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ABSTRACT: The recent outbreak of coronavirus disease 2019 (COVID-
19) highlights an urgent need for therapeutics. Through a series of drug
repurposing screening campaigns, niclosamide, an FDA-approved anthel-
minthic drug, was found to be effective against various viral infections with
nanomolar to micromolar potency such as SARS-CoV, MERS-CoV, ZIKV,
HCV, and human adenovirus, indicating its potential as an antiviral agent.
In this brief review, we summarize the broad antiviral activity of niclosamide
and highlight its potential clinical use in the treatment of COVID-19.
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The recent outbreak of coronavirus disease 2019 (COVID-
19) first detected in Wuhan, China, was caused by a

novel betacoronavirus, which was named SARS-CoV-2 (a.k.a.
2019-nCoV) by the International Committee on Taxonomy of
Viruses.1 Coronaviruses (CoVs) are enveloped and positive-
sense single-stranded RNA viruses belonging to the family
Coronaviridae within the order Nidovirales. Many coronaviruses
infect humans and other mammalian hosts. Coronavirus can be
divided into four genera (alpha, beta, gamma, and delta), of
which alpha and beta coronaviruses are known to infect
humans.2 Human coronavirus infections are typically mild and
rarely associated with severe diseases. However, the epidemics
of Middle East respiratory syndrome coronavirus (MERS-
CoV) and severe acute respiratory syndrome coronavirus
(SARS-CoV) caused alarming morbidity and mortality.3 While
coronaviruses are often zoonotic, person-to-person trans-
mission has been confirmed for SARS-CoV-2, similar to
MERS-CoV and SARS-CoV.4 As of March 5, 2020, there are
more than 95 333 confirmed cases of COVID-19 and at least
3282 reported deaths, indicating that it is a severe public health
threat.5 There is no clinically approved antiviral for coronavirus
therapy.6 Although remdesivir, an experimental antiviral drug
candidate by Gilead currently advanced into human clinical
trials to treat COVID-19 in both China and the U.S., was
reported to improve patient outcomes in a recent study,7 it is
still critical and urgent to search for other effective inhibitors
for the potential treatment of COVID-19.

Drug repurposing screens have emerged as an attractive
strategy to accelerate new drug discovery and development.
This strategy offers various advantages over de novo drug
discovery featured with key benefits including reduced time,
cost, and risk as well as the unique means for safer and more
effective drugs to be accessed by patients.8,9 Niclosamide is an
FDA-approved anthelminthic drug that has been widely used
in humans to treat tapeworm infections for several decades and
is currently listed on the World Health Organization’s list of
essential medicines.10,11 Niclosamide exerts its anticestodal
effect by inhibiting oxidative phosphorylation and stimulating
adenosine triphosphatase activity in the mitochondria.12 Over
the past several years, niclosamide has been identified as a
multifunctional drug via drug repurposing screens. It can
regulate multiple signaling pathways and biological processes
including Wnt/β-catenin, mTORC1, STAT3, NF-κB, Notch,
NS2B-NS3 interaction, and pH,13,14 indicating its potential to
treat other human conditions15 such as cancer,16−18 bacterial
and viral infections,19−22 and metabolic diseases.23 These
broad biological activities of niclosamide including relevant cell
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signaling pathways were briefly reviewed by Chen et al.15 In
this short review, we focus on summarizing the broad antiviral
activities of niclosamide (Figure 1) and highlighting its
therapeutic potential in combating COVID-19.

■ NICLOSAMIDE AND VIRAL INFECTIONS
Niclosamide and Coronavirus. Coronaviruses are a

group of enveloped and nonsegmented positive-sense RNA
viruses with very large genome size ranging from approximately
27 to 34 kb. Infections with human strains HCoV-229E,
HCoV-OC43, HCoV-NL63, and HCoV-HKU1 usually cause
mild, self-limiting respiratory infections such as the common
cold.2,24 Nevertheless, in the past 17 years, three beta
coronaviruses (SARS-CoV, MERS-CoV, and this year’s
SARS-CoV-2) have caused severe human disease pandemics
associated with high morbidity and mortality. The outbreak of
SARS in southern China between November 2002 and July
2003 eventually resulted in 8098 confirmed cases and 774
deaths reported in 17 countries with a mortality rate of 9%,
while MERS, first identified in Saudi Arabia in 2012, has
caused a total of 2519 laboratory-confirmed cases including
866 associated deaths with a fatality rate of nearly 34% at the
end of January 2020.25,26 The lack of effective treatment for
coronavirus infections poses a great challenge to clinical
management and highlights the urgent need for new drug
discovery. Wu et al. found that niclosamide was able to inhibit
SARS-CoV replication and totally abolished viral antigen
synthesis at a concentration of 1.56 μM after screening a small
marketed drug library.27 Niclosamide suppressed the cyto-
pathic effect (CPE) of SARS-CoV at a concentration of as low
as 1 μM and inhibited SARS-CoV replication with an EC50
value of less than 0.1 μM in Vero E6 cells.28 SARS-CoV 3CL
protease plays an important role in replicase polyprotein
processing and serves as a key target for anti-SARS drug
discovery.29−31 A series of 2-chloro-4-nitroanilide derivatives

was discovered as potent inhibitors against SARS-CoV 3CL
protease. Interestingly, niclosamide showed no obvious
inhibitory activity against SARS-CoV 3CL protease up to 50
μM, and mechanistically, it may exert its anti-SARS activity via
other modes of action.32

Gassen et al. revealed that E3 ligase S-phase kinase-
associated protein 2 (SKP2) executes lysine-48-linked poly-
ubiquitination of Benclin 1 (BECN1), resulting in its
proteasomal degradation. SKP2 inhibition increases the
BENC1 level, enhances autophagy, and efficiently reduces
MERS-CoV replication.33 Niclosamide was reported to inhibit
MERS-CoV replication by up to 1000-fold at 48 h p.i. at a
concentration of 10 μM, while it enhanced the BENC1 level
and ATG14 oligomerization, increased the number of
autolysosomes by >2-fold, and affected the autophagic flux in
the MERS-CoV-infected cells.33 Since niclosamide is a
multifunctional drug, we cannot exclude the possibility that
it exerts its anti-MERS activity by regulating other targets
besides SKP2 inhibition.

Niclosamide and Flavivirus. Flavivirus, a genus of viruses
in the family Flaviviridae, includes the Zika virus (ZIKV),
dengue virus four serotypes (DENV 1−4), West Nile virus
(WNV), yellow fever virus (YFV), and Japanese encephalitis
virus (JEV). Many of these viruses are significant human
pathogens. Among these viruses, ZIKV is a mosquito-borne
flavivirus that is transmitted primarily by Aedes mosquitoes.
ZIKV infection can cause infants to be born with microcephaly
and can trigger neurologic conditions in adults such as
Guillain−Barre ́ syndrome, neuropathy, and myelitis.34−38

Outbreaks of ZIKV infection have been recorded several
times (2015 in Brazil, the latest one), and the World Health
Organization (WHO) declared ZIKV to be a global public
health emergency. Xu et al. used caspase-3 activity as the
primary screening assay and discovered niclosamide as a potent
inhibitor of ZIKV infection, displaying an IC50 value of 0.37
μM against the intracellular ZIKV RNA level.22 The time-of-
addition studies indicated that niclosamide inhibits ZIKV
infection at a postentry stage, probably in a viral RNA
replication step. Our research team also identified niclosamide
as a potent anti-ZIKV inhibitor through an independent
quantitative high-throughput screening (qHTS) campaign and
found that niclosamide directly inhibits flavivirus NS2B-NS3
interactions.14 Protease complex NS2B-NS3 is essential for
flaviviral polyprotein processing.39−41 Our team also found that
niclosamide is a broad-spectrum inhibitor against other
flaviviruses including DENV-2, WNV, JEV, and YFV, with
potencies similar to that for ZIKV.14

In addition, Fang et al. developed a CPE-based HTS assay to
screen 1280 pharmacologically active compounds and
identified niclosamide as a potent JEV inhibitor with
micromolar potency.42 The time-of-addition studies showed
that niclosamide inhibits JEV at the stage of replication.

Niclosamide and Hepatitis C Virus. Hepatitis C virus
(HCV) is an enveloped positive-sense single-strand RNA virus
of the family Flaviviridae which is transmitted mainly through
blood infection. HCV can cause both acute and chronic
hepatitis, and hepatitis C is a major cause of liver cancer. It was
estimated that about 71 million people have chronic HCV
infections worldwide.43 At present, there is no effective vaccine
against hepatitis C, although clinically approved therapeutics
are available. Niclosamide was reported to show very
promising activity against HCV replication with an EC50
value of 0.16 μM.44 It likely inhibits HCV replication via

Figure 1. Niclosamide has great potential in being repurposed to treat
a variety of viral infections, such as severe acute respiratory syndrome
coronavirus (SARS-CoV), Middle East respiratory syndrome
coronavirus (MERS-CoV), Zika virus (ZIKV), Japanese encephalitis
virus (JEV), hepatitis C virus (HCV), Ebola virus (EBOV), human
rhinoviruses (HRVs), Chikungunya virus (CHIKV), human adeno-
virus (HAdV), and Epstein−Barr virus (EBV). We envision that this
broad spectrum of antival activities may offer the therapeutic potential
to be extended to combat fast-spreading coronavirus disease 2019
(COVID-19), given its inexpensive and low in vivo toxicity profile as
an FDA-approved drug in clinical use.
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modulation of the host cell process similar to that of its
derivatives nitazoxanide and tizoxanide.45−47 However, chronic
HCV infection requires long-term (several months) antiviral
treatment, which may make a host-targeted approach less
attractive.
Niclosamide and Ebola Virus. Ebola virus (EBOV) is an

enveloped negative-sense single-stranded RNA virus that
belongs to the genus Ebolavirus of the family Filoviridae.
EBOV is introduced into humans from wild animals and
spreads in the human population through person-to-person
transmission. Ebola virus disease (EVD), known as Ebola
hemorrhagic fever, has a high fatality rate, ranging from 25 to
90% in past outbreaks. Through a systematic screen of FDA-
approved drugs, niclosamide was identified as one of the most
potent EBOV inhibitors with an EC50 value of 1.5 μM,
although its in vivo efficacy has not yet been evaluated in
animal models.48

Niclosamide and Human Rhinovirus. Human rhinovi-
ruses (HRVs) are nonenveloped, positive-sense single-stranded
RNA viruses that belong to the genus Enterovirus of the family
Picornaviridae. There are more than 100 different HRV strains
classified into three species (HRV A−C). HRVs are wide-
spread among humans and the primary cause of the common
cold, posing serious health risks for patients with asthma,
chronic pulmonary disease, and severe bronchiolitis in infants
and children.49 Niclosamide is a weak lipophilic acid and was
reported to inhibit pH-dependent HRV infection with low
micromolar IC50 values; it suppresses HRV entry by blocking
the acidification of the endolysosomal compartments, acting as
a proton carrier.50

Niclosamide and Chikungunya Virus. Chikungunya
virus (CHIKV) is a positive-sense single-stranded RNA virus
belonging to the genus Alphavirus of the family Togaviridae.
CHIKV causes fever and joint pain, is transmitted by infected
female mosquitoes, and is cataloged as a risk group-3 pathogen.
Currently, there is no effective antiviral therapy approved for
Chikungunya. Niclosamide was discovered as a potent anti-
CHIKV inhibitor with a low micromolar EC50 value; it not
only affects CHIKV entry via blocking low-pH-dependent virus
fusion but also inhibits the cell-to-cell transmission of CHIKV
infection.51

Niclosamide and Human Adenovirus. Human adeno-
viruses (HAdVs) are nonenveloped double-stranded DNA
viruses with icosahedral capsids. HAdVs comprise more than
70 different serotypes classified into seven species (HAdV A−
G). HAdV infections can cause severe and often life-
threatening diseases in immunosuppressed patients. Currently,
no specific antiviral therapy is available to treat these
infections. Three salicylanilide anthelmintic drugs including
niclosamide were screened out as potent anti-HAdV inhibitors.
Niclosamide showed very promising anti-HAdV activity with
an EC50 value of 0.6 μM in the plaque assay. Subsequent
mechanistic studies indicated that niclosamide inhibits the
transport of the HAdV particle from the endosome to the
nuclear envelop.52

Niclosamide and Epstein−Barr Virus. Epstein−Barr
virus (EBV), also known as human herpesvirus 4, has a
toroid-shaped protein core containing a linear double-stranded
DNA genome of 184 kb in size which is a member of the
gamma subfamily of herpes viruses. EBV is widely spread in
humans and infects over 95% of humans in the first decades of
their life, resulting in a lymphoproliferative disorder known as
infectious mononucleosis. EBV infection was also found to be

associated with the development of several types of cancer
such as Burkitt’s lymphoma, Hodgkin’s lymphoma, and
nasopharyngeal carcinoma.53 Huang et al. demonstrated that
niclosamide inhibits EBV lytic replication in lymphoma cells
and epithelial cells and causes irreversible cell cycle arrest in
lytic EBV-infected cells via disrupting mTOR activation,
offering the potential to treat acute EBV-associated infectious
diseases.54

■ CONCLUSIONS AND FUTURE DIRECTIONS
Niclosamide has traditionally been used to treat tapeworm
infections for many years, and it is inexpensive and well
tolerated in vivo with an extremely high acute oral LD50 value
of >5000 mg/kg in rats (niclosamide ethanolamine salt).10 In
human medicines, single oral doses of 0.5, 1, and 2 g of
niclosamide are recommended for children under 2 years,
children between 2 and 6 years, and children older than 6 years
and adults, respectively, to treat infections with Taenia solium,
T. saginata, and Diphyllobothrium latum.10 Human infections
with rat tapeworm Hymenolepis diminuta were eliminated by
5−7 daily doses of 2 g of niclosamide each, while the treatment
of Hymenolepis nana infection requires one or several 5−7 day
courses of niclosamide treatment. One 7 day course regimen
for adults is 2 g of niclosamide on day 1 followed by 1 g daily
for 6 days.10,55 When treating human volunteers each with a
single oral dose of 2000 mg of niclosamide, the maximum
serum concentration of niclosamide was equivalent to 0.25−
6.0 μg/mL (0.76−18.3 μM). The wide concentration range
was caused by the intraindividual absorption differences.
Niclosamide is only partially absorbed from the intestinal
tract, and the absorbed part is rapidly eliminated by the
kidneys with no cumulative toxic effects in human.10 Through
a series of drug repurposing screening campaigns, niclosamide
was found to be effective against a variety of human conditions
such as cancer and viral infections. Currently, there are four
ongoing human clinical trials of niclosamide in ulcerative
colitis, prostate carcinoma, and colorectal cancer in the
ClinicalTrails.gov clinical trials registry.56 Of note, niclosamide
has several weaknesses such as unneglectable cytotoxicity and
limited aqueous solubility as well as relatively low absorption
and oral bioavailability (F = 10%), which may hamper its
extensive clinical development as an antiviral agent.57 Our
group has made substantial efforts in medicinal chemistry
based on niclosamide as a lead compound and discovered a
series of O-alkylamino-tethered derivatives as potent and orally
bioavailable anticancer agents with improved aqueous
solubility16 and diversified salicylamide derivatives as potent
anti-HAdV inhibitors with increased potency (submicromolar
IC50s) and significantly decreased cytotoxicity likely by
targeting different steps in the HAdV life cycle.58 The ester
derivative prodrug of niclosamide was also reported to increase
its systemic drug exposure and extend the duration of
exposure.59 The development of nanobased formulations is
another useful strategy for improving the pharmacological and
pharmacokinetic properties of niclosamide and maximizing its
therapeutic potential for clinical applications.60−62

The outbreak of COVID-19 has been declared to be a public
health emergency of international concern by the WHO, and
the development of effective therapies for fast-spreading fatal
COVID-19 is in an urgent need. 3CL protease is a key enzyme
that is responsible for proteolytic processing and is
indispensable for viral replication and the infection process.6

Recently, the high-resolution crystal structure of SARS-CoV-2
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3CL protease has been solved by Zihe Rao and Haitao Yang
(PDB ID: 6LU7, Figure 2), and this may significantly facilitate

the discovery of potent small-molecule inhibitors of COVID-
19 by targeting SARS-CoV-2 3CL protease via high-
throughput virtual screening of compound libraries or existing
drug libraries for drug repurposing. In addition, Wrapp et al.
have determined a cryo-EM structure of the SARS-CoV-2
spike (S) glycoprotein trimer in the prefusion conformation
that will also facilitate vaccine development and the discovery
of antiviral therapeutics for COVID-19.63 Although these
crystal structures may provide new insights and helpful
information for future drug discovery, extensive efforts are
needed to identify effective binding pockets for small
molecules and validate the drug targets.
It is reported that some existing drugs or drug candidates

such as remdesivir, an RNA-dependent RNA polymerase
(RdRp) inhibitor, and lopinavir/ritonavir (protease inhibitors)
against Ebola or HIV may be repurposed through fast-track
human clinical trials as effective therapies to combat deadly
COVID-19 and save hundreds of patient lives.7,64,65 Very
recently, through screening the existing antiviral drugs, three
broad antiviral agents (nitazoxanide, remdesivir, and chlor-
oquine) were found to inhibit SARS-CoV-2 at low micromolar
concentrations in Vero E6 cells with EC50 values of 2.12, 0.77,
and 1.13 μM, respectively.66 Nitazoxanide is a prodrug of
tizoxanide, which shares considerable structural similarity with
niclosamide as a salicylamide derivative.47 Notably, niclosa-
mide displays promising inhibitory activity against SARS-CoV
replication with an EC50 value of less than 0.1 μM in Vero E6
cells and inhibits MERS-CoV replication by up to 1000-fold at
48 h p.i. at a concentration of 10 μM in Vero B4 cells.28,33

SARS-CoV-2 belongs to the genus Betacoronavirus, the same as
SARS-CoV and MERS-CoV, sharing 79.5% sequence identify
to that of SARS-CoV.67 These findings, together with its broad
antiviral properties, indicate that niclosamide, an inexpensive
and well-tolerated old drug, may be repurposed with

therapeutic potential applications to combat COVID-19. We
envision that once its anti-SARS-CoV-2 activity is validated in
animal models or human clinical trials, niclosamide and its
optimized analogues may be developed as effective antiviral
therapeutics with the potential to benefit numerous infected
patients in this outbreak of COVID-19.
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Figure 2. Crystal structure of SARS-CoV-2 (2019-nCoV) 3CL
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Mraz, J., Kolenc, M., Resman Rus, K., Vesnaver Vipotnik, T., Fabjan
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