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Abstract 14 

COVID-19, the first pandemic of this decade and the second in less than 15 years, has 15 

harshly taught us that viral diseases do not recognize boundaries; however, they truly do 16 

discriminate between aggressive and mediocre containment responses.  17 

We present a simple epidemiological model that is amenable to implementation in Excel 18 

spreadsheets and sufficiently accurate to reproduce observed data on the evolution of the 19 

COVID-19 pandemics in different regions (i.e., Italy, Spain, and New York City (NYC)). 20 

We also show that the model can be adapted to closely follow the evolution of COVID-19 21 

in any large city by simply adjusting two parameters related to (a) population density and 22 

(b) aggressiveness of the response from a society/government to epidemics. Moreover, we 23 

show that this simple epidemiological simulator can be used to assess the efficacy of the 24 

response of a government/society to an outbreak.  25 
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The simplicity and accuracy of this model will greatly contribute to democratizing the 26 

availability of knowledge in societies regarding the extent of an epidemic event and the 27 

efficacy of a governmental response.  28 

 29 

Keywords: COVID-19, coronavirus, SARS-CoV2, mathematical modeling, epidemic, 30 

pandemic, Excel 31 

Preprint medRxiv 32 

 33 

Introduction 34 

A SARS-CoV2 (COVID-19) pandemic was declared by the World Health Organization in 35 

March 2020. More than 100,000 positive cases of COVID-19 infection had been declared 36 

worldwide at that point, mainly in China, Italy, Iran, Spain, and other European countries. 37 

By the end of March 2020, the official cumulative number of infected worldwide ascended 38 

to more than 700,000, with a toll of death higher than 32,000 and a strong presence in Las 39 

Americas, mainly in the USA
1
. COVID-19, the first pandemic of this decade and the 40 

second in less than 15 years, has harshly taught us that viral diseases do not recognize 41 

boundaries; however, they truly do discriminate between aggressive and mediocre 42 

containment responses.  43 

Indeed, three months have passed since the emergence of COVID-19, and we have been 44 

able to observe exemplary responses from some Asian countries (i.e., China
2
, South 45 

Korea
3
, Singapore

4
, and Japan), some highly aggressive responses in Europe and America 46 

(i.e., Germany and USA), and several delayed or not so effective responses from other 47 

regions (i.e., Italy and Spain)
5
. At this point, some territories in Latin America are just 48 
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experiencing the “lag phase” of the COVID-19 pandemic at home and do not appear having 49 

yet implemented proper containment measures as rapidly as needed.  50 

The gap between developed and developing countries may explain some of the differences 51 

in the scale of the responses that we are observing. Countries that are better equipped than 52 

others in terms of high-end scientific development, diagnostics technology, and health care 53 

infrastructure may respond more efficaciously to a pandemic scenario. However, other 54 

tools, such as mathematical modeling, are much more widely available and may be of 55 

extraordinary value when managing epidemic events such as the COVID-19 pandemics. To 56 

date, many papers have reported the use of mathematical models and simulators to evaluate 57 

the progression of COVID-19 in local or more global settings
63,7–9

. Predictions on the 58 

possible evolution of COVID-19 based on mathematical modeling could therefore represent 59 

important tools for designing and/or evaluating countermeasures
8,10–12

.  60 

However, mathematical modeling may (and probably should) become a much more 61 

available tool in the case of public health emergencies—one ideally widely available to 62 

practically any citizen in any of our societies. One decade ago, during the influenza 63 

pandemics, mathematical modeling of epidemic events was the realm of privileged 64 

epidemiologists who had (a) a fast computer, (b) programing experience, and (c) and access 65 

to epidemiological data. Today, those three ingredients are now reduced to a convectional 66 

laptop, very basic differential equation-solving skills, and access to a website with reliable 67 

online statistical information on the epidemics.  68 

The main purpose of this contribution is to demonstrate that a simple mathematical model, 69 

amenable to implementation in an Excel spreadsheet, can accurately predict the evolution 70 

of an epidemic event at a local level (i.e., in any major urban area). This may be extremely 71 

valuable for government officials who must predict, with high fidelity, the progression of 72 
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an epidemic event to better design their action strategies. Moreover, the democratization of 73 

the modeling of complex epidemic events will empower citizens, enabling them to forecast, 74 

decide, and evaluate. For instance, using this simple model, virtually any citizen could 75 

assess, in real time, the efficacy of the actions of her/his society in the face of an outbreak.  76 

 77 

Rationale of the model formulation 78 

Here, we construct a very simple epidemiological model for the propagation of COVID-19 79 

in urban areas. The model is based on a set of differential equations. The first equation of 80 

the set (equation 1) states that the rate of accumulation of infected habitants in an urban 81 

area (assumed to be a closed system) is given by the sum of the number of new infections 82 

(positive contribution), the number of recovered patients (negative contribution), and the 83 

number of deaths (negative contribution). A second differential equation states that the rate 84 

of accumulation of the infected but asymptotic population is proportional to the population 85 

of infected and symptomatic subjects (equation 2). Two additional equations relate the 86 

number of deaths and recovered patients with the number of newly infected ones (equation 87 

3 and 4). Finally, the rate of depletion of the pool of the population susceptible to infection 88 

is given by the sum of recovered patients, asymptomatic infected, and deaths (equation 5). 89 

Recent experimental evidence suggests that rhesus macaques that recovered from SARS-90 

CoV-2 infection could not be reinfected
13

. However, at this point, the acquisition of full 91 

immunity to reinfection has not been proved in humans, although it is well documented for 92 

other coronavirus infections, such as SARS, and MERS
14,15

. The analysis of sera of one 93 

COVID-19 patient showed a peak production of specific IgGs against SARS-COV-2 by 94 

two weeks after the onset of symptoms 
16

. Based on immunological information on SARS 95 
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and MERS epidemiology and the limited evidence on the nature of the host immune 96 

response to SARS-COV-2, we assume here that recovered patients become immune to 97 

reinfection.  98 

 99 

dXs/dt = RInfected-s – RRecovered – RDeath     Equation (1) 100 

dXas/dt = RInfected-as = (2.5/1.0) * RInfected-s    Equation (2) 101 

dD/dt = RDeath  = 0.023 * RInfected-s     Equation (3) 102 

dR/dt =  RRecovered = 0.977 * RInfected-s    Equation (4) 103 

dPs/dt = – R Infected-as – RRecovered – RDeath    Equation (5) 104 

 105 

This system is equivalent to:  106 

dXs/dt = RInfected-s – RRecovered – RDeath     Equation (1) 107 

where:  108 

 RInfected-as = (2.5/1.0) * RInfected-s      Equation (2´) 109 

 RDeath  = 0.023 * RInfected-s     Equation (3´) 110 

 RRecovered = 0.977 * RInfected-s      Equation (4´) 111 

 Ps_n = Ps_n-1 – (Xas + R + D)      Equation (5´) 112 

 113 

In this system, all equations depend on RInfected-s. Here, we propose a simple formulation for 114 

the evaluation of RInfected-s at the onset of a local epidemic event. 115 

 116 

RInfected-s = dIs/dt = µo Is       Equation (6) 117 

 118 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2020. .https://doi.org/10.1101/2020.03.23.20041590doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.23.20041590
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

where µo is the specific rate of infection of a population in a large and vastly uninfected 119 

urban area. We further propose that µo may be calculated from actual epidemiological data 120 

corresponding to the first exponential stage of COVID-19 local epidemics. We determined 121 

the appropriate ranges of values for µo by analyzing publicly available data from different 122 

websites that continuously monitor the progression of confirmed cases of COVID-19 for 123 

different nations (Table 1).  124 

 125 

Table 1. Websites displaying COVID-19 data in practically real time.  126 

 Our World in data: 127 
https://ourworldindata.org/coronavirus 128 
 El País 129 
https://elpais.com/sociedad/2020/03/16/actualidad/1584360628_538486.html 130 
 Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering 131 

(CSSE) at Johns Hopkins University (JHU). 132 
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 133 
 Wikipedia, The Free Encyclopedia 134 
https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Iran 135 
 136 

 137 

This model correctly describes the evolution of the number of newly infected during the 138 

initial stage of the epidemic episode. For later times, the rate of new infections is corrected 139 

by a term that depends on the demographic density (Dd) of the region. Therefore: 140 

 141 

RInfected-s = dIs/dt = µo Is (Dd/Ddref)      Equation (7) 142 

 143 

In equation (7), Dd=Ps/A, where A is the surface area of the region subject to analysis. In 144 

this formulation, Dd is the total number of inhabitants of the region who are susceptible to 145 

infection, while Ddref is a value of demographic density in a densely populated urban area 146 

that the model uses as a reference. In this work, the demographic density of the city of 147 
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Madrid is used as Ddref. Furthermore, since Dd is a function that considers only the 148 

population susceptible to infection, a counter is needed to continuously update the number 149 

of recovered patients, asymptomatic patients, and deaths. Therefore, at each time step 150 

during the numerical integration, the susceptible population is updated by subtracting the 151 

number of number of recovered patients, asymptomatic patients, and deaths. Note that in 152 

our Excel spreadsheet, we use Dd/Ddref = density_Factor (Supplemental Excel File 1).  153 

Defining an expression for RInfected-s enables stepwise numerical integration, for example by 154 

the Euler method. We have implemented this solution in a spreadsheet. To that aim, 155 

differential equations (1) and (7) should be converted into their corresponding equations of 156 

differences: 157 

 158 

ΔXs = {RInfected-s – RRecovered – RDeath} Δt    Equation (8) 159 

ΔIs = {µo Is (Dd/Ddref) } Δt      Equation (9) 160 

 161 

For all the simulation results presented here, we set Δt=1h= 1/24 day. We have solved this 162 

differential set, step by step, updating the values of RInfected-s, RRecovered, RDeath, and Ps, 163 

according to equations (2´) to (5´). The ratio (Dd/Ddref) is also recalculated at each time 164 

step using the updated value of Ps from equation (5´).  165 

 166 

Selection of relevant epidemiological parameters for COVID-19 167 

The number of asymptomatic inhabitants was calculated under the assumption that only 168 

~30.0% of the infected population develops symptomatology (2.5 asymptomatic subjects 169 

per 1.0 symptomatic subject). This assumption should be regarded as speculative, since 170 
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very limited information specific for the ration between symptomatic and asymptomatic 171 

COVID-19 patients is available at this point.
17,18

 The percentage of asymptomatic 172 

infections during pandemic Influenza A/H1N1/2009, based on epidemiology studies 173 

founded in serological analysis in a vast range of geographical settings, has been estimated 174 

has been between 65 and 85%
19

. These values are also consistent with the high number of 175 

asymptomatic infected subjects estimated for other pandemic events. For instance, in the 176 

context of pandemic influenza A/H1N1/2009, up to 20–40% of the population in urban 177 

areas (i.e., Monterrey, México, and Pittsburgh, USA) 
20,21

 exhibited specific antibodies 178 

regardless of experiencing symptoms, while the fraction of confirmed symptomatic 179 

infections was lower than less than 10%.  180 

In addition, the average time of sickness was set at 14 days in our simulations, within the 181 

range reported from 14 to 32 days
22

, with a median time to recovery of 21 days
23

. 182 

Therefore, the number of patients recovered (R) is calculated as a fraction of 0.977 of those 183 

infected 14 days previously. Similarly, asymptomatic patients are only removed from the 184 

pool of susceptible after full recovery. Note that, in the current version of our model, 185 

asymptomatic patients are not considered part of the population capable of transmitting 186 

COVID-19, despite recently reported evidence that suggests that asymptomatic subjects (or 187 

minimally symptomatic patients) may exhibit similar viral loads
24

 to those of symptomatic 188 

patients and may be active transmitters of the disease
2,25

. The number of deceased patients 189 

was calculated as 0.023 of those infected 14 days before. This mortality percentage (case 190 

fatality rate) lies within the range reported in recent literature for COVID-19
9,26–28

. The 191 

time lapse of 14 days between the onset of disease and death was statistically estimated by 192 

Linton et al. in a recent report 
29

.  193 
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The straightforward implementation of the model in Excel (Supplemental Excel File 1), 194 

using the set of parameters described before, allows the calculation of all populations (Is, Xs, 195 

Xas, D, R, and Ps) every hour. Note that this model enables the description of the 196 

progressive exhaustion of the epidemic, as expected by the progressive depletion of the 197 

susceptible population. Next, we discuss criteria for selection of the values of µo based on 198 

the initial behavior of the COVID-19 Pandemic at different urban areas around the globe.  199 

 200 

Estimation of specific epidemic rate values 201 

Figure 1A shows the progression on the number of COVID-19 positive cases in different 202 

regions, namely Spain (mainly Madrid), Iran (mainly Tehran), and New York City (NYC). 203 

We have selected these three data sets to illustrate that the evolution of the epidemic has a 204 

local flavor that mainly depends on the number of initial infected persons, the demographic 205 

density, and the set of containment measures taken by government officials and society. 206 

Figure 1B shows the natural log of the cumulative number of infections over time for the 207 

same set of countries. This simple plotting strategy is highly useful for analyzing the local 208 

rate of progression of the pandemic. If the local epidemic progression is consistent with a 209 

simple first order exponential model where dI/dt = µ*I, then the integral form of this 210 

equation renders the linear equation: ln I/Io= µ*t. During the exponential phase, a straight 211 

line should be observed, and the slope of that line denotes the specific rate (µ) of the 212 

epidemic spreading. Note that COVID-19 has exhibited a wide range of spreading rates in 213 

different countries (from ~0.3 to ~0.9 day
-1

). Note also that µ is related to the doubling time 214 

(td), often reported in population and epidemiological studies, by the equation td=Ln 2/ µ.  215 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2020. .https://doi.org/10.1101/2020.03.23.20041590doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.23.20041590
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

Therefore, ranges of doubling times between 0.75 and 2.45 days are observed just among 216 

these three regional cases. 217 

 218 

 219 

Figure 1. Epidemiological data related to the onset of a COVID-19 pandemic in different 220 
regions. (A) Cumulative number of positive cases of COVID-19 infection in Spain (yellow 221 
circles), Iran (green squares), and NYC (blue triangles) during the first days after the outbreak. (B) 222 
Natural logarithm of the cumulative number of positive cases of COVID-19 infection in Spain 223 
(yellow circles), Iran (green squares), and NYC (blue triangles). (C) Cumulative number of positive 224 
cases of COVID-19 infection in Italy (blue squares) and South Korea (red circles). (D) Natural 225 
logarithm of the cumulative number of positive cases of COVID-19 infection in Italy (blue squares) 226 
and South Korea (red circles). Two clearly distinctive exponential stages are observed in the case 227 
of South Korean progression.  228 

 229 

Different exponential stages, perfectly distinguishable by their exhibition of different slopes 230 

(Table 2), may be observed within the same time series. For instance, the outbreak in NYC 231 
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(Figure 1B; blue symbols) was first described by an extremely high slope (µo = 0.926 day
-232 

1
). However, after a series of measures adopted in NYC by the federal, state, and local 233 

governments, the specific growth rate of the epidemics fell to µ = 0.308 day
-1

. 234 

The last point is extremely important, since two drastically different slopes can be observed 235 

before and after a package of adequate measures within the same territory. In addition, two 236 

localities that experienced similar initial specific epidemic rates may exhibit dramatically 237 

different evolutions as a function of the initial response of government and society (Figure 238 

1C,D). For instance, while the COVID-19 epidemics in Italy and South Korea exhibited 239 

practically equal µo values, the Italian outbreak has maintained the same growth rate 240 

throughout 20 days, while South Korea has set an example by effectively and rapidly 241 

lowering the specific epidemic rate to nearly 0 in just two weeks.  242 

 243 

Table 2. Specific infection rates (µo) and associated doubling times (td) for COVID-19 244 
infection in different geographic regions.  245 
 246 

Territory Temporality µ td 
Spain (Madrid) initial 0.358 1.937 

Italy initial 0.326 2.128 
Italy after stringent measures 0.119 5.849 
Iran initial 0.491 1.411 

Iran (Tehran) initial 0.506 1.370 
Germany initial 0.280 2.474 

NYC initial 0.591 1.173 
NYC after measures 0.293 2.362 

South Korea initial 0.293 2.362 

South Korea after stringent measures; massive testing 0.000 ND
* 

France initial 0.379 1.828 

France after measures 0.161 4.311 

Mexico initial 0.209 3.324 

(*) Not determinable 247 
 248 

Validation and predictions 249 

We have run different scenarios to validate the predictive capabilities of our epidemic 250 

model for COVID-19. Overall, the model is capable of closely reproducing the progression 251 
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of reported cases for urban areas of more than 5 × 10
6
 inhabitants (i.e., Iran, the city of 252 

Tehran in Iran, Spain, and NYC). We found that, adapting the model to a particular locality 253 

is straightforward and only requires (a) the calculation of the population and the surface 254 

area of the urban area, and (b) the selection of a td value (time to doubling the name of 255 

infections). Note that our model is formulated in terms of values of the specific epidemic 256 

growth rate (µo for the onset of the epidemic and µ for later times). However, expressing 257 

the specific epidemic rate in terms of doubling time (td=Ln 2/µ) is more practical and 258 

simpler to communicate and understand (Table 2).  259 

 260 

The selection of µo (td) can be easily done by fitting the prediction to the initial set of 261 

reported cases of infection. In our experience, four to five reliable data points are needed 262 

for a good fit. For instance, Figure 2 shows the predicted trend of the pandemic in NYC 263 

during the first 28 days of March, 2020. In addition, we set (Dd/Ddref=1.90), since the 264 

population density in NYC is 1.90-fold higher than that in Madrid. A value of td= 2.25 was 265 

also set for the first week of this simulation. Later, at day 7 (March 7), we reset the value of 266 

td to 3.75 to reflect the modification of the slope of the local epidemic event in NYC (Figure 267 

1d), due to the implemented measures of containment. Based on this exercise, we foresee 268 

that this simple modeling tool can be used to evaluate the efficacy of containment 269 

strategies. In other words, the value of µo required in the simulation to adapt the predicted 270 

data to the actual trend of the local epidemic provides an indicator of the local rate of 271 

spreading of the pandemic.  272 

 273 
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 274 

Figure 2. Progression of the COVID-19 Pandemic in NYC. (A) Initial evolution of the number 275 

of positive cases of COVID-19 in NYC. Actual data points, as officially reported, are shown using 276 

red circles. Simulation predictions are described by the blue dotted line. (B) Model prediction of 277 

the total number of symptomatic patients through the months of March and April.  (C) Model 278 

prediction of new cases of COVID-19 during the period from March 1 to May 20, 2020 if no 279 

further containment actions are adopted. 280 

 281 
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Therefore, the differences between µo before and after interventions provide a real-time 282 

quantitative measure of the effectiveness of that set of measures. This can be extremely 283 

useful when assessing the efficacy of control of epidemics. For example, for NYC, this 284 

simple model states that the set of containment measures adopted during the first week of 285 

March in NYC diminished the specific rate of the epidemic by increasing the doubling time 286 

of infections from a value of 2.25 to 3.75 days.  287 

The ability to make close predictions of the progression of cases in a particular region has 288 

profound and enabling implications. For example, in March 15
th

, our simulations predicted 289 

that, in absence of more aggressive containment measures (yellow trend in Figure 2A), the 290 

peak of infections in NYC will be reached by April 10, 2010, after reaching the 291 

unprecedented value of 11,000 new cases per day, and a cumulative number of 1 × 10
6 292 

citizens infected. However, we observed a deviation from this prediction by the third week 293 

of March that we attribute to the stringent measures of social distancing established in NYC 294 

earlier that week. Accordingly, we multiplied the value of (Dd/Ddref) in our simulations by 295 

a factor of 0.50 to properly fit the new trend on actual cases (blue trend in Figure 2A). Note 296 

that his suggest that the measures of social distancing imposed in NYC were equivalent to 297 

decrease the effective demographic density to 50%. At the end of March, after this 298 

adjustment, our model forecasts a peak of infections of nearly 5,000 new cases per day (less 299 

than half than the prediction before social distancing), and a cumulative number of 1 × 10
6 300 

citizens infected. 301 

 302 

 303 

 304 
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Effect of social distancing 305 

Social distancing has been regarded as the one of the most effective buffering measures for 306 

local COVID-19 epidemics
30,31

. Next, we evaluate the effect of different degrees of social 307 

distancing on the shape of the epidemic curve for NYC, one of the most densely urban 308 

areas worldwide. This evaluation is straightforward, since the formulation of our model 309 

explicitly considers the demographic density of the region as the most important modifier 310 

of the rate of progression of the epidemics.  311 

In the Excel implementation of the model, we multiply the demographic ration (Dd/Ddref) 312 

by 0.75 to calculate the impact of distancing measures that would diminish social contact 313 

by 25%. Similarly, we multiply (Dd/Ddref) by 0.50 to simulate the effect of a scenario of 314 

social distancing that would diminish close social interaction by 50%. Figure 4 shows the 315 

effect of three different degrees/levels of social distancing on the cumulative number of 316 

infections (Figure 3A) and on the number of new cases of infection per day (Figure 3B).  317 

Social distancing has a clear buffering effect on the epidemics, delaying the occurrence of 318 

the peak of infections and distributing the number of cases across a longer time span. This 319 

is remarkably important as it provides time for proper attention to patients with severe 320 

symptomatology
5
.  321 

For instance, our results suggest that, for an urban area such as NYC, imposing measures 322 

that guarantee a social distance equivalent to a decrease in demographic density of 50% 323 

will delay the peak of maximum number of infections by 25 days and will decrease its 324 

intensity from 23000 to 9000 new cases of infection per day. In turn, this implies a lower 325 

demand for hospital beds per day during the epidemics and may mark the difference 326 

between a manageable crisis and a public health catastrophe
5,30

.   327 
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 328 

 329 

Figure 3. Prediction of the effect of social distancing on the progression of the COVID-19 330 
pandemics in New York City (NYC). (A) Model prediction of the total number of symptomatic 331 
patients from March 1 to May 31, 2020 for different scenarios of social distancing: social 332 
distancing as in March 20,

 
2010 (blue line, current prediction); social distancing effective on March 333 

20, whereby the effective demographic density in NYC is reduced by 25% (light green line); social 334 
distancing effective on March 20 whereby the effective demographic density in NYC is reduced by 335 
50% (red line); and social distancing effective on March 10, whereby the effective demographic 336 
density in NYC is reduced by 25% (dark green line). (B) Model prediction for the number of new 337 
infections per day for each of the scenarios of social distancing described. 338 
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Interestingly, the effect of anticipating measures of social distancing has a moderate effect 339 

on retarding the infection curve but not on decreasing the cumulative number of infections. 340 

This moderate gain of time provides additional leeway for planning interventions or 341 

allocating resources, with time being gold during pandemic events.   342 

 343 

Prediction in real time 344 

We are currently following the onset of the COVID-19 pandemic in Monterrey, the second 345 

most industrialized city in México and the third most populated. Monterrey has a similar 346 

demographic density to that of Madrid (Dd/Ddref=0.95). In addition, we set td = 2.5, based 347 

on proper fitting to the first set of official values of COVID-19 infected announced for 348 

Monterrey by the local authorities from March 15 to March 19, 2020. Remarkably, the 349 

simulation results have accurately predicted the nine subsequent actual values, as officially 350 

reported from March 19 to March 28 (Figure 4 A). Monitoring actual data, while 351 

comparing with model predictions, enables real time assessment of the effectiveness of the 352 

containment measures. In turn, this empowers officials, scientists, health care providers, 353 

and citizens. Moreover, friendly and widely available mathematical modeling enables 354 

rational planning. For instance, according to the pandemic scenario predicted for 355 

Monterrey, in the absence of further containment measures and stricter social distancing, 356 

the total number of symptomatic infected will surpass 650,000 persons (Figure 4B), and the 357 

number of new infections per day (Figure 4C) will exhibit a peak of 2000 by the end of 358 

April. The simulation may be used to forecast the demand of beds during the month of 359 

April 2020, which is estimated to exhibit a peak of nearly 50000.  360 

 361 
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 362 
 363 
Figure 4. Progression of the COVID-19 pandemic in the metropolitan area of 364 
Monterrey, Nuevo León, Mexico. (A) Initial evolution of the number of positive cases of 365 
COVID-19 in the metropolitan area of Monterrey. Actual data points, as officially 366 
reported, are shown using red circles. Simulation predictions are described by the blue 367 
dotted line. (B) Model prediction of the total number of symptomatic patients from March 368 
1 to May 20, 2020. (C) Model prediction of new cases of COVID-19 during the period 369 
from March 1 to May 20, 2020 if no further containment actions are adopted. (D) 370 
Estimation of the number of beds needed during the month of April 2020 in Monterrey, 371 
based on the number of patients that will require hospitalization according to the model 372 
predictions. 373 
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This estimate considers that only 10.0% of the symptomatic patients will require 374 

hospitalization, which may be optimistic. Reports based in 44000 COVID-19 cases in 375 

China indicate that the percentage of patients with severe symptoms may be 14%, with a 376 

5% of critical cases
32

. In prospective, the total number of beds in the Mexican public health 377 

sector is estimated in 20,000 (for the whole country).  378 

 379 

Concluding remarks 380 

We used a set of differential equations, recent epidemiological data regarding the evolution 381 

of COVID-19 infection in a reduced set of regions (i.e., Spain, Iran, and NYC), and basic 382 

information on the characteristics of COVID-19 infection (i.e., time from infection to 383 

recovery, case mortality rate) to accurately recreate the onset of the COVID-19 in two 384 

urban areas with different demographic characteristics (i.e., NYC and Monterrey, México). 385 

We showed that the model can be adapted to closely follow the evolution of COVID-19 in 386 

densely populated urban areas by simply adjusting two parameters related to (a) population 387 

density and (b) aggressiveness of the response from a society/government to epidemics.   388 

Scenarios such as those currently unfolding in Iran, Italy, or Spain emphasize the 389 

importance of planning ahead during epidemic events. The availability of a simple model 390 

may be highly enabling for local governments, physicians, civil organizations, and citizens 391 

as they struggle in their endeavor to accurately forecast the progression of an epidemic and 392 

formulate a plan of action. As previously stated, the use of simple/user-friendly models to 393 

evaluate in (practically) real time the effectiveness of containment strategies or programs 394 

may be a powerful tool for analyzing and facing epidemic events
6,12

. This contribution 395 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2020. .https://doi.org/10.1101/2020.03.23.20041590doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.23.20041590
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

shows the prediction potential of an extremely simple simulation tool that can be used by 396 

practically any citizen with basic training in Excel.  397 
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