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Abstract 
The reproduction number R, the average number of people that a single individual with a contagious 

disease infects, is central to understanding the dynamics of the COVID-19 epidemic. Values greater 

than one correspond to increasing rates of infection, and values less than one indicate that control 

measures are being effective. Here, we summarise how changes in the behaviour of individuals alter 

the value of R. We also use matrix models that correctly recreate distributions of times that 

individuals spend incubating the disease and being infective to demonstrate the accuracy of a simple 

approximation to estimate R directly from time series of case numbers, hospital admissions or 

deaths. The largest uncertainty is that the generation time of the infection is not precisely known, 

but this challenge also affects most of the more complex methods of calculating R. We use this 

approximation to examine changes in R in response to the introduction of “lockdown” restrictions in 

England. This suggests that there was a substantial reduction in R before large scale compulsory 

restrictions on economic and social activity were imposed on 23rd March 2020. From mid-April to 

mid-June decline of the epidemic at national and regional level has been relatively slow, despite 

these restrictions (R values clustered around 0.81). However, these estimates of R are consistent 

with the relatively high average numbers of close contacts reported by confirmed cases combined 

with directly measured attack rates via close interactions. This implies that a significant portion of 

transmission is occurring in workplaces; overcrowded housing or through close contacts that are not 

currently lawful, routes on which nationwide lockdown will have limited impact. 
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Introduction 
In many countries, the emergent COVID-19 epidemic has shown an initial phase of exponential 

growth (Huang, Yang, Dai, Tian, & Chen, 2020). Governments have responded to this with the 

introduction of a range of infection control measures, including extensive restriction of social and 

economic interactions, often referred to as “lockdown” (see Jarvis et al., 2020, for a more detailed 

discussion of the UK regulations).  The effective reproduction number of the virus, R, is widely used 

as a measure of epidemic growth during the initial unrestricted growth phase, and as a measure of 

the effectiveness of infection control measures after these have been introduced.  R > 1 indicates 

that case numbers are growing, while R < 1 indicates falling infection rates.  A number of methods 

are available to estimate R from data, such as time series of infection rates, hospitalisation rates or 

deaths (e.g. Britton & Tomba, 2019; Chong, 2020; Cori, Ferguson, Fraser, & Cauchemez, 2013; 

Fraser, 2007; Ganyani et al., 2020; Government Office for Science, 2020; Wallinga & Lipsitch, 2007). 

Some studies take into account population age structure and age-specific mortality rates and in 

some cases aggregate multiple data sources including deaths, antibody prevalence and information 

on contacts between individuals (Birrell et al., 2020). A number, but not all, of these calculations rely 

on compartment models such as SEIR (Belfin, Brodka, Radhakrishnan, & Rejula, 2020; K. Prem et al., 

2020; Ridenhour, Kowalik, & Shay, 2014; J. H. Wu, Tang, Bragazzi, Nah, & McCarthy, 2020), which 

track numbers of susceptible, exposed, infective and recovering individuals.  However, compartment 

models are known to give relatively poor predictions of epidemic dynamics as they do not correctly 

simulate the distribution of times between initial infection and either onset of symptoms or death 

(Grant, 2020). Although the meaning, and importance, of R is clear, this reliance on complex 

mathematical models makes it is difficult to understand the relationships between R and readily 

observable measures of the course of the epidemic, such as time series of infection rates, 

hospitalisation rates or deaths (Ridenhour et al., 2014). Here we present a simple model of the 

dynamics of COVID-19 infection that overcomes the problems in using compartment models to 

understand epidemic dynamics. We use this to demonstrate the accuracy of a simple approximation 

that allows R to be directly estimated from time series, then apply this to data on death and 

infection rates in England. We also outline the links between the behaviour of individuals and 

changes in the value of R, allowing us to examine whether our current understanding of behavioural 

responses to advice and regulation are consistent with the observed reductions in R. 

How is the value of R linked to people’s behaviour? 
For an infection that is passed directly from one individual to another, R integrates the outcomes of 

all interactions that an individual has during the period that they are infectious. R is, therefore, 

dependent upon the period of time that an individual is infectious; the number of other individuals 
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encountered per day; the probability of the disease being transmitted during an encounter and the 

proportion of the population that is susceptible to infection.   

𝑅𝑅 =
1
𝜎𝜎
𝑘𝑘𝑘𝑘

𝑆𝑆
𝑁𝑁

 

Where 1/σ is the duration of the infective period (expressed as a reciprocal to preserve standard 

notation used in compartment models); k is the average number of people encountered per day, p is 

the average probability of infection transmission at each encounter and S/N is the proportion of the 

population that is susceptible to infection. For a novel infective agent, the whole population is 

susceptible. S = N so S/N = 1, and R is then known as R0. This calculation is phrased in terms of 

average transmission and encounter rates, whereas there will be variations between individuals in 

how many other people they encounter each day (c.f. Mossong et al., 2008) and variation between 

encounters in their closeness and duration. For example, Bi et al. (2020) found that attack rates 

between household members were more than ten times higher than for contacts with others, and 

there was a 32 fold difference of attack rates depending upon whether close contacts between 

individuals were “rare” or “often”. The high rates of death in occupations such as security guards 

(ONS, 2020a) presumably reflects encounters with large numbers of people, with a rather low 

probability of transmission from each individual encounter. This formulation also assumes that the 

duration of the infective period and rates of transmission during this are constant, whereas many 

studies indicate that both of them vary (Britton & Tomba, 2019; Lauer et al., 2020). Transmission 

may be possible for some time before individuals become symptomatic (He et al., 2020), and 

symptomatic individuals may reduce their interactions with others through self-isolation. But the 

formula can be straightforwardly generalised to: 

𝑅𝑅 = �𝑘𝑘𝑖𝑖𝑘𝑘𝑖𝑖
𝑆𝑆
𝑁𝑁

 

Where ki and pi are daily encounter and infectivity rates, and the summation is over the whole 

infective period. The daily infectivity can take into account both variation in viral shedding over time 

and variations in the duration of the infective period. This formulation clearly displays how the 

spread of an epidemic can be controlled by reducing numbers of contacts between individuals 

(bringing down the value of k), as well as by reducing the probability on transmission, p, during each 

encounter by measures such as hand washing, avoiding skin contact, maintaining larger social 

distances than previously and self-isolation by individuals who are symptomatic.  

Estimates of R0 for COVID-19 mostly lie between 2 and 4, although some are above this range and in 

the confined conditions of the Diamond Princess cruise ship R0 may have been as high as 14.8 (Belfin 



 

Grant: Estimating R for COVID epidemics 02 July 2020  page 4 
 

et al., 2020; Rocklöv, Sjödin, & Wilder-Smith, 2020). If infectivity remains constant then reductions in 

R will be proportional to reductions in the average number of contacts between individuals. In a 

2008 study across 8 European countries, individuals reported a mean of 13.4 contacts per day, but 

data were right skewed with some reporting more than 50 contacts a day (Mossong et al., 2008). In 

the UK, a survey using similar methods carried out after the introduction of a requirement for people 

to stay at home, except in very restricted circumstances, found that numbers of contacts were 74% 

lower than the UK data in the 2008 study (reducing from 10.8 to 2.8). Skin to skin contacts were 

reduced even more (Jarvis et al., 2020). The authors estimated that these would correspond to a 

reduction in R from 2.6 before social distancing to 0.62 based on all contacts and 0.37 based on 

transmission via skin contact alone. The changes in behaviour may also have altered the value of p, 

as the proportion of contacts that occurred at home increased from 34% to 58%. The average 

probability of transmission from an infective individual to a single contact will have increased, but 

only because contacts with those from outside of the home, which have a lower individual 

transmission probability, have reduced. This will lead to reduced transmission between homes and, 

in time, mean that many of the contacts of infective individuals will be with the previously infected 

(and therefore immune) individuals in the same household from who they acquired the infection. In 

Wuhan and Shanghai, mean daily contacts decreased by 86-89% (Zhang et al., 2020) while Rothwell 

(2020) suggests that in the USA the reduction lies between 75 and 90%. These should result in a four 

to 10 fold reduction in R, without taking into account any additional effects due to social distancing 

or improved personal hygiene. However, gathering information on average numbers of contacts per 

individual may not capture a key element of transmission dynamics, which is that a small proportion 

of cases may lead to the infection of very large numbers of others as a result of them interacting 

with large numbers of others in areas of high population density (Rader et al., 2020), mass 

gatherings (Che Mat, Edinur, Abdul Razab, & Safuan, 2020), confined settings such as homeless 

shelters (Baggett, Keyes, Sporn, & Gaeta, 2020) and other “superspreading” events (Liu, Eggo, & 

Kucharski, 2020; Wong, Jamaludin, Alikhan, & Chaw). In addition, those who acquire COVID-19 

infection may have networks of social interaction that differ from those in a representative sample 

of the whole population.  

A simple approach to overcome the fundamental flaws of SEIR and 
other compartment models. 
SEIR and similar compartment models dominate the academic literature modelling the dynamics of 

the COVID-19 epidemic (Berger, Herkenhoff, & Mongey, 2020; Carcione, 2020; Chong, 2020; Danon, 

Brooks-Pollock, Bailey, & Keeling, 2020; Fang, Nie, & Penny, 2020; Giordano et al., 2020; Huang et 

al., 2020; Khan, Umar, & Khalid, 2020; Kucharski et al.; Pan et al., 2020; Kiesha Prem et al., 2020; 
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Read, Bridgen, Cummings, Ho, & Jewell, 2020; Romero-Severson, Hengartner, Meadors, & Ke, 2020; 

Salomon, 2020; Tang et al., 2020; Teslya et al., 2020; J. T. Wu, Leung, & Leung, 2020; C. Yang & 

Wang, 2020; Z. Yang et al., 2020). These models are straightforward to use, and can be readily 

parameterised using estimates of transmission rate and mean times to becoming symptomatic and 

recovering (or more correctly, mean time to becoming infective and mean duration of the infective 

period – see below for a more detailed discussion). However, as we have shown elsewhere (Grant, 

2020), compartment models do not simulate realistic distributions of the times that individuals 

spend in each compartment. The most common time taken to incubate the disease or recover after 

showing symptoms is zero in a continuous time model or one time step in a discrete time model, but 

some individuals spend very much longer than the mean residence time in individual compartments.  

As a result, the models make poor predictions of the dynamics of an epidemic (Krylova & Earn, 2013; 

Lloyd, 2001a, 2001b; Wearing, Rohani, & Keeling, 2005). They under-estimate the growth of 

numbers of cases and numbers of deaths during the initial exponential growth phase of an epidemic 

such as COVID-19, but after transmission rates are reduced by the introduction of social distancing 

or a sufficient proportion of the population has had the disease to see infection rates reduced by 

“herd immunity”, they over-estimate case numbers and the duration of epidemics. This also 

obscures the relationship between R and numbers of cases or numbers of deaths that we outline in 

the next section. Compartment models are, therefore, likely to be misleading if used to guide, or 

judge the effectiveness of, policy interventions to reduce the effects of an epidemic.  

Time-since-infection models have some major theoretical advantages (see, e.g., Fraser, 2007; Katriel, 

2013) but require the use of more challenging mathematical methods than many of the published 

applications of compartment models. We have shown that these shortfalls can be readily addressed 

by using a matrix model which is similar to a time since infection model (c.f. Katriel, 2013), but allows 

separate specification of time to becoming symptomatic and subsequent time to death or recovery 

and can be analysed using straightforward mathematical methods (Grant, 2020). In this paper we 

assume that the proportion of the population that is immune is negligible enabling us to use an even 

simpler version this model to predict the time course of the reduction in the epidemic in response to 

the introduction of restrictions on interactions between individuals, often referred to as “social 

distancing” and “lockdown”. 

The model 
As in our previous paper, rather than combining all individuals which are in each compartment, the 

number of individuals in each compartment, and how long they have been there, are tracked in a 

vector.  If the proportion of the population that is immune is small (so that we are in a period of 
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exponential growth or decline, at a rate determined only by R), then we can simplify this model and 

only track exposed and infective individuals: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐸1
𝐸𝐸2
…
𝐸𝐸𝑖𝑖
𝐼𝐼1
𝐼𝐼2
…
𝐼𝐼𝑗𝑗 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

At each time step, this vector is multiplied by a projection matrix in which the number of new 

exposed individuals is determined by the number of infective individuals and the value of R. In the 

simplest case, where infectivity is constant across the Ij age classes, then each I individual gives rise 

to R/j individuals in class E1. Individuals that acquire infection move into the E1 compartment, then 

move through the remaining E and then I compartments.  With fixed incubation and infection 

periods, all individuals move to the final Ei and Ij compartments before moving to the I1 and R 

compartments respectively, but varying incubation and infective periods can easily be 

accommodated (see Grant, 2020, for full details). If we assume a five day incubation period and an 

eight day infective period, then our population vector consists of five Exposed stages and eight 

Infective stages and the population projection matrix (with zeros other than those in the first row 

blanked out) is: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎡ 0 0 0 0 0

𝑅𝑅0
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𝑅𝑅0
8

𝑅𝑅0
8

𝑅𝑅0
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𝑅𝑅0
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𝑅𝑅0
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𝑅𝑅0
8

𝑅𝑅0
8

1
1

1
1

1
1

1
1

1
1

1
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The daily rate of change in the number of exposed and infective individuals is given by the largest 

eigenvalue of this matrix, λ.  In this case, the mean serial interval (or generation time) from one 

newly infected individual to the next is 9 days, so R0 ≈ λ9. The equality is only exact when R0 = λ = 1, 

but the approximation is very close for R values in the range 0.25 to 3 (see blue line in Figure 1). The 
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equivalent compartment model (including only the EI components of an SEIR model) has the 

projection matrix: 

�
1−

1
5

𝑅𝑅0
8

1
5

7
8

� 

And again, R0 ≈ λ9
. However, the approximation is poorer except for R0 = 1, particularly for values of R 

that are less than 1 (orange line in Figure 1). So as noted previously, compartment models 

underestimate infection rate increases when R is high, but overestimate R when an infection is 

under control and R is small. Variation in the incubation period reduces R at high values (as would be 

expected for any variance in vital rates, Ganyani et al., 2020; Lewontin & Cohen, 1969; Tuljapurkar, 

1982), but has only a limited effect when R is less than 1.0 (purple line in Figure 1). 

 

Figure 1. Values of R calculated from the dominant eigenvalue of a projection matrix plotted against 
true value. The blue line is for the projection matrix introduced here, the red indicates data for the 
corresponding SEIR model; The purple line uses the model formulation developed here with a 
gamma distributed incubation period with a mean of 5.93 days and a CV of 0.86; followed by an 
infectious period of 6 days. Yellow line is a reference line representing equality. 
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This gives us a simple route to estimate the value of R that is implied by a time series of infection 

rates, hospitalisation rates and death rates.  The value of R is approximately equal to the daily 

change in any rate raised to the power of the mean generation time for the infection.  Alternatively, 

if we have two rates Y1 and Y2 measured j days apart, then R can be estimated as: 

𝑅𝑅 = �
𝑌𝑌1
𝑌𝑌2
�
𝑇𝑇
𝑗𝑗
 

Where T is the mean generation time for the infection – the time elapsed between one individual 

being infected and the progeny cases being infected or the mean serial interval – the time elapsed 

between symptom onset in an infector-infectee pair. These two quantities may have different 

variances, but have the same mean (Britton & Tomba, 2019), so the distinction does not alter the 

analyses presented here. Estimates of the serial interval are in the range 3.95 (Ganyani et al., 2020) 

or 3.96 (Du et al., 2020) to 7.5 days (Li et al., 2020), but could be as high as 14.5 days if cases were 

equally infectious throughout a 15 day recovery period following an incubation period of 7 days (C. 

Yang & Wang, 2020). Flaxman et al., (2020)  assume a mean serial interval of 6.5 days.  Other 

estimates include a mean of 4.0 days but a median of 4.6 days based on the most reliable data 

(Nishiura, Linton, & Akhmetzhanov, 2020); 4.77 days, based on transmission to close contacts (Kwok, 

Wong, Wei, Wong, & Tang, 2020); 5.21 days in Singapore (Ganyani et al., 2020), 5.8 days and 6.5 

days in Hong Kong (Chan et al., 2020; He et al., 2020). One of the challenges in estimating serial 

intervals is that it is difficult to unequivocally establish that two associated cases do indeed have the 

relationship of being a primary and secondary case.  The lowest estimate above (3.96, from Du et al., 

2020) was based on a data set that included negative serial intervals. Uncertainties about the value 

of the serial interval will affect the absolute value of R, but not comparisons over time; comparisons 

between geographical areas or between different data series. If R is equal to 1, the true value of the 

serial interval has no effect.  For simplicity, if we assume that the serial interval is 7 days, then we 

can estimate R from time series that are reported at weekly intervals, using a 7 day running average 

for data that are reported daily. If the serial interval is less than this, then values of R that are less 

than 1 will be underestimated, while those greater than 1 will be overestimated. If, for example, the 

serial interval is actually 5 days, then assuming that it was 7 days would yield an estimate of 0.7 for a 

true value of 0.78 (= 0.75/7) and a value of 4 for a true value of 2.69. But uncertainties about the 

serial interval will affect estimates of R0 from more detailed analyses in exactly the same way as they 

impact on our approximate calculation, as the serial interval or generation time is incorporated into 

most procedures to estimate R, either explicitly, or implicitly via the parameters of a compartment 

or other population model. The approach also assumes that a time series represents a constant 
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proportion of numbers infected in the underlying population, but again, that challenge also affects 

more sophisticated analyses of data. 

Time to becoming symptomatic, testing positive and time to death. 
We cannot observe infection occurring. The data that we can observe are time series of numbers of 

individual becoming symptomatic; testing positive; being hospitalised or dying. As a first 

approximation, these data will lag behind changes in infection rates at an interval equal to the mean 

time from infection until that event occurs.  Flaxman et al. (2020) use an incubation period which is 

gamma distributed with a mean of 5.1 days and a CV of 0.86. Time from appearance of symptoms to 

death is also assumed to be gamma distributed with a mean of 18.8 days and a CV of 0.45. Linton et 

al., (2020) give a similar value for the mean incubation period (5.0 - 6.0 days depending on model 

fitted and whether or not Wuhan residents are excluded from calculations). They estimate mean 

times from symptom onset to death as 14.5-15.1 days depending on model fitted. A gamma 

distribution gives a mean of 15.0 and SD 6.9. More recent data from Wuhan (Leung, Wu, Liu, & 

Leung, 2020) indicate a mean time from symptoms to death of 15.87 days (SD 7.17).  Based on all 

these estimates, we would expect numbers developing symptoms to respond to lockdown with a 

time lag of between 5 and 7 days, with positive test results taking a few days longer as not all cases 

will present for testing immediately after symptom onset. Death rates should lag changes in 

infection rate by between 20 and 24 days. 

Using the tool on example time series 
This approach allows the straightforward estimation of epidemic growth or decline rates from any 

time series of infection or death rates. The method involves some approximations, but the errors 

introduced by these are small when epidemics are declining and are smaller than those that result 

from uncertainties about the value of the serial interval, which also affect more sophisticated 

methods of estimating R. Data on COVID-19 infection and mortality rates vary in quality between 

countries depending upon intensity of testing; the criteria used to attribute deaths to COVID-19 and 

whether or not deaths in care homes are reported in the main national time series.  The capacity for 

testing may have increased over time, leading to an increase in the number of cases which are 

identified by testing. The criteria used to select who is tested may have changed leading to a 

reduction in the proportion of tests that give a positive result. These are substantial challenges, but 

we do not examine them in detail here.  We obtained the following data sets: 

1) Daily data on deaths in hospital in England of patients with a confirmed COVID-19 test up 

until 17th June (NHS England, 2020), from which data from 13th June onwards were excluded 

from analysis as figures from the most recent few days are incomplete. Data were averaged 
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weekly and the ratio of the average daily deaths in one week to that in the week before 

calculated. Data were analysed for the whole of England, and for each of seven English 

regions. 

2) Deaths registered each week in England and Wales up until 5th June 2020 where COVID-19 

was identified as a cause of death (ONS, 2020b). Ratios of deaths in one week to those in the 

week before were calculated. 

3) Daily numbers of positive test results in England from “Pillar 1” of the English testing 

program. These are based on hospital based testing of health and care workers and those 

with a “clinical need” but exclude swabs collected in the community and processed via 

commercial laboratories (Burn-Murdoch, Neville, Hughes, & Bounds, 2020; Public Health 

England, 2020a). Ratios between seven day averages were calculated. 

 

In the presentation of these analyses, the ratio of numbers one week apart is referred to as a 

“weekly change”.  If the serial interval is close to 7 days, then these numbers will be close to the 

value of R. If, as is likely, the serial interval is less than seven days, these numbers will be biased 

away from 1, with the magnitude of this bias being greater for values substantially greater than 1 

(see above). For comparisons between adjacent weeks, the date used to identify a weekly change is 

that of the last day in the second week used to calculate the ratio, so changes reflect events 

occurring, on average, 3.5 days earlier than this 

In late March, death rates in hospital in England for those with a positive COVID-19 test result 

initially increased by a factor of 6.7 per week (Figure 2; equivalent to an R value of 3.9 if the serial 

interval is actually equal to 5 days), but then decreased, with the rate of change falling below 1 for 

the comparison between week ending 10th April and week ending 17th April.   Regional data show a 

similar pattern (Fig. 3), with all but North West England having a rate of change lower than 1.0 at the 

same point in time. Weekly rates of change were then mostly in the range 0.6 to 0.9, with the 

regional geometrical means for the period 10th April to 12th July ranging from 0.64 in London to 0.93 

in the North West, with an overall value for England of 0.75.  
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Figure 2. Weekly change in hospital deaths in England, where patient had a positive COVID-

19 diagnosis, from the early stage of the epidemic in mid-March 2020 until 12th June 2020. 

Values are plotted using the date at the end of the second week used to calculate the ratio. 

 

 

 

 
 
 

Figure 3. Weekly change in hospital deaths in seven English regions, where patient had a 

positive COVID-19 diagnosis. Data series are plotted from 10th April 2020 until 12th June 

2020, to display detail during period of epidemic decline.  
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Death registration data show a similar pattern (Figure 4), with initially high values, followed by a 

decline. The rate of change was 1.01 when deaths in week ending 17th April are compared with the 

previous week, and rates below 1.0 thereafter. All regions showed a similar pattern (Figure 5), with 

London showing a slightly earlier decline.  Calculating a geometric mean across the whole period 

from 24th April to 5th June gives an R value of 0.75 for England and Wales as a whole. The lowest 

average R over this whole period was for London, at 0.66, while values for the other regions were all 

in the range 0.72 to 0.80 

 

 
Figure 4. Weekly change in deaths registered in England and Wales, where COVID-19 was 

mentioned as a cause of death, from the early stage of the epidemic in mid-March 2020 until 

12th June 2020. 
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Figure 5. Weekly change in deaths registered in England and Wales where COVID-19 was 

mentioned as a cause of death, from 10th April 2020 until 12th June 2020. Data broken down 

by region (using a more detailed set of regions than figure 3).  
 

 
 
 

Availability of COVID testing data for England is problematic. As at 1st July 2020, only 

“pillar 1” data, which includes health care works and patients presenting to hospitals are 

made publically available, even though the great majority of positive test results now come 

from commercial “pillar 2” testing (Burn-Murdoch et al., 2020; Public Health England, 

2020c). The rate of increase in the numbers of positive test results peaked in the week ending 

6th March (Figure 6).  It then declined, with the rate of increase being 1.1 in week ending 10th 

April and between 0.60 and 0.85 subsequently, with a geometric mean of 0.73 over the period 

17th April to 12th June 2020.  
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Figure 6.  Weekly change in number of positive COVID-19 tests in England (data on “Pillar 
1 tests – see text for details) 

 

 
 

Discussion 
These three data sets give a consistent pattern, with peak increases in numbers of positive tests in 

early March, followed by peak increases in death rates in hospital a week later and peak increases in 

registered deaths a week after that.  Rates of increase at the start of the epidemic were very high, 

corresponding to R values of 3.8 to 5 if the serial interval is equal to five days. It is possible that these 

initial values represent an over-estimate, as there may have been lower identification rates of 

symptomatic COVID cases in the early period of the epidemic, and limitations on testing capacity 

may have reduced the proportion of infected individuals being tested. So some of this initial high 

rate of increase may reflect an increase in diagnosis rates over time rather than an increase in 

disease prevalence.  In all cases the rates of increase reduce below 1.0 around week ending 17th 

April 2020. At a national level all show geometric mean weekly rates of change close to 0.75 over 

this period (equivalent to R = 0.81 for a serial interval of 5 days), although there is some spatial and 

temporal variability in rates of decline.   

Is the pattern of these changes consistent with the expected consequences for R of policy 

interventions? On 16th March 2020, the English government introduced recommendations on “social 

distancing” and voluntary self-isolation of those with pre-exiting health conditions that made them 

more vulnerable to COVID-19 (Public Health England, 2020b). Advice on personal hygiene and 

maintaining vigilance for COVID symptoms was in place before this and there is evidence that travel, 

and particularly use of public transport, began to decrease around 9th March 2020 (Rieger, 2020).  

This was followed  on 23rd of March 2020 by mandatory restrictions on movement, meetings 
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between more than two people, and non-essential economic activity, usually abbreviated as 

“lockdown” (Cabinet Office, 2020).  Given the respective 7+ and 20+ day intervals between 

becoming infected and obtaining a positive test result or dying, then impacts of lockdown on the 

rate of increase of positive tests and deaths would be expected to occur from around 30th March and 

12th April respectively.  However, the rates of increase in the time series decline some time before 

these dates, with the discrepancy being particularly marked for the two death rate time series, 

which both move into decline only shortly before we would expect to see any effects of the 

introduction on lockdown.  This suggests that the voluntary changes in behaviour, including 

increased personal hygiene and self-isolation of symptomatic individuals had a much greater impact 

on transmission rates than the subsequent lockdown. 

Given the severity of the reduction in social and economic activity that has occurred in England as a 

result of lockdown (Cabinet Office, 2020; Jarvis et al., 2020) it is perhaps surprising that R values 

remain only a little less than 1. However, there is evidence that population averages of reductions in 

interactions between individuals may give a poor guide to transmission dynamics to and from those 

who are acquiring the infection. Confirmed cases who gave details to the English “Test and Trace” 

system between 28th May and 10th June 2020 reported an average of 9.5 “close” contacts during the 

period from 48 hours before symptoms appeared until 7 days afterwards once missing data are 

removed (Department of Health and Social Care, 2020). Here, “close” contact was defined as being 

in the same household; spending more than 15 minutes within 2m; a face to face conversation at 

closer than 1m, or sexual contact. This is a much more restrictive definition of contact than that used 

by Jarvis et al (2020), who counted all interactions in which “a few words were exchanged” or there 

was skin to skin contact. All the forms of “close” contact identified by Test and Trace were at the 

time unlawful except in an individual’s household or in a work environment where tight infection 

control measures were mandated. Average household size in the UK is 2.4 persons (ONS, 2017) so 

these interactions must be dominated by workplace and/or illicit interactions, unless many of the 

cases are occurring in overcrowded housing or large residential contexts. COVID-19 Attack rates 

within households may be as high as 17%, and overall attack rates with close contacts of 9.7% and 

12.7% have been reported (Bi et al., 2020; Jing et al.; Mizumoto, Omori, & Nishiura, 2020). 

Multiplying these latter two attack rates by the numbers of reported close contacts from Test and 

Trace would yield R values of 0.92 and 1.2 respectively. This suggests that the failure of R to reduce 

substantially below 1.0 may result from transmission of the infection between individuals who 

continue to have relatively high frequency of close contacts with others. Individuals with higher than 

average numbers of close contacts are likely to interact disproportionately with each other, as a 

result of overcrowded housing, work places like meat packing facilities and residential care homes 
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where social distancing is difficult (O'Neill et al.; Reuben, 2020) or as a result of lifestyle choices. If 

this is the case, unselective nationwide “lockdowns” will have much less impact on the time course 

of an epidemic. Many of their restrictions will fall on interactions between individuals where attack 

rates are already very low as a result of social distancing, while they have much less impact on those 

interactions where attack rates are much higher. There appears to be considerable heterogeneity of 

infection rates - newly released data on Upper Tier Local Authorities show weekly numbers of 

positive COVID-19 tests per 100 000 population varying between zero and 140 (UK Statistics 

Authority, 2020). Policies will be more cost-effective if efforts can be focussed on identifying and 

intervening in local areas, work places and social groupings where infection rates are relatively high 

while relying on voluntary social distancing to control transmission in areas where there are 

relatively few cases and social contexts where attack rates are low. 
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