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Abstract

November 2020 received a string of encouraging results from leading vac-
cine developers raising hopes for the imminent availability of an effective and
safe vaccine against the SARS-CoV-2. In the present work, we discuss the
theoretical impact of introducing a vaccine across a range of scenarios . In
particular, we investigate how vaccination coverage, efficacy, and delivery
time affect the control of the transmission dynamics in comparison to mobil-
ity restrictions. The analysis is based on a metapopulation epidemic model
structured by risk. We perform a global sensitivity analysis using the Sobol
method. Our analysis suggest that the reduction of mobility among patches
play a significant role in the mitigation of the disease close to the effect of
immunization coverage of 30% achieved in 4 months. Moreover, for an im-
munization coverage between 20%-50% achieved in the first half of 2021 with
a vaccine efficacy between 70%-95%, the percentage reduction in the total
number of SARS-CoV-2 infections is between 30%-50% by the end of 2021
in comparison with the no vaccination scenario.

Keywords: COVID-19, SARS-CoV-2, Epidemic model, Disease modeling,
Vaccines

Email addresses: fernando.saldana@im.unam.mx (Fernando Saldana),
jx.velasco@im.unam.mx (Jorge X. Velasco-Hernandez)

Preprint submitted to Royal Society Open Science December 9, 2020

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2020.12.09.20246538
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246538; this version posted December 11, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

1. Introduction

Even though several countries have implemented social distancing and
other non-pharmaceutical interventions to mitigate the SARS-CoV-2 epi-
demic, the number of infections continues to increase around the world [31].
After eleven months SARS-CoV-2 has infected more than 60 million and
killed more than 1.4 million people globally. According to the Johns Hop-
kins University database, Latin America has been one of the most affected
areas with more than 430,000 deaths registered, which represents approxi-
mately 30% of the worldwide total. In particular, Mexico’s death rate as a
percent of all confirmed cases is around 10% being one of the highest in the
world as of November 20, 2020.

In response to the COVID-19 crisis, there has been an unprecedented
collaborative effort by researchers to develop an effective and safe vaccine.
There are currently more than 100 COVID-19 vaccine candidates under de-
velopment, with a number of these in the human trial phase [20]. At the
time of writing (November 2020), there has been a string of encouraging re-
sults from leading vaccine developers. On November 9, the drug company
Pfizer announced that their vaccine (co-developed by BioNTech) was more
than 90% effective at preventing COVID-19 with no serious safety concerns
[11]. Two days later, the Russian developers behind the Sputnik V vaccine
announced, in a press release, that their vaccine was 92% effective [10]. Pfizer
& BioNTech results are based on 94 cases, whereas Sputnik V’s efficacy was
measured with 20 COVID-19 cases. On November 16, the company Mod-
erna announced that their vaccine is more than 94% effective at preventing
COVID-19, based on an analysis of 95 cases [9]. Finally, AstraZeneca and
the University of Oxford announced on November 23 that their vaccine has
on average 70% of effectiveness based on data from late-stage clinical trials.
Pfizer & BioNTech and Moderna’s vaccines can only be kept outside of ul-
tracold freezers for a few weeks, making their storage and distribution very
challenging in regions with poor infrastructure [23] but, unlike the Moderna
and Pfizer immunizations, the AstraZeneca-Oxford vaccine does not require
a sophisticated cold chain to stay in good condition and is therefore expected
to be easier to distribute in developing countries.

As vaccine development continues, there is an urgent need to assess the
population-level impact of vaccine introduction [3, 5, 7, 19]. The main goal
of this work is to investigate the theoretical impact of introducing a vaccine
under a number of scenarios. Rather than obtaining quantitative predictions
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of the epidemic course, we explore a spectrum of possibilities to gain qualita-
tive insight on how much the initial introduction of the vaccine can slow the
spread of the disease. Many things remain unknown: how effective vaccines
will be, the duration of vaccine-induced immunity, and vaccine supply. We
particularly concentrate on the impact of vaccine efficacy, coverage, duration
of protection, and delivery time on the transmission dynamics of COVID-19.
Our analysis is based on a risk-structured metapopulation epidemic model
that incorporates mobility foloowing [4]. The risk of acquiring an infection is
quantified as a function of the time spent within a particular location where
the effective number of contacts that an individual has varies across locations
being higher in places with some form of mass gathering e.g. public trans-
portation, malls, religious ceremonies, universities, etc [12]. We exemplify
our model with the case of Mexico City.

The paper is structured as follows. In the next section, we formulate our
mathematical model and obtain the basic and effective reproduction num-
bers. In section 3, we investigate a range of vaccination scenarios that can
help to evaluate the population-level impact of a COVID-19 vaccine in a
Mexican setting, and in section 4 we analyze the role of mobility and patch-
dependent risk in the proposed vaccination scenarios. To have a more com-
plete understanding of how vaccine-associated parameters affect the model
outcomes, in section 5 we perform a variance-based global sensitivity analy-
sis (GSA) using the Sobol method. Finally, in section 6, we summarize our
findings and discuss future work.

2. Methods

2.1. Model formulation

We presnt a risk-structured metapopulation epidemic model based on an
extension of the classical Kermack-McKendrick SEIR model with the ap-
proach of Bichara et al. [4]. In this context, metapopulation epidemic mod-
els assume that demographic and disease dynamics occur at a comparable
timescale, but individuals movement among patches occurs at a faster time
scale.

For our model formulation, we consider a 3-patch geographically struc-
tured population. Each of the these three patches, labeled P1, P2, and
P3, represents risk areas with low-, middle- and high-risk of infection, re-
spectively. The risk of infection may depend on environmental, socioeco-
nomic, demographic and sanitary conditions [12]. The resident population
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N; of patch i, which consist on individuals who normally live in that area,
is further sub-divided into eight mutually exclusive compartments of non-
vaccinated susceptible (S;), vaccinated susceptible (V;), exposed (FE;), vac-
cinated exposed (E;), asymptomatic infectious (A;), symptomatic infectious
(I;), reported infectious (I]) and recovered (R;), hence N; = S; +V; + E; +

Movement among patches is described using the residence time matrix
P = [p;j], 1,7 = 1,2,3, where p;; represents the time i-residents spend in
j-environments, Wlth Z 1 pij = 1 for all &. N7 is the effective population
of patch j at time ¢, that is, the number of individuals who are physically
present in patch j at time ¢, then

3
N;:Zpk_ij (1)
k=1

This notation is also used for the disease compartments, for example, I¥ =

22:1 prjli is the effective infectious population in patch j at time ¢.
The model is given by the following system of differential equations
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The parameters b; and d; represent the per capita birth and death rates in
patch 7. Susceptible individuals are vaccinated at a rate u; and acquire the
infection after an effective contact with a symptomatic infectious person with
an effective contact rate ; that is an index of the patch-specific risk (j =
1,2,3). The parameter 0 < «; < 1 measures the relative infectiousness of the
asymptomatic infectious class in relation to symptomatic individuals in patch
i (1 =1,2,3). The vaccine reduces the force of infection (FOI) by a factor
¥; with 0 < ¢0; < 1. The parameter 1/k; represents the mean latent period;
after this, a fraction p; of the exposed class F; transition to the symptomatic
infectious class I;, while the other fraction 1 — p; enter the asymptomatic
infectious class A;. The parameter p; represents the symptomatic fraction
in the vaccinated exposed class E; (i = 1,2,3) with j < p. Individuals in
the symptomatic infectious class are reported at a rate v; and are effectively
isolated and they no longer contribute to the FOI. The parameters v;, 7¢ and
~I are the recovery rates for classes I;, A;, and I respectively (i = 1,2, 3).

Note that in our model, vaccination not only may prevent SARS-CoV-
2 infection but also it may prevent the symptomatic disease COVID-19.
Moreover, unlike previous COVID-19 epidemic models (see, for example,
(7, 16, 21, 22, 28, 32]) system (2) allows the possibility of reinfections. This
is essential since it is not yet known how long natural immunity will last
and there have been already confirmed cases of coronavirus reinfection [15].
Furthermore, it is also uncertain whether vaccine-induced immunity will be
short- or long-lived; therefore, we assume natural and vaccine-induced im-
munity are loss at rates, w; and 6;, respectively (i = 1,2, 3).

Since we look at the dynamics of model (2) over a relatively short time
interval, we assume a constant population size with the birth rate equal
to the death rate, that is, b; = d;. Therefore, the resident population in
patch i is a constant N} (i = 1,2,3). The boundedness, positiveness, and
continuity of the solutions are fairly straightforward to obtain from the model
equations and the fixed population size assumption. Hence, system (2) is
mathematically and epidemiologically well-posed [18].

Note that patch ¢ always has a disease-free equilibrium of the form

(0; + d;)bi N}
J(u; +0; + d;)

Ei= (S, V¥ Ef Bl AL I IT R = (d N7 — S7,0,0, 0,0,0,0) :
The 3-patch metapopulation epidemic model (2) is at the disease-free equi-

librium if every patch is at the disease-free equilibrium.
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2.2. The basic reproduction number

In the simple case in which patches are isolated from the others, that is,
pij = 0;j, where 0;; is the Kronecker delta (i,j = 1,2,3); the patch-specific
basic reproduction numbers are easily obtained,

Ri= (L= p)Th+ T, i=1,2,3, Q

where T = a;f;k;/ (ki + d;)(v¢ + d;) and T¢ = Bik;/(ki + vi + di) (v + dy),
measure the contributions of the asymptomatic and symptomatic infectious
classes to the production of new infections, respectively. The patch-specific
basic reproduction number is a threshold quantity and R} < 1 implies the
local stability of Ejj. However, we have to remark that this result is only local
and there exist the possibility that the introduction of an imperfect vaccine
in system (2) can lead to the emergence of a backward bifurcation [17].

To compute the basic reproduction number in the presence of movement,
we take a next-generation approach [14] using the method of [30]. Order-
ing the infected subsystem (I class can be omitted because they do not
contribute to the FOI) as

Ey, Ay L, By, Ag, Iy, B, Ag, I

we obtain a block matrix F = [f‘ij], where for 7,7 = 1,2, 3, f‘zj isan 3 x 3
matrix with

025 Ay : PPN, PPN,
= a ikjk ikjk
Fiy=10 0 0 7>\ij:Z ke J k> Zﬁ ]\;e* Ik (g)
0O 0 O k=1

The matrix V is a block diagonal matrix V = diag({/m-), where fori =1, 2, 3,
Vi is an 3 X 3 matrix with

i ki + d; 0 0
Vz’i = —(1 — pz)kz ’}/Z-a + dl 0 . (5)
—piki 0 Vi + di

The next-generation matrix is the block matrix K = FV~! = [f‘ijV;jl],
1,7 = 1,2, 3, and the basic reproduction number in the presence of movement
is Ro = p(K), where p(-) is the spectral radius. Note that by definition Ry
assumes a fully susceptible population and, hence, control measures, such as
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mass vaccination, that reduce the the number of susceptible individuals in
the population technically do not affect the value of Ry [13].

The same method allows us to obtain the effective reproduction number
R. as the spectral radius of the controlled next-generation matrix K. =
F.V_ ! where F, = [f‘fj], where for 7,5 = 1,2, 3, f‘fj is an 4 x 4 matrix with

0 0 @f @i
= _ (000 X8 Xy
Fij = 00 0 0]’
00 0 O
3 DikP kST & PikPjk S
a ikDjk ikPjk
Pij = Zakﬁkﬁv Pij = Zﬁk#’
k=1 k k=1 b
3
pzkp Vi PikPik Vi
XZJ Zakﬁk 1_ ]\;e*k’ Xij:zﬁk(1_¢k) ]V]]S*k
k=1

The matrix V. is a block diagonal matrix V., = diag({/fi), where for i =
1,2,3, V§, is an 4 x 4 matrix with

ki + d; 0 0 0
_— 0 ki + d; 0 0
Vii = _(1 . ,Oi)ki _(1 _ ﬁz)kz %{l + di 0 of - <6>

2.3. Model parameters

We retrieved the baseline values for some of our model parameters using
COVID-19 epidemic data from the Mexican Federal Health Secretary [27]
(Secretaria de Salud Mexico) and estimations from previous studies with
data from Mexico City [2, 21, 25]. Evidence suggests that about four in
five people infected with SARS-CoV-2 develop symptoms [6], therefore, we
set ¢; = 0.8. The mean incubation period for COVID-19 range from 2-14
days, we choose the estimation 1/k; = 5.99 days [2]. The mean recovery
rates for the asymptomatic, symptomatic and reported infectious classes are
ve = 1/14, v; = 1/10.81, and 77 = 1/5.0 days™!, respectively. The average
progression rate from the symptomatic-infectious class to the reported infec-
tious class is v; = 1/3.0 days™! [21]. The relative infectiousness of the asymp-
tomatic infectious class in relation to symptomatic individuals is o; = 0.45
[8]. The life expectancy of the Mexican population is roughly 70 years; hence,
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d; = 1/(70 % 365) days™—!. The results presented in [15] suggest that reinfec-
tions are more likely to occur at 12 months after infection. For this study, we
assume natural immunity last a year i.e. 1/w; = 365 days unless otherwise
stated. These epidemiological parameters are common for each of the three
patches P1, P2, P3, since they are geographical regions that comprise people
of all ages. The value of the basic reproduction number for COVID-19 in
Mexico has been estimated to be between 2.95 and 5.89 with a mean value
of 3.87 [2]. Using these estimations, we obtain the following values for the
transmission coefficients: f; = 0.31, fs = 0.40, and S3 = 0.53. The initial
time for our study is November 20, 2020, and the time horizon to study the
effects of vaccination is 365 days. The initial conditions are fixed according
to the epidemiological data on November 20 [27]. Since the risk distribution
is constantly changing as measure by the number of active cases per geo-
graphical area, we simplify assuming that low-risk areas are most frequent
than high-risk areas. In particular, we assume a distribution of 50% in P1,
30% in P2, and 20% in P3.

3. COVID-19 vaccination scenarios

In this section, we investigate several vaccination scenarios to evalu-
ate the population-level impact of a COVID-19 vaccine. Each scenario is
based on a set of numerical values for the vaccine-associated parameters
© = {(pi, V5, 0;,C;, T;), i = 1,2,3} where C; is the target immunization cov-
erage and 7; the target time to achieve that coverage. The vaccination rate
u; is obtained from the approximation 1 —exp (—w;T;) = C; [1]. To formulate
our scenarios we take into consideration the currently available information
of the COVID-19 vaccine candidates [20]. The expected vaccine efficacy is
between 70%-95% and the duration of vaccine-induced immunity should be
at least 6 months. There is still no reliable information on the proportion of
symptomatic infections in vaccinated individuals so for simplicity, we assume
this proportion is less than 50%. Besides, the Mexican public health author-
ities expect to achieve immunization coverage between 10% and 50% in the
year 2021 [24]. Under these considerations, we propose three scenarios (see
Table 1) attempting to reflect a range of possibilities between worst-case
and optimistic conditions. Each scenario is further subdivided according to
the time needed to reach the target immunization coverage 7;: (a) 1 month,
(b) 3 months, and (c) 5 months.

Moreover, considering that it is not yet known how long natural immunity
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Parameter Range Scenario 1 | Scenario 2 | Scenario 3
C; [10%, 50%)] 30% 40% 50%
( [70%, 95%)] 70% 80% 90%
Di [0%, 50%] 50% 30% 10%
;1 [180, 365] days 180 250 365

T; € [1,5] months: (a) 1 month (b) 3 months (c) 5 months

Table 1: Description of the parameter values for the three COVID-19 vaccination scenarios.
Each vaccination scenario is further subdivided according to the time needed to reach the
target vaccination coverage: (a) 1 month, (b) 3 months, and (c) 5 months. The parameters
are the same for all patches (i = 1,2,3) and the vaccination rate w; is obtained from the
approximation 1 — exp (—u;T;) = C;, where C; is the target coverage and T; the time
wished to achieve coverage C;.

might last and how common reinfection is [15]; we investigate each of the
vaccination scenarios for a duration of protective immunity of 180 and 365
days. For all cases, the introduction of the vaccine starts on January 1,
2021. Parameter values that vary among the vaccination scenarios are listed
in Table 1, while parameter values common to all scenarios are described in
Section 2.3. We start our simulations in the simple case in which individuals
spend the same time in all patches; hence, the residence time matrix is Py /3 =
[pi;] with p;; = 1/3 for all 4,j. For this mobility matrix and the baseline
parameter values, the value of the basic reproduction number (which do not
considers vaccination) is Ry = 1.29.

Fig. 1 shows the cumulative number of reported cases per day for the
proposed vaccination scenarios in Table 1 according to the time needed to
achieve the target vaccination coverage: (a) 1 month, (b) 3 months, and (c)
5 months. The no vaccination case is shown in red and the data corresponds
to the official cumulative confirmed cases in Mexico City until November 20,
2020. The assumed duration of natural immunity is 180 days, therefore, the
number of reported cases in the no vaccination scenario increases rapidly
reaching more than 500,000 cases by the end of 2021. In the most optimistic
scenario, Scenario 3 (a), the introduction of the vaccine allows maintain-
ing the cumulative reported cases around 300,000 cases by the end of 2021,
achieving more than 40% reduction in the reported cases. For Scenario 3 (a),
the effective reproduction number is R, = 0.59 so vaccination decreases sig-
nificantly (more than 50%) the value of Ry. Fig. 2 also shows the cumulative
number of reported cases. Yet, in this case, the assumed duration of natural
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immunity is 365 days and, hence, in the no control case, the reported cases
by the end of 2021 is around 420,000 cases. From Fig. 2, we see that if the
duration of natural immunity is one year, the introduction of a vaccine with
about 90% of effectiveness (Scenario 3) allows controlling the infection before
the end of 2021. However, this is not the case if natural immunity lasts only
half a year (see, for example, Scenario 1(c) in Fig. 1). For all the scenarios
explored, the value of the effective reproduction number ranges between 0.59
and 1.13. Hence the effect of vaccination on the reduction of the Ry values
varies significantly for different conditions. However, we have to remark that
we did not consider the effect of non-pharmaceutical interventions which play
a significant role in the control of R..

500000 —— ol®) et
b) = — 02 (b)

s b) ey 3(0) i
5 o000 = Oficidaa - % 400000 =
€ 300000 Y & 300000 ;

5 200000 o = 200000 . 5 200000
£ £ £
3 3 3
100000 Pl 100000 il 100000 Pl

° 0 100 200 300 400 500 600 ° o 100 200 300 400 500 600 ° 0 100 200 300 400 500 600
Days since the irst 100 COVID-1 cases Days since the first 100 COVID-19 cases Days since the first 100 COVID-19 cases

(a) (b) (c)

Figure 1: Cumulative number of reported cases per day for the vaccination scenarios in
Table 1 according to the time needed to achieve the target vaccination coverage: (a) 1
month, (b) 3 months, and (c) 5 months. The data corresponds to the official cumulative
confirmed cases in Mexico City until November 20, 2020. The assumed duration of natural
immunity is 180 days.

500000 500000

£ 400000
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£ 300000

4. Residence times and patch-dependent risk

4.1. The role of mobility

Here, we investigate the role of mobility and patch-dependent risk in
the proposed vaccination scenarios. The description of movement among
regions is a matter of particular interest for the study of infectious dis-
ease transmission among spatially distinct populations and some studies had
described the movement between two patches by relationships of the form
pij < N;C;N; f(d), where N; is the respective resident population in patch ¢,
C; is the population who work in patch ¢ (regardless of their resident patch)
and f(d) is a distance kernel [29].
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Figure 2: Cumulative number of reported cases per day for the vaccination scenarios in
Table 1 according to the time needed to achieve the target vaccination coverage: (a) 1
month, (b) 3 months, and (¢) 5 months. The data corresponds to the official cumulative
confirmed cases in Mexico City until November 20, 2020. The assumed duration of natural
immunity is 365 days.

o

System (2) models constant human mobility through the resident time
matrix P and do not captures behavioral responses to disease dynamics that
may optimize an index of well-being. Although this effect can be captured
placing appropriate restrictions on the entries of P [12], we limit our study
to the case where there is no behavioral change but we propose two mobility
matrices (in addition to Py/3) that may be useful to support public health
preparedness. (I) Individuals spend a considerable amount of time in high-
risk areas. The residence time matrix for this case is P; = [p;;] with p;3 = 0.7
for all 4, and p;; = 0.15 with ¢ = 1,2,3, j = 1,2. (II) There is reduced
mobility and individuals stay in their home patch most of their time. The
residence time matrix for this case is Py = [p;;] with p;; = 0.8 with i = j, and
pij = 0.1 with 4 # j. All the results are summarized in the plots appearing in
Fig. 3. The parameter values are fixed according to Scenario 2 (b) in Table
1 which represents an intermediate case between worst-case and optimistic
conditions.

The left column in Fig. 3 shows the number of individuals in the infected
classes per patch for the residence time matrix P, /3, whereas the middle row
shows the results for P;, and the left column the results for P;;. Observe
that the prevalence of the infection is, on average, higher for the residence
time matrix Py for all the infected classes in comparison with the other mo-
bility matrices. Moreover, the residence time matrices also have an impor-
tant influence on the reproduction numbers. The patch specific reproduction
numbers (which do not consider movement) for the parameter values chosen

11
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Figure 3: Top row: Asymptomatic cases per patch. Middle row: Symptomatic cases per
patch. Low row: Reported cases per patch. Left column: The mobility matrix is Py 3.
Middle column: The mobility matrix is P;. Right column: The mobility matrix is Py;.
For all cases, the parameter values are fixed according to Scenario 2 (b) in Table 1. The
simulations start on January 1, 2021, with an initial condition obtained from the results
of model (2) simulated from November 20, 2020, until December 31, 2020, depending on
the residence time matrix for each case. The assumed duration of natural immunity is 365
days.
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are Ry = 1.02, R2 = 1.32, and R} = 1.75. In the presence of movement,
the basic and effective reproduction numbers are Rg = 1.12 and R, = 0.68,
Ro=15and R, = 0.91, Ry = 1.11 and R. = 0.67, for the matrices Py/3, P
and Py, respectively. Therefore, if patches are strongly connected, the high-
risk patch acts like a source patch promoting an increase in the transmission
and the value of the reproduction numbers of the whole model. On the other
hand, restricted mobility helps to maintain control of disease transmission.
In particular, one can observe that the prevalence levels for the high mobil-
ity matrix P; are almost twice the levels for the restricted mobility matrix
Prr. The disease is eradicated in all cases because the effective reproduction
number, that depends on the successful deployment, coverage and efficacy of
the vaccine, is less than unity .

4.2. Vaccination prioritization for high-risk areas

In previous simulations, we have considered equal vaccination rates for
all patches. Nevertheless, long periods of residence in the high-risk patch
promote an increase in transmission (see Fig. 3). Hence, it is logical to
expect that prioritizing the introduction of the vaccine in the high-risk patch
can help mitigate the spread of the epidemic more effectively at least when
there is high mobility. Furthermore, if there is a limited vaccine supply, it
may be expected that groups in the most affected areas may be recommended
to get a COVID-19 vaccine first. What is more, despite the availability of the
vaccine, there can be delays in acceptance or even refusal of vaccination in
some groups of the population causing a low vaccine coverage in some areas.
Taking this into consideration, we consider a scenario in which the high-
risk patch has higher immunization coverage and faster deployment of the
vaccine in comparison with the other two patches. For illustration purposes,
we assume that public health authorities achieve 70% vaccination coverage
after one month of the introduction of the vaccine in patch P3. We maintain
patches P1 and P2 under the same conditions used in Section (a) (40%
coverage in three months). We perform simulations to investigate if there is
a reduction in the prevalence in comparison with the case of equal vaccination
rates for the mobility matrix P;. The results depicted in Fig. 4 imply that
prioritizing the high-risk patch reduces the transmission levels, especially in
that patch. Nevertheless, this reduction appears to be very small in the other
patches. This may be because the high-risk patch comprises less area than
the other two patches and therefore high coverage in this patch is not enough
to see a considerable reduction in the rest of the patches.
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Figure 4: Dynamics of the infected classes per patch for equal vaccination rates (solid
lines) in all patches and vaccine prioritization (dotted lines) for the high-risk patch P3.
(a) Asymptomatic classes Ay (blue), A (green), A (yellow). (b) Symptomatic classes Iy
(blue), Iz (green), I (yellow). (c) Reported classes I7 (blue), I3 (green), I (yellow). The
mobility matrix is P;.

4.8. Coverage, efficacy and delivery time versus mobility

From the simulations shown in Fig. 4 one can see that even when pri-
oritizing vaccination in the high-risk patch (C5 > C1,Cy and T3 < T3, T5)
reduces the prevalence level, this reduction seems to be still less than the re-
duction achieved if there is restricted mobility (see the right column in Fig.
3). Therefore, we further explore how vaccination coverage, efficacy, and
delivery time affect the control of the transmission dynamics in comparison
with the effect of mobility restrictions.

Fig. 5 presents the results. For all plots, the total number of cumula-
tive reported cases for the high-mobility case (the residence time matrix is
P;) are presented by the red solid lines and red dotted lines represent the
low-mobility case (the residence time matrix is P;;). These cumulative re-
ported cases are obtained without vaccination and indicate that the expected
number of reported infections for Mexico City is between 430,000 cases and
550,000 by the end of 2021 depending on the level of mobility. In Fig. 5
(a), we vary the vaccination coverage between 20%-40% with fixed efficacy
at 80% and delivery time in 5 months. In Fig. 5 (b), we vary vaccine efficacy
between 70%-90% with fixed 30% coverage achieved in 5 months. In Fig. 5
(c), we vary delivery time between 2-6 months for fixed 80% efficacy and 30%
coverage. The simulations (solid lines) are obtained for the high-mobility ma-
trix P;. From Fig. 5 (a) we see that an efficacy of 80%, with 40% coverage
achieved in 5 months has a similar effect in comparison with restricted mobil-
ity without vaccination. In Fig. 5 (b) one can see that even with 90% vaccine
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Figure 5: Impact of coverage, efficacy and delivery time on the cumulative number of re-
ported cases in comparison with the impact of mobility. (a) Vaccination coverage between
20%-40% with fixed efficacy at 80% and delivery time in 5 months. (b) Vaccine efficacy
between 70%-90% with fixed 30% coverage achieved in 5 months. (c) Delivery time be-
tween 2-6 months for fixed 80% efficacy and 30% coverage. The proposed scenarios are
presented in solid lines (blue, green, yellow) and are obtained for the residence time matrix
P;. For all subfigures, the total number of cumulative reported cases for the residence
time matrix Pj) are presented by the red solid lines and red dotted lines represent the
low-mobility case where the residence time matrix is Py;.

effectiveness if the coverage is 30% in 5 months, the reported cases are higher
in comparison with the reduction achieved by restriction of mobility. On the
other hand, if the 30% coverage is achieved very fast (2 months) and vaccine
effectiveness is 80%, the reduction in the number of cases is greater than the
one obtained by restriction of mobility (see Fig. 5 (c)). In summary, the
reduction of mobility among patches play a significant role in the mitigation
of the disease close to the effect of immunization coverage of 30% achieved in
4 months. Finally, note that for the ranges explored in Fig. 5, it seems that
coverage and the time needed to achieved such coverage has more impact
than vaccine efficacy in disease control.

5. Global sensitivity analysis

To have a better understanding of how vaccine-associated parameters af-
fect model outcomes, we perform a variance-based global sensitivity analysis
(GSA) using the Sobol method [26]. In the presence of uncertainty in param-
eter values, GSA becomes an important methodology to quantify the sensi-
tivity of model outcomes with respect to specific parameters as input factors.
Within the Sobol framework, we estimate first-order indices to measure the
contribution by a single parameter alone and total-order indices that include
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first-order effects but also all higher-order interactions. In this study, we
investigate a range of vaccination scenarios varying coverage (20%-60%), de-
livery time (1—5 months), symptomatic fraction in the vaccinated-susceptible
class (0% —50%), duration of vaccine-induced immunity (6 —12 months), and
vaccine efficacy to prevent infection (70% — 95%). For the experiments, we
varied the corresponding vaccine parameters within the proposed ranges for
5000 trials. During each trial, we randomly picked the value of each input pa-
rameter from the specified range and ran the model using those values. The
outcomes of interest are the percentage reduction in SARS-CoV-2 cases in
the asymptomatic, symptomatic, and reported infected classes in each patch
compared with the no vaccination case for the year 2021.

Results of the GSA are shown in Fig. 6 as histograms in which the z-axis
corresponds to the percentage reduction in the corresponding infected class
and the y-axis is the bin’s frequency. The first row shows the percentage
reduction in the asymptomatic classes, the middle row in the symptomatic
classes, and the bottom row in the reported classes. The histograms in
blue, yellow, and green correspond to the patches P1, P2, and P3, respec-
tively. From the histograms, one can observe that the overall reduction for
all patches and infected classes is close to 40% and the expected reduction
in SARS-CoV-2 cases will be between 30%-50% for the parameters proposed
in this work.

Sobol’s first and total indices are obtained for all the asymptomatic classes
(>°; 4;) in Fig. 7 (a), the symptomatic classes (), [;) in Fig. 7 (b) and the
reported classes (D, I7) in Fig. 7 (c¢). The z-axis corresponds to vector
parameters x = (z1,x9,23) with z € {0,T,¢,C, p} and the vertical black
lines represent 95% confidence intervals. The sensitivity analysis indicates
that variations on vaccination coverage contribute the most to the overall
variance of reduction of the number of SARS-CoV-2 cases. Vaccine efficacy
and the time needed to achieve the vaccination coverage also play a significant
role in the model outcomes. The duration of vaccine-induced immunity and
the reduction in symptomatic disease seems to have little impact on the model
behavior. This confirm the results obtained in section 4. Finally, observe that
the indices practically do not change among the infected classes.

6. Discussion

Less than a year after its emergence, the SARS-CoV-2 has taken more
than one million lives and several countries are still struggling to maintain
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Figure 6: (First row) Percentage reduction in the asymptomatic classes. (Middle row)
Percentage reduction in the symptomatic classes. (Bottom row) Percentage reduction in
the reported classes. The histograms in blue, yellow and green correspond to the patches
P1, P2 and P3, respectively. The z-axis corresponds to the percentage reduction in the
corresponding infected class and the y-axis is the bin’s frequency.
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Figure 7: First and total order Sobol sensitivity indices with respect to the vaccine as-
sociated parameters for the mean percentage reduction in: (a) the asymptomatic classes
(>, Ai), (b) the symptomatic classes (>, I;), and (c) and the reported classes (3, I7).
The z-axis corresponds to vector parameters x = (z1, 22, x3) with € {6,T,¢,C, 5} and
the vertical black lines represent 95% confidence intervals.

the number of infections under control. At the beginning of the pandemic,
in the absence of a vaccine, lockdowns, social distancing, and other non-
pharmaceutical interventions have helped to slow the spread of the virus.
However, the prolonged implementation of lockdowns at a national level has
caused economic and psychological distress for many citizens, especially in
marginal groups and large regions in the developing world. The introduction
of an effective and safe vaccine represents a powerful weapon to fight the
pandemic and the hope for a return to normality. The encouraging results
presented from leading vaccine developers in November 2020 are good news.
However, the vaccine efficacy, protective time-span and coverage needed to
obtain a quick and significant reduction in the number of COVID-19 infec-
tions may be difficult to achieve. Hence, to aptly manage expectations once
the vaccines become available in the global market, it is important to analyze
to what extent the initial deployment of the vaccine will help to control the
spread of disease.

In this work, we investigate the theoretical population-level impact of
introducing a vaccine across several scenarios of interest. The analysis is
based on a three patch risk-structured metapopulation epidemic model where
patch infection prevlence depends on local environmental risk and intearc-
tions between connected patches. In each patch, the dynamics are governed
by a Kermack-McKendrick-type model and the connection among patches
is described by a residence-time matrix. Unlike several previous COVID-19
epidemic models, our system allows the possibility of reinfections and incor-

18


https://doi.org/10.1101/2020.12.09.20246538
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.12.09.20246538; this version posted December 11, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

porates a vaccine that not only reduces susceptibility to infection but also
prevents symptomatic disease. We explored how vaccination coverage, effi-
cacy, and delivery time affect the control of the transmission dynamics in
comparison with the restriction of mobility. Our results show that an effi-
cacy of 80%, with 40% coverage achieved in 5 months has a similar effect
in comparison with restricted mobility without vaccination. The simulations
also suggest that even with 90% vaccine effectiveness if the coverage is 30%
in 5 months, the reported cases are higher in comparison with the reduc-
tion achieved by restriction of mobility. Concisely, the reduction of mobility
among patches plays a significant role in the mitigation of the disease close
in performance to the effect of immunization coverage of 30% achieved in 4
months. Our model also presents some projections on the number of reported
cases in Mexico City as a function of relevant model parameters and specific
vaccine conditions. Parameter values are constantly adjusting as more data
become available and thus, these simulations are intended to explore plau-
sible scenarios that can be of help for public health planning. They do not
constitute quantitative predictions.

Considering the uncertainty associated to vaccine parameter values, we
performed a global sensitivity analysis via Sobol’s method. For our simu-
lations, we varied the immunization coverage, delivery time, symptomatic
fraction in the vaccinated-susceptible class, duration of vaccine-induced im-
munity, and vaccine efficacy to prevent infection. Our results suggest that if
public health authorities can achieve an immunization coverage between 20%-
50% in the first half of the year 2021 with a vaccine of effectiveness higher
than 70%, the percentage reduction in the total number of SARS-CoV-2 in-
fections in Mexico City is between 30%-50% by the end of 2021 in comparison
with the no vaccination scenario. Furthermore, if there is restricted mobility,
the simulations suggest that for a vaccine efficacy of 90% (or higher) and
coverage above 30% before June 2021, then a very low number of COVID-19
infections are expected by the end of 2021. The computational experiments
of the sensitivity analysis also imply that variations on vaccination coverage
and the time needed to achieve such coverage are the most important drivers
in the reduction of the number of SARS-CoV-2 cases. Vaccine efficacy plays
a significant role, whereas the duration of vaccine-induced immunity and the
reduction in symptomatic disease seem to have little impact on the global
model behavior. As future work, we plan to extend our analysis to devise op-
timal vaccine allocation per age-group to minimize deaths and symptomatic
COVID-19 infections.
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