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Abstract: Motivated by the rapid upsurge of COVID-19 cases in the United States beginning 
March 2020, we forecast the disease spread and assess the effectiveness of containment strategies 
by using an estalished network-driven epidemic dynamic model. Our model is initialized using the 
daily counts of active and confirmed COVID-19 cases across the US.  Based on our model 
predictions for the March 14-16 timeframe, the national epidemic peak could be expected to arrive 
by early June, corresponding to a daily active count of ≈ 7% of the US population, if no 
containment plans are implemented. Epidemic peaks are expected to arrive in the states of 
Washington and New York by May 21 and 25, respectively. With a modest 25% reduction in 
COVID-19 transmissibility via community-level interventions, the epidemic progression could be 
delayed by up to 34 days. Wholesale interstate traffic restriction is ineffective in delaying the 
epidemic outbreak, but it does desynchronize the arrival of state-wise epidemic peaks, which could 
potentially alleviate the burden on limited available medical resources. In addition to forecasting 
the arrival timeline of the state-wise epidemic peaks, we attempt at informing the optimal timing 
necessary to enforce community-level interventions. Our findings underscore the pressing need 
for preparedness and timely interventions in states with a large fraction of the vulnerable uninsured 
and liquid-asset-poverty populations.  

Forecast website: https://sites.google.com/view/covid19forecast 

Main Text: In December 2019, a novel coronavirus named SARS-CoV-2 began infecting 
residents of Wuhan, China (1-3). SARS-CoV-2 causes moderate to severe respiratory symptoms 
that can progress to severe pneumonia (coronavirus disease 2019, COVID-19) with an overall 
case-fatality rate of 2.3%, with 49.0% of cases becoming critical (4). Despite the quick responses 
and extreme disease containment measures taken in China (5), COVID-19 has spread rapidly to 
numerous countries and evolved into a global pandemic (1, 3). On January 30, 2020, the World 
Health Organization declared a “public health emergency of international concern” (6), and on the 
following day the United States Department of Health and Human Services declared a public 
health state of emergency (7).  

During the week of February 23, 2020 the US Centers for Disease Control (CDC) reported new 
confirmed cases of COVID-19 in California, Oregon, and Washington, indicating the onset of 
“community spread” across the US (7). Until March 2, the total number of confirmed active 
COVID-19 cases in the US were 33, with new cases emerging in states of Texas, Arizona, 
Wisconsin, Illinois, Florida, New York, Rhode Island, and Massachuseets (8). In the following 
two weeks, this number has rapidly increased to 527 confirmed cases on March 9, and then to 
4,216 cases on March 16; Altogether 49 US states, along with Washington DC and Puerto Rico, 
have already been seeded with COVID-19 patients (8). State of California and New York have 
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respectively declared state emergency on March 4 and 7 (9, 10). The White House declared 
national emergency on March 13 (11). Thus, major outbreak of COVID-19 epidemic across the 
US is inevitable. 

Here, we forecast the spread of COVID-19 in the US beginning March 2020 using a network-
driven epidemic dynamics model that accounts for domestic interstate mobility across the country 
(Figure 1). The effectiveness of disease transmissibility reduction and interstate traffic restrictions 
are individually investigated. Risks posed by COVID-19 are analyzed state-wise with respect to 
the parameters: urgency, local uninsured populations, liquid assets poverty rate, and age weighted 
mortality rate.    

(Figure 1) 

Modelling the Network-Driven Epidemic Dyamics of COVID-19. We simulated the COVID-
19 epidemic spread in the United States using a Susceptible-Exposed-Infected-Recovered (SEIR) 
model (1, 2, 12, 13) coupled with network-driven dynamics (14-16) accounting for the domestic 
air traffic taking place amongst the 50 US states, Washington DC, and Puerto Rico (hereafter 
generically denoted as states). In the SEIR model, fractions of susceptible (𝑠𝑠𝑛𝑛), exposed (𝑒𝑒𝑛𝑛), 
infected (𝑗𝑗𝑛𝑛), and recovered (𝑟𝑟𝑛𝑛) individuals are tracked within a state 𝑛𝑛 per the kinetics of mass 
action; The interstate exchange of passengers is captured with a matrix of 𝑃𝑃𝑚𝑚𝑚𝑚 quantifying the 
probability that an individual leaving state 𝑛𝑛 ends up in 𝑚𝑚 (14). The governing equations can be 
expressed as a set of first-order differential equations with respect to time (𝑡𝑡): 
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and 𝑟𝑟𝑛𝑛 = 1 − 𝑒𝑒𝑛𝑛 − 𝑗𝑗𝑛𝑛 − 𝑠𝑠𝑛𝑛.                                                                                                           (1) 

Here, 𝑅𝑅0, 𝐷𝐷𝐸𝐸, and 𝐷𝐷𝐼𝐼 represent the basic reproduction ratio, mean incubation period, and mean 
infectious period, respectively, of COVID-19 (1, 2, 17); 𝜙𝜙 is the daily passenger flux of the entire 
air traffic network, and Ω represents the total US population (14, 18). The ratio 𝜙𝜙 Ω⁄  can be 
regarded as an interstate mobility parameter. Equation (1) was integrated numerically with a 
discrete 𝑡𝑡 that increment in units of one day. Our integration involved dynamically updating 𝜙𝜙 and 
𝑃𝑃𝑚𝑚𝑚𝑚, which are monthly resolved dataset, per changing 𝑡𝑡. The resulting 𝑗𝑗𝑛𝑛(𝑡𝑡) was next used to 
calculate the fraction of infected population on a national level, 𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡): 

𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) = ∑ 𝑁𝑁𝑛𝑛𝑗𝑗𝑛𝑛(𝑡𝑡)𝑀𝑀
𝑛𝑛=1

Ω
, and Ω = ∑ 𝑁𝑁𝑛𝑛𝑀𝑀

𝑛𝑛=1 .                                                                                    (2) 

Here, 𝑁𝑁𝑛𝑛 is the state-wise population data, and 𝑀𝑀=52 is the total number of locale (50 states, 
Washington DC, and Puerto Rico). It was assumed in our model that the interstate exchange of 
passengers is predominately via air traffic since volume of ground-based exchange is negligible 
(see Supplementary Materials (19)). We further assumed that the long term international 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2020. .https://doi.org/10.1101/2020.03.17.20037770doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.17.20037770
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

importation of individual infected with COVID-19 is minimal, under the travel restrictions 
enforced on international passengers that arrive from countries and regions where COVID-19 is 
widespread (20,21, 22). The control of COVID-19 transmissibility and interstate mobility were 
realized by adjusting the values of 𝑅𝑅0 and 𝜙𝜙, respectively (2). For example, a 25% reduction in 
transmissibility of COVID-19 can be built in the model by substituting 𝑅𝑅0 in Eq. (1) with 𝑅𝑅0′ =
0.75𝑅𝑅0. Similar treatment was done on 𝜙𝜙 when the influence of reduced interstate mobility on 
epidemic dynamics was investigated.  

Forecasts have been performed in the timeframe between March 2 and 16. For each forecast, the 
SEIR model was initialized with the daily confirmed active cases of COVID-19 in the US (Refer 
to Table S2 in Supplementary materials (19)), which were acquired from a web-based dashboard 
for real-time epidemic tracking published by Johns Hopkins University (8). The matrices of 𝑃𝑃𝑚𝑚𝑚𝑚 
(hereafter 𝐏𝐏) and 𝜙𝜙 were calculated using the latest monthly aviation data (between September 
2018 and August 2019) released by the United States Bureau of Transportation Statistics (23) (The 
calculation of 𝐏𝐏 and 𝜙𝜙 is detailed in Supplementary Materials (19)). The state-wise population 𝑁𝑁𝑛𝑛 
was acquired from database of United States Census Bureau (24). The 𝑅𝑅0, 𝐷𝐷𝐸𝐸, and 𝐷𝐷𝐼𝐼 of COVID-
19 were assumed to be 2.68, 6 days, and 2.4 days, respectively, per the values recommended in 
Ref. (2).  

The COVID-19 Epidemic Dynamics Without Intervention. Figure 2 shows forecast of SEIR 
model initialized on March 16 under a status quo condition. Panel (a) shows the dynamics of 
COVID-19 spread in the US, highlighting the temporal evolution of infected population 𝑗𝑗𝑛𝑛(𝑡𝑡) 
state-by-state sorted by the earliness of the arrival of local epidemic peak. Panel (b) maps the 
spread pattern of COVID-19 by showing a time series of continental US map wherein each state 
is colored according to the local infected fraction. Among the earliest outbreaks along the pacific 
west region, epidemics in Washington will reach a local peak by May 21. Immediately followed 
is the state of New York, wherein a local epidemic peak is expected to arrive by May 25. Alaska 
will experience a rapid increase in local infected fraction, which will peak around May 29, because 
of its frequent air traffic commuting from and to Washington. Similar trend is observed for Hawaii, 
where the local epidemic is estimated to peak on June 3, under the influence of high passenger 
flux emanating from California whose local epidemic peak will arrive around June 1. The local 
epidemics in Massachusetts, Washington DC, Colorado, and New Jersey will peak by the end of 
May, which is followed by Illinois, Georgia, and Florida, where the local epidemic peaks are 
expected to arrive by early June. The majority of states will experience epidemic peaks during the 
first week of June. The daily active COVID-19 cases at the epidemic peak (hereafter, epidemic 
peak magnitude), is uniform across each state with a median value ≈ 7.59% of the state-wise 
population. The national epidemic peak is estimated to arrive on June 3, with an daily active cases 
≈ 7.16% of total US population.  

 (Figure 2) 

Intervention Effectiveness. Figure 3 shows the influences of interstate mobility reduction and 
disease transmissibility reduction on epidemic dynamics. These influences are quantitated with 
respect to two factors – the delay of epidemic peak (panel (a) and (c)) and the reduction in peak 
magnitude (panel (b) and (d)). In these series of plots, the forecasts of SEIR model initialized on 
March 2 (symbols in red) and March 16 (Symbols in black) are overlaid, with box-and-whiskers 
and circles representing state-wise and national statistics, respectively.  
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Figure 3 (a) indicates that it is already too late (up to now, March 16, black symbols) for a 
wholesale traffic restriction to be effective in containing the epidemic spread, since virtually all 
US states have been seeded with COVID-19 patients. The previous modelling study on the 
COVID-19 spread in mainland China (2) has also arrived at a similar conclusion regarding the 
futility of mobility reduction in delaying epidemic spread. Nonetheless, it is worth noting that the 
reduction in interstate mobility in the US could slightly desynchronize the state-wise epidemic 
dynamics (i.e. the moderate broadening of the time window for the local epidemic peaks shown in 
panel (a)). This desynchronization could potentially alleviate the burnden on the limited available 
medical resources on a national level. The side-by-side comparison with the forecast made on 
March 2 (red symbols) indicates that should an aggressive (c.a. 90% mobility reduction) traffic 
restriction have been emplemented two weeks before, the national epidemic peak could have been 
delayed substaintially. Panel (b) shows that 90% reduction of interstate mobility, if implemented 
on March 2, could have reduced the epidemic peak magnitude by up to 30%. However, up to 
March 16, the influence of mobility reduction on epidemic peak magnitude has dwindled to a 
negligible level.  

Figure 3 (c) and (d) show that till date reducing COVID-19 transmissibility remains to be an 
effective intervention approach. A 25% reduction in transmissibility (𝑅𝑅0 reduced to 2.01) across 
all states could delay the national epidemic peak by about 35 days and reduce its magnitude by 
39%. A 50% reduction in transmissibility (𝑅𝑅0 reduced to 1.34) will contain the spread of COVID-
19 (with the national epidemic peak postponed to winter 2020 and the peak magnitude reduced to 
1%). These observations agree with Ref. (2) wherein a forecast of epidemic dynamics in China 
was made. The influence of transmissibility reduction on state-wise epidemic dynamics is uniform. 
Reduction in disease transmissibility can be achieved via a variety of control measures. For 
example, individual level measures include practices such as improving personal hygiene and 
maintaining social distance. Studies of past epidemics have shown that individual-scale control 
measures as simple as hand washing can reduce the risk of non-specific respiratory infection by 
6%-44%, and was an effective method to control the transmissibility of SARS (25, 26). Another 
frequently adopted individual level practice is the use of masks, however, till date no consensus 
has been reached on its effectiveness (27-29). Community level interventions include strategies 
such as contact tracing and quarantine, business and school closure, and restricting mass public 
gatherings.  

(Figure 3) 

Figure 4 retrospectively shows the decay of intervention effectiveness over time. Panel (a) shows 
that the amount of time we can buy (with interstate mobility reduction and transmissibility 
reduction) decreases gradually and steadily during the first two weeks of March. Panel (b) 
benchmarks the interventions with an effectiveness factor – defined as the normalized percent of 
reduction in epidemic peak magnitude. The effectiveness of 90% interstate mobility reduction 
rapidly decreases to a negligible level; Whereas the effectiveness of 25% transmissibility remains 
constant. Again, we emphasize here that the opportunity window of containing COVID-19 via 
aggressive traffic restriction has already been closed, and therefore the limited resources should 
be directed towards reducing COVID-19 transmissibility on individual and community level. 

(Figure 4) 
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Timing to Implement Finite Time Intervention. Previous modeling studies have shown that 
community level control measures are effective in reducing disease transmissibility, however, 
prolonged closures of schools and businesses, as well as limited public gatherings have negative 
socio-economic impacts that must be considered (30, 31). The negative socio-economic impacts 
dictate that the community-level interventions can only last a finite amount of time. Therefore, it 
is of utmost importance to understand when and for how long those interventions should be put 
into effect, so as to maximize the net benefit. Figure 5(a) shows the output of the SEIR model 
under a conditional 25% reduction in transmissibility within a time window defined with an 
intervention start time, 𝑡𝑡𝑖𝑖, and an end time, 𝑡𝑡𝑖𝑖 + 𝜏𝜏 (where 𝜏𝜏 represents intervention duration). 
Effectiveness of interventions (lasting for a variable 𝜏𝜏), which is quantified with the normalized 
reduction of infected population at the national epidemic peak, is plotted in Fig. 5 (a) as a function 
of implementation timing, which is quantified with number of weeks between 𝑡𝑡𝑖𝑖 and the national 
epidemic peak. The trends in Fig. 5 (a) show that unless the intervention could last indefinitely, a 
premature implementation of a finite-time intervention plan could be counterproductive. Figure 5 
(b) plots the best implementation timing, 𝑡𝑡∗, as a function of 𝜏𝜏, and a power-law relationship 𝑡𝑡∗ ≈
𝜏𝜏0.85 is conceived. This empirical relationship informs the optimal timing to enforce community-
level interventions given a practically affordable intervention duration. The earliness of the state-
wise epidemic peaks are presented in Fig. 5 (c). 

 (Figure 5) 

State-wise Risk Assessment. Figure 6 shows an assessment of the vulnerability of each state 
against COVID-19 epidemics. Our assessment was done on four core factors, (a) urgency, (b) 
percent of uninsured local population, (c) local liquid-asset-poverty rate, and (d) age-weighted 
mortality rate of the infected patients. Urgency is quantitated as the date of a local epidemic peak 
per the SEIR model; it identifies how much time is left for the local policy makers and disease 
control professionals to design and implement effective interventions. The percent of uninsured 
population is negatively related to the overall willingness of the local resident to seek out diagnosis 
and quarantine as and when the early symptoms of COVID-19 arise (32). The percent of liquid-
asset-poverty is the fraction of local households that lack savings to sustain above poverty level 
for three-months (33). The implication of lengthy societal shutdown is catastrophical to these 
households or individuals because of the potential disruption in their income. The age-weighted 
mortality rate quantifies the magnitude of consequence should every intervention on disease 
containment fail and the situation evolve to disrest. A summary report (4) of the COVID-19 cases 
by Chinese Center for Disease Control and Prevention has identified that the case-fatality rate 
strongly correlates with patients’ age. The overall fatality rate for all confirmed cases in China is 
2.3% (1023 of 44672 cases) (4); however, patients aged ≥ 80 years and 70-79 years have case 
fatality rate of 14.8% (208 of 1408 cases) and 8.0% (312 of 3918 cases), respectively. In our 
analysis, the age-weighted mortality rate for a state was calculated using age-specific fatality rate 
reported in Ref. (4) in conjunction with state-wise demographic composition (19). 

Figure 6 (a) shows how each state is expected to be affected with regard to the percent of uninsured 
population and the liquid-asset-poverty rate. A positive correlation can be observed in the dataset, 
since the individuals who live on paycheck-by-paycheck are less likely to be enrolled in medical 
insurance. The states scattered in qudrant II, such as Texas, Georgia, Oklahoma, Florida, and 
Mississippi, are vulnerable to the impact of COVID-19 due to their high liquid asset poverty rate. 
Among these states, Texas is especially notable because of the sheer amount of uninsured 
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population. Figure 6 (b) plots each state according to date of local epidemic peak and the age-
weighted mortality rate. The situation in Washington is considerably urgent, followed by New 
York, Washington DC, Massachusetts, Alaska, Louisiana, Colorado, and Vermont wherein the 
local epidemic peaks are expected to strike much earlier compared to the rest of the country. States 
with large populations, such as Florida, Pennsylvania, Arizona, and New York, would face an 
above-average mortality rates because of their higher degree of local population aging.  

(Figure 6) 

Conclusion. In this work, we performed a modelling study on the COVID-19 epidemic spread 
across the US using the epidemiological parameters observed from China. Our prognosis suggests 
that in the absence of disease control interventions and traffic restrictions, the nation-wide infected 
fraction could reach ~7% when the epidemic hits its peak by early June. If the transmissibility of 
COVID is reduced by 25% with respect to its baseline, the national epidemic peak could be delayed 
by about 34 days, along with a 39% reduction in peak magnitude. The COVID-19 epidemic in the 
US would fade out if a 50% reduction in disease transmissibility could be achieved across all 
states. Interstate mobility reduction is shown to be ineffective on delaying epidemic outbreak, but 
a wholesale interstate traffic restrictions slightly desynchronizes the arrival of state-wise local 
epidemic peaks, which could potentially alleviate burdens on medical resources. The timing of 
implementation of large scale disease control intervention is crucial, especially when the local 
population cannot withstand a lengthy society shutdown. State-by-state analysis shows that the 
state of Washington, New York, Washington DC, Massachusetts, Alaska, Louisiana, Colorado, 
and Vermont could be impacted by an earlier arrival of local epidemic peaks than the rest of the 
country. Texas, Georgia, Oklahoma, and Florida face the risks posed by their large uninsured 
population and high liquid asset poverty rate. Florida, Pennsylvania, Arizona, and Florida share a 
higher overall COVID-19 mortality rate due to their aged demographic composition. 
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Figures 

 
Figure 1. US domestic air traffic pattern generated with the 2018-2019 aviation statistics 
and state-wise population. Segiments are colored according to the air traffic volume 
(Detailed in Supplementary Materials (19)) between the corresponding states.  
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Figure 2. Forecasting the spread dynamics of COVID-19 epidemics in the US. (a) Epidemic 
forecast for 50 states in the US, along with Washington DC and Puerto Rico. Forecast is made 
under baseline condition that no control on transmissibility and interstate traffic is implemented. 
(b) Map of the continental US colored according to the state-wise epidemic magnitude over the 
period between May and August 2020.  
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Figure 3. Effectiveness of Response-to-Spread Interventions. Circles represent national 
statistics; Black color represents the forecast of SEIR model initialized on March 16; Red color 
represents that initialized on March 2)  
 (a) Epidemic peak arrival time (measured in days starting March 1) as a function of percent of  
interstate mobility reduction (b) Epidemic peak magnitude as a function of interstate mobility 
reduction. (c) Epidemic peak arrival time as a function of percent of  transmissibility reduction. 
(d) Epidemic peak magnitude as a function of transmissibility reduction. (Boxes and whiskers 
represent state-wise statistics; Circles represent national statistics; Black color represents the 
forecast of SEIR model initialized on March 16; Red color represents that initialized on March 2)  
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Figure 4.  Intervention effectiveness decays over time. (a) Delay of national epidemical peak 
with 25% transmissibility reduction or 90% interstate mobility reduction, as a function of the date 
on which forecasts are made. (b) Effectiveness of interventions (quantified by normalized percent 
of reduction in epidemic peak magnitude) as a function of forecast date. 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2020. .https://doi.org/10.1101/2020.03.17.20037770doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.17.20037770
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

Figure 5. Timing and effectiveness of the intervention targeted on reducing virus 
transmissibility. (a) Effectiveness (quantified by normalized percent of reduction in epidemic 
peak magnitude) as a function of the implementation timing (quantified with number of weeks 
ahead of national epidemic peak). (b) Empirical relationship between the best implementation 
timing and intervention duration. Solid line represents a power-law fit with an exponent of 0.85. 
(c) Map of the US with each state clustered and colored per the earliness of local epidemic peak.  
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Figure 6. State-wise risk assessment. (a) States are clustered according to the state-wise liquid-
asset-poverty rate and state-wise uninsured population. (b) States are clustered according to the 
earliness local epidemic peak and age-averaged mortality rate. The size of the circle symbol is 
proportional to the state-wise population. Red color shading indicates severity. 
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