) =

[
β1p1
δ1 + γ

+
β2(1− p1)

γ

]
(1− x− y) + (1− η2)

[
β1p2
δ2 + γ

+
β2(1− p2)

γ

]
x.

Figure 7 depicts the value of Rc as function of the proportions x and y, using sev-
eral values for the transmission rates and efficacy after the second vaccine dose. Other
parameter values were taken as in Table 1. We can see that an increase in either x
or y contributes to reducing the reproduction number, and therefore, is helpful towards
achieving herd immunity.

Herd immunity occurs when a large portion of the population has become immune
to the disease due to vaccination or natural recovery, which makes spread of the disease
difficult. Thus, the minimal level of vaccination coverage that is required to achieve herd
immunity (that is, making Rc < 1) will also depend on the percentage of the population
that has been infected and then successfully recovered. Comparing the different panels
of Figure 7, we can see that increasing the vaccine efficacy η2 reduces the vaccination
coverage needed to make Rc < 1 for a fixed proportion of recovered people. However,
this reduction is small compared to the effect gained by decreasing the transmission rate.
For example, when η2 = 0.65 and the recovered population is close to zero, it is necessary
to vaccinate 60% of population to obtain Rc = 1 in the case of 120% transmission rate,
40% in the case of baseline transmission rate, and only 14% of population in the case of
80% transmission rate (bottom row of Figure 7).
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Figure 7: Value of the control reproduction number as function of the proportion of fully
vaccinated individuals (horizontal axis) and recovered individuals (vertical axis).

5 Conclusion

In this work, we studied a model for COVID-19 with vaccination. Our work was based on
the SEIARD model proposed in [21], which included an exposed (latent) compartment and
different transmission rates for the symptomatic and asymptomatic infectious individuals;
we extended this model by incorporating vaccinated compartments and considering a two-
dose vaccination regime.

We showed that our model has multiple disease-free equilibria and computed the
control reproduction numberRc using the next-generation matrix method. We established
that the set of disease-free equilibria is locally asymptotically stable when Rc < 1 and
unstable when Rc > 1. Furthermore, we determined a condition that guarantees the
global asymptotic stability of the DFE.

We performed a numerical simulation on our model using repository data on the out-
break of COVID-19 in Mexico and the daily data on COVID-19 vaccinations to estimate
the value of the vaccination rate over six different date ranges. We used the efficacy
estimates based on data from clinical trials of the Oxford–AstraZeneca vaccine, which
is the one that is being more widely distributed in Mexico at the time of this writing.
We remark that, in this article, we considered vaccine efficacy in the sense of protection
against COVID-19 infection (symptomatic or asymptomatic), while other works consider
efficacy as protection against symptomatic infection only.

In order to obtain long-term projections for the vaccination coverage, we simulated
two different scenarios. First, we assumed that the vaccination rate is kept constant
by vaccinating the same proportion of susceptible population per day, and secondly, we
assumed that the vaccination rate increases to twice its baseline value. Our study showed
that if vaccines continue to be delivered at their baseline rate, only about 48% (less than
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half) of the Mexican population will have received their first dose by January 2023, and
only 44% will be fully vaccinated by that date. On the other hand, if the vaccination rate
is doubled, around 63% of the population will be vaccinated with one dose and 60% with
two doses. In the case of low transmission rate, the number of active cases would start
to decrease in the early months of 2021, and the epidemic would be almost eradicated in
early 2022, while in the cases with medium to high transmission rate the epidemic curve
would reach its peak around May 2021 and would be close to zero by late 2022.

Our simulations show that keeping a low transmission rate (by wearing face masks,
complying with social/physical distancing, etc.) is the most effective method to reduce
the death toll. For example, reducing the transmission rate to 80% its baseline value
results in 160 000 less deaths, while doubling the vaccination rate results in only 36 000
less deaths. Also, decreasing the transmission rate is more effective to reduce the control
reproduction number and achieve herd immunity than using vaccines with higher efficacy
rates. However, accelerating the application of vaccines, combined with maintaining a
low transmission rate by following preventive measures would result in an even better
strategy for curtailing the pandemic and reducing the number of deaths.
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