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Abstract 

Background: COVID-19 outbreak poses an unprecedented challenge for societies, 

healthcare organizations and economies. In the present analysis we coupled climate data with 

COVID-19 spread rates worldwide, and in a single country (USA). 

Methods: Data of confirmed COVID-19 cases was derived from the COVID-19 Global Cases 

by the CSSE at Johns Hopkins University up to March 19, 2020. We assessed disease spread by 

two measures: replication rate (RR), the slope of the logarithmic curve of confirmed cases, and 

the rate of spread (RoS), the slope of the linear regression of the logarithmic curve. 

Results: Based on predefined criteria, the mean COVID-19 RR was significantly lower in warm 

climate countries (0.12±0.02) compared with cold countries (0.24±0.01), (P<0.0001). Similarly, 

RoS was significantly lower in warm climate countries 0.12±0.02 vs. 0.25 ± 0.01 than in cold 

climate countries (P<0.001). In all countries (independent of climate classification) both RR and 

RoS displayed a moderate negative correlation with temperature R= -0.69, 95% confidence 

interval [CI], -0.87 to -0.36; P<0.001 and R= -0.72, 95% confidence interval [CI], -0.87 to -0.36; 

P<0.001, respectively. We identified a similar moderate negative correlation with the dew point 

temperature. Additional climate variables did not display a significant correlation with neither 

RR nor RoS. Finally, in an ancillary analysis, COVID-19 intra-country model using an inter-state 

analysis of the USA did not identify yet correlation between climate parameters and RR or RoS 

as of March, 19, 2020.  

Conclusions: Our analysis suggests a plausible negative correlation between warmer climate and 

COVID-19 spread rate as defined by RR and RoS worldwide. This initial correlation should be 

interpreted cautiously and be further validated over time, the pandemic is at different stages in 

various countries as well as in regions within these countries. As such, some associations may be 

more affected by local transmission patterns rather than by climate. Importantly, we provide an 
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online surveillance dashboard (https://covid19.net.technion.ac.il/) to further assess the 

association between climate parameters and outbreak dynamics worldwide as time goes by. 
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Research in context  

Evidence before this study  

The coronavirus, COVID-19 pandemic caused by the novel SARS-CoV 2, challenges healthcare 

organizations and economies worldwide. There have been previous reports describing the 

association between seasonal climactic variance and SARS-CoV 1 as well as the MERS 

infections, but the association with SARS-CoV 2 and climate has not been described extensively.  

Added value of this study  

Our analysis demonstrates a plausible negative correlation between warmer climate and COVID-

19 spread rate as defined by RR and RoS worldwide in all countries with local transmission as of 

March 9, 2020. This initial correlation should be interpreted cautiously and be further validated 

over time. Importantly, we provide an online surveillance dashboard available at 

(https://covid19.net.technion.ac.il/)  for further dynamic tracking of climate effect on COVID-19 

disease spread rate worldwide and on intra-country analysis between USA states.  

Implications of all the available evidence  

Our findings of decreased replication and spread rates of COVID-19 in warm climates may 

suggest that the inevitable seasonal variance will alter the dynamic of the disease spread in both 

hemispheres in the coming months. However, we warrant a cautious interpretation of these 

findings given the fact that we are in the initial steps of this outbreak in many “warm” climate 

countries, the high variance of the data and the dynamic changes in the disease surveillance and 

the lack of correlation based on the limited data in the US. We hope that the online tool coupling 

COVID-19 data with climate data will assist in tracking the disease and tailoring the needed 

measures to contain it.  
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Introduction 

The coronavirus, COVID-19 pandemic, challenges healthcare organizations and economies 

worldwide. As of March 20, 2020, a total of 260,476 COVID-19 cases have been confirmed and 

11,289 deaths. Transmission of COVID-19 is community-based unlike previous coronavirus 

outbreaks such as severe acute respiratory syndrome coronavirus (SARS-CoV) or the Middle 

East respiratory coronavirus (MERS-CoV) that were both mainly transmitted in the hospital 

setting1,2. Recent reports show that patients infected with COVID-19 are at high risk for severe 

morbidity (5% intensive care unit admissions) and mortality (1.4%)3, although highly dependent 

on age and prior comorbidity4. The reproduction number (R0), which defines the average number 

of cases directly generated by one case, for COVID-19 is estimated to be between 1.5-3.55,6 and 

the reproduction efficacy may be influenced by cultural habits, population density and the 

country specific mitigation methods such as quarantine strategies as well as travel control 

measures7-9. An additional key factor that is of specific interest world-wide and a source for 

controversy is the effect of the climate on COVID-19 transmission10.  

 The spatio-temporal transmission of respiratory viruses such as influenza is highly 

associated with meteorological factors such as temperature, humidity and rainfall, with peak 

incidence occurring during winter11. The  SARS-CoV epidemic in Beijing (2003) peaked during 

the early spring time and disease spread rate correlated with climate variables12. Similarly, 

SARS-CoV  spread in Hong Kong (2003) was shown to negatively correlate with higher 

temperatures13.Unlike the SARS-CoV, the highest global seasonal occurrence of the MERS-CoV 

occurred during spring-summer periods in countries with warm climate such as Saudi-Arabia14,15 

and high temperatures as well as low humidity were associated with increased disease spread rate 

16. 
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 Given the variant vulnerability of different strains of coronavirus to climate, specifically 

temperature, there is a major global uncertainty regarding the continuing spread of COVID-19 

during the coming months. Currently, the World Health Organization assumption is that COVID-

19 spread will not be ameliorated during the summer period17. A surveillance tool assessing the 

correlation between the spread rate of COVID-19 and climate variables will be instrumental for 

societies, governments and health organizations worldwide. Analyzing the interaction between 

disease spread rate and climate may allow implementation of differential and precise mitigation 

measures for disease spread prevention, to tune healthcare routine ambulatory services and 

preparation strategies and to minimize the unnecessary dreadful impact of excessive quarantine 

strategies on psychosocial health and economies. Online dashboards have proven useful for 

global COVID-19 tracking. We have two aims in the current study. First, to compare the 

distinctive transmission efficacy of COVID-19 in countries with cold and warm climate based on 

the initial disease diagnosis trends worldwide. We consider this to be a cautious test case for 

examining the correlation between climate and COVID-19 disease spread. The second and more 

important aim, is to create an online up-to-date surveillance tool simultaneously presenting 

COVID- 19 spread rate with relation to climate parameters.     

Methods: 

Data of confirmed COVID-19 cases was derived from the Coronavirus COVID-19 Global Cases 

by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University 

(JHU)18up to  March 19, 2020. Countries with less than 50 diagnosed patients as well as 

countries not categorized as local transmission according to the WHO situation report as of 

March 9 were excluded in order to minimize confounding of imported disease transmission.  
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We prospectively defined “warm” and “cold” climate countries according to the following 

criteria: A “Cold” climate country was defined as a country with  average temperatures below 

15˚ Celsius degrees (<77˚ Fahrenheit) during the month of March10  and latitude line north of 

40˚. A “Warm” climate country was defined as a country with average March temperatures 

above 15˚ Celsius degrees (≥77˚ Fahrenheit). Based on the assumption that Italy has experienced 

an unproportionally high local disease spread not essentially affected by weather (in a similar 

manner to the Wuhan outbreak) we tested our model with and without the addition of Italy. We 

did not include China in our analysis given the unique circumstances associated with the country 

being the origin of the outbreak, the lag between outbreak and detection that may confound 

spread as well as the drastic mitigation steps applied. We assessed disease spread by two 

measures: The Replication Rate and the Rate of Spread.  

Replication rate (RR) was defined as the slope of the logarithmic curve of the natural logarithm 

of the number of cases diagnosed in each country, starting from the day in which the total 

number of diagnosed cases was ≥30. The choice of 30 for the point we start counting diagnosed 

cases was chosen as a cut-off based on 2 standard deviations from the mean diagnosed patients in 

countries with imported cases only (based on WHO situation report at March 5, 2020) We 

calculated the slope of a sliding window of size (dT), where we chose dT=3. Let 𝐶𝑡 be the 

number of validated cases of COVID-19 for each country at day t. 

𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑙𝑛(𝐶𝑡+𝑑𝑇) − 𝑙𝑛(𝐶𝑡)

𝑑𝑇
. 

Rate of Spread (RoS) was calculated based on the method presented by Sajadi et al.10  . It is 

calculated by running a linear regression of ln(Confirmed Cases) on time, and taking RoS to be 

the slope coefficient of the regression. We used a 7-day sliding window, as in Sajadi et al. 10. 

 (𝑅𝑜𝑆)𝑅𝑎𝑡𝑒 𝑜𝑓 𝑆𝑝𝑟𝑒𝑎𝑑 (𝑅𝑜𝑆)𝑛+7 = 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑛 ln(𝐶𝑛) , … , ln (𝐶𝑛+6) 
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The calculation of the RoS was conducted by using a window for regression that does not 

include any missing values. From the RoS one can estimate the doubling time of cases:  

Doubling Time = ln(2) ∗
1

𝑅𝑜𝑆
.19 

 

Databases used 

Country population data was taken from the United Nations website, the Department of 

Economic and Social Affairs Population 

(https://www.un.org/en/development/desa/population/index.asp).COVID-19 diagnostic test 

numbers were taken from https://ourworldindata.org/covid-testing updated for March, 20, 2020. 

Climate  data was derived from  www.weatherbase.com and based on country capital historical 

average climate for the month of March (based on weather data at and missing data was added 

from en.climate-data.org). Average temperature, precipitation in mm, morning and evening 

humidity, dew point (the temperature to which air must be cooled in order to reach saturation 

with water) and wind speed (km/h) were collected. All analyses conducted are presented and 

available at https://github.com/covid19climate/COVID-19-Climate. 

 

Statistical Analysis 

Continuous variables are reported as mean ± SEM. Group differences in continuous variables 

were tested using the Student t-test. Correlation between weather parameters was conducted 

using Pearson and Spearman correlation were calculated according to data distribution. A value 

of P<0.05 was considered statistically significant. Statistical analysis was conducted using 

GraphPad Prism 6 and R studio gplot2 package.   
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Results 

Based on the inclusion criteria of the study, 13 countries (including Italy) fulfilled the criteria for 

“cold” climate countries and 7 countries fulfilled the criteria for “warm” climate countries. Four 

countries did not meet the “cold” nor “warm” criteria (Table 1). Confirmed COVID-19 cases 

according to country climate classification demonstrated a slower dynamics of case 

accumulation in “warm” countries. The data presented was analyzed according to the data 

available via CSSE as of March 19, 2020. The cumulative number of cases in a logarithmic scale 

is shown in Figure 1 and Supplementary Figure 1. In order to quantify the disease spread, the 

replication rate (the slope of the logarithmic graph smoothened for a period of 3 days) was 

calculated for each country (Figure 2) as well as the rate of spread the slope of the linear 

regression calculated for a period of 7 days (Figure 3). Mean replication rate (RR averaged over 

all time windows available for each country) was significantly lower in “warm” climate 

countries (0.12 ± 0.02) compared with “cold” countries (0.24 ± 0.01), (p<0.0001). The COVID-

19 rate of spread (the slope of the linear regression of the logarithmic graph of cumulative cases) 

was significantly lower in “warm” climate countries (0.12 ± 0.02) compared with “cold” climate 

countries (0.25 ± 0.01). This difference in replication rate translates into a 2.8 times slower 

estimated doubling time in “warm” climate countries (7.26±1.56 days) compared with “cold” 

climate countries (2.89±0.16), P=0.046.   

We used correlation analysis in order to describe the relation between climate parameters 

and the RR (Table 1) and RoS (Table 2) in a non-dichotomized data set (without separation to 

warm and cold climate countries). Both RR and RoS displayed a moderate negative correlation 

with temperature R= -0.69, 95% confidence interval [CI], -0.87 to -0.36; P<0.001 and R= -0.72, 

95% confidence interval [CI], -0.87 to -0.36; P<0.001, respectively (Figures 4A and Figure 5A). 
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Climate variables such as precipitation, morning and evening humidity, and wind speed did not 

display a significant correlation with both RR and RoS (Figure 4 and 5).  In addition, Both RR 

and RoS displayed a moderate negative correlation with the dew point R= -0.56, 95% confidence 

interval [CI], -0.82 to -0.10; P=0.02 and R= -0.62, 95% confidence interval [CI], -0.85 to -0.19; 

P=0.008, respectively (Figure 4C and 5C). Given the robust outbreak in Italy, most probably due 

to non-climate factors, we examined the discussed climate-RR/RoS correlations without the data 

of Italy. The correlation of RR with temperature and dew point in the dataset excluding Italy was 

R=-0.69, 95% confidence interval [CI], -0.87 to -0.35; P=0.001 and R=-0.59, 95% confidence 

interval [CI], -0.84 to -0.17 (P=0.02). The correlations of RoS to temperature and dew point 

remained significant as well. Therefore, we conclude that the correlations described above were 

unaffected by the inclusion or exclusion of Italy in the analysis. Furthermore, to exclude an 

effect of our pre-selected climate classification to “warm” and “cold” on the correlation between 

RR/RoS to climate parameters we also examined the correlation after we added countries that 

fulfilled our non-climate dependent criteria (USA, Japan, Greece and South Korea). Both RR and 

RoS significantly correlated with temperature (RR: R=-0.64, P<0.001; ROS: R=-0.67, P<0.001) 

and dew point (RR: R=-0.60, P=0.002; RoS: R=-0.63, P=0.001)  and did not correlate with other 

climate parameters (similar to the correlation pattern described above without these additional 

countries).  

 To examine the correlation with alternative parameters that might affect the RR or RoS 

we tested the correlation between country population size and the degree of disease spread 

(Supplementary Table 1). Both RR and RoS did not correlate with country population size. In 

addition, there was no significant difference between country population size in “cold” climate 

and “warm” climate countries. Finally, the number of COVID-19 tests taken may affect disease 
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detection and thus may confound RR and RoS. However, we did not find a significant 

correlation between COVID-19 RR and RoS and the number of tests or the number of tests per 

1000 persons. Neither was the number of tests taken significantly different between “cold” and 

“warm” climate countries. 

Finally, we conducted an additional analysis, of intra-country correlation, within the USA 

between climate parameters and RR/RoS. Given the lag of disease spread in the USA, as of 

March, 19,2020 the cumulative patient number was limited. The RR and RoS for the USA are 

calculated based on limited data and this analysis was conducted aiming at future tracking on 

climate outbreak dynamics in the USA using the study’s dashboard as the number of cumulative 

cases is dynamically evolving (Supplementary Table 2). As of March 19, 2020, we did not find 

significant correlations between RR and RoS with any of the climate parameters evaluated 

(Supplementary Table 3 and 4).  

Discussion  

In this study we analyzed the spread rate of the novel COVID-19 pandemic in relation to climate 

variables.  We identified a significant moderate negative correlation between the rate of COVID-

19 RR and RoS and increasing temperature and dew point.  Furthermore, by dichotomizing 

countries into “warm” and “cold” climate (based on predefined average March temperature 

</>15 degrees Celsius and latitude) categories we identified a significantly lower RR and RoS in 

warm climate countries compared with cold climate countries. These findings persisted 

irrespective of whether Italy was included in our analysis or not, whether we used country 

dichotomization by climate criteria or included all countries irrespective of climate 

classification. Intra-State analysis  of American (USA) data did not identify a significant 

correlation  Our results were devised by developing  an online surveillance tool (available at 
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https://covid19.net.technion.ac.il/) coupling  continuously updated COVID 19 data  (available at 

the CCSE website20) with climate variables . We hope this tool will aid healthcare providers and 

policymakers in dynamically tracking the disease and tailoring the mitigation steps designed to 

slow down COVID-19 spread.   

 Knowledge on COVID-19 RR and RoS is sparse and interpretation is complex as 

it can be affected by a multitude of regional/national factors including amongst others, age 

distribution, cultural habits, testing & screening strategies, applied mitigation measures as well 

as local policy regarding administered care21.  We found that the climate variable beside 

temperature, with the strongest correlation to RR and RoS was dew point, whereas precipitation, 

humidity and wind-speed did not appear to be significantly related to RR and RoS (Figure 4 and 

5). Dew point temperature was previously shown to strongly associate with respiratory viruses 

spread rate and was recently found to explain approximately one third of the variation in 

transmission of enteroviruses across USA22,23. The dew point depends on both temperature and 

humidity and it is defined as the temperature to which air must be cooled at constant pressure for 

saturation to occur. Dew point may influence evaporation of aerosols containing COVID-19. 

Doubling time in our assessment was only marginally different between warm and cold 

countries, due to the high variance in RoS in warm countries.  

 Animal studies have suggested much lower transmission rates of influenza virus in high 

humidity and/or high temperature conditions24.Our findings of lower RR and RoS in warm 

climate may suggest that the seasonal climate variation  will influence disease spread dynamics 

globally in the coming months. Colder temperatures may provide better conditions for virus 

survival outside the human body, with longer viral viability on contaminated surfaces and 

fomites. The SARS-CoV survives longer in colder and less humid conditions on contaminated 
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surfaces25. In preliminary findings, Bannister Tyrrell et al have demonstrated that higher average 

temperature was strongly associated with lower COVID-19 incidence26. 

 We developed this interactive online surveillance tool that tracks the correlation between 

the global climate parameters and COVID-19 as a service to leadership, healthcare providers and 

the general public. It is readily reproducible, updates virtually online and enables examination of 

the correlation between the various climate variables and COVID-19 replication rate over time. 

The code was written using the Jupyter notebook environment via Google Colaboratory enabling 

researchers from countries with lesser available computing resources to run and execute their 

version of the code freely in the cloud. We hope it will serve healthcare organizations and 

leadership in deciding which mitigation steps to further take while also accounting for climatic 

alterations. 

The COVID-19 outbreak occurred during the winter season mostly in the northern 

hemisphere and the correlation of outbreak spread rate and climate is continuously studied. A 

recent study pinpointed to the observation that several regions with COVID-19 outbreaks 

occurred within the same latitude range, in areas with low temperatures and high humidity as of 

March 5, 202010. A preliminary clue for a possible association between temperature and COVID-

19 was reported online from Bannister-Tyrrell et al.27 Our results in the current study may 

strengthen the rationale to further assess the association between climate parameters and 

COVID-19 outbreak spread rate. Given the preliminary association identified in our study as 

well as by others, between the latter parameters, we advocate for prospective surveillance of 

disease trajectories in relation to contemporary climate data.  

There are several strengths in our findings. Our data is updated through March 19 2020, 

by which many countries imposed international restrictions, ensuring that our findings are more 
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representative of local spread rather than imported cases. Moreover, we chose to look at data 

beyond patient 30 (for countries and USA states), further ensuring that the diagnosed cases are 

from local spread. We demonstrated that average temperature as well as dew point, were 

negatively correlated with the RR and RoS in the worldwide analysis. Twenty four countries 

were included in our analysis which aids in generalizing these findings worldwide as the 

pandemic rages on. In addition, we demonstrated that potential confounders such as the 

population size, the number of tests and the number of tests/1000 persons did not significantly 

correlate with RR or RoS. Finally, our results are easily reproducible and the developed tool will 

help track the dynamic changes and reassess the correlation between climate and disease spread 

in the future.     

The current study has several limitations.  Different mitigation steps were undertaken by 

each included country during different times affecting the spread of COVID 19 in ways we 

cannot account for. However, since these mitigation steps have a lag period of approximately14 

days (based on the virus incubation time) they may only marginally affect our analysis. Also, as 

most of our “cold” climate countries are located in Europe, it important to note that ground travel 

within the European Union was unrestricted until very recently, a variable which may increase 

the imported spread rate. The lack of standardized criteria for diagnostic testing for COVID-19 

between countries affects the incidence and cumulative count. Be that as it may, number of tests 

performed in each country did not correlate with the RR and RoS. We used the climate 

parameters of the capital city of each country (and state in the USA) to represent each country in 

its entirety in order to calculate the RR and RoS as more detailed locations of COVID-19 

diagnoses in each country were not available to us, thus local spread within the country was not 

accounted for . An additional limitation that may warrant further research is the reliance on 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 30, 2020. .https://doi.org/10.1101/2020.03.26.20044727doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20044727


historical average temperatures. Further research and update of the surveillance tool will allow 

tracing these dynamic trends in relation with real-time temperature and the appropriate time lag 

consistent with COVID-19 incubation period.  Finally, our results might further be confounded 

by the varied socioeconomic status of the participating countries as well as social context. 

COVID-19 RR and RoS are affected by a multitude of factors. As the pandemic is 

spreading across the world with an alarmingly increasing toll of diagnosed cases as well as 

deaths, our findings of decreased RR and RoS in warm climates may suggest that the inevitable 

seasonal variance will alter the dynamic of the disease spread in both hemispheres in the coming 

months. However, we warrant a cautious interpretation of these findings given the fact that we 

are in the initial steps of this outbreak in many “warm” climate countries, the high variance of 

the data and the dynamic changes in the disease surveillance and the lack of correlation based on 

the limited data in the US. The current evidence from our study, does not justify any 

modification of governmental mitigation strategies in countries with warm climates. We hope 

that the online tool coupling COVID-19 data with climate data will assist in tracking the disease 

and tailoring the needed measures to contain it.  
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Table 1-Climate data, Replication rate and rate of Spread in studied countries 

 Country Climate 
Category 

Replication rate  
(Mean±SEM) 

Rate of Spread 
(Mean±SEM) 

Temperature 
 (˚C) 

Precipitation 
(mm) 

Morning 
Humidity (%) 

Evening 
Humidity 

(%) 

Dew point 
(˚C) 

Wind 
(km/hr) 

United Kingdom Cold 0.25±0.02 0.25±0.01 6.9 60 91 68 2 14.4 

Switzerland Cold 0.27±0.02 0.27±0.01 3.7 78.5 84 59 0 9.4 

Netherlands Cold 0.26±0.03 0.24±0.02 6 80 92 74 3 27 

Belgium Cold 0.23±0.03 0.22±0.01 6 80 88 68 2 22 

Iceland Cold 0.15±0.01 0.16±0.01 0.8 70 79 74 -3 20 

Italy Cold 0.23±0.02 0.23±0.02 10.6 57.5 74 58 -8 19 

Canada Cold 0.21±0.02 0.2±0.01 -2.2 39.1 80.5 62.1 0 14.4 

Austria Cold 0.28±0.01 0.3±0.01 6.4 47.6 80 65 2 17 

France Cold 0.26±0.02 0.27±0.01 8.8 36 88 64 0 20 

Germany Cold 0.28±0.02 0.28±0.01 4 60 86 65 -3 12 

Norway Cold 0.24±0.03 0.26±0.03 0.3 30 83 47 2 16 

Spain Cold 0.31±0.02 0.33±0.01 9.8 26 91 69 -3 16 

Sweden Cold 0.23±0.03 0.24±0.03 0.5 0 72 37 6 12 

Egypt Warm 0.15±0.02 0.16±0.02 17 10 75 58 13 25 

Bahrain Warm 0.1±0.02 0.11±0.01 21 174 92 72 23 14 

Singapore Warm 0.06±0.01 0.05±0 28 230 96 68 23 6 

Malaysia Warm 0.2±0.03 0.19±0.02 27 130 85 67 15 22 

Australia Warm 0.18±0.01 0.17±0.01 17 30 88 55 23 9 

Thailand Warm 0.05±0.01 0.04±0.01 29 20 73 34 5 16 

Iraq Warm 0.11±0.01 0.11±0.01 16 20 73 34 5 16 

USA None 0.23±0.02 0.24±0.02 8.2 88.9 70 47 -0.3 17.1 

Japan None 0.09±0.01 0.93±0.01 12.3 39.7 76 60 5 7.3 

Greece None 0.19±0.03 0.20±0.02 9.4 100 69 55 1 19 

South Korea None 0.19±0.04 0.18±0.04 5   74 47 -2 12 
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Table 2 –Correlation between replication rate and climate parameters. 

Weather Parameter R 95% confidence 
interval 

p value 

Temp (C˚) -0.69 -0.87 to -0.36 <0.001 

Precipitation 
(mm) 

0.02 -0.44 to -0.47 0.95 

Morning Humidity 
(%) 

0.25 -0.22 to 0.63 0.29 

Evening Humidity 
(%) 

0.12 -0.33 to 0.53 0.60 

Dew point (C˚) -0.56 -0.82 to -0.10 0.02 

Wind (km/h) 0.09 -0.37 to 0.51 0.70 

 

Table 3 –Correlation between rate of spread and climate parameters. 

Weather Parameter R 95% confidence 
interval 

p value 

Temp (C˚) -0.72 -0.87 to -0.36 <0.001 

Precipitation 
(mm) 

-0.04 -0.49 to 0.42 0.87 

Morning Humidity 
(%) 

0.20 -0.26 to 0.59 0.39 

Evening Humidity 
(%) 

0.11 -0.35 to 0.52 0.65 

Dew point (C˚) -0.62 -0.85 to 0.19 0.008 

Wind (km/h) 0.04 -0.41 to 0.47 0.87 

 

Figure Legends: 

Figure 1. Cumulative COVID-19 confirmed cases (logarithmic scale) of “warm” (red) and 

“cold” (blue) countries in days from patient 30.  

Figure 2. Replication rate of “warm” countries (A), “cold” countries (B), “warm” vs. “cold” 

countries boxplot showing the median line, a box between quartile 1 and quartile 3 (Q1-Q3) and 

whisker at the size of 1.5x(IQR- Interquartile range) (C) in days from patient 30. Average 

replication rate in “warm” and “cold” countries on a world map (D). RR- Replication Rate. 

Figure 3. Rate of spread of “warm” countries (A), “cold” countries (B), “warm” vs. “cold” 

countries boxplot showing the median line, a box between quartile 1 and quartile 3 (Q1-Q3) and 
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whisker at the size of 1.5x(IQR- Interquartile range) (C) in days from patient 30. Average rate of 

spread in “warm” and “cold” countries on a world map (D). RoS- Rate of Spread. 

Figure 4. Scatter plot representation of replication rate correlation to climate parameters in  

“warm” (red) and “cold” (blue) countries. A - average temperature [℃], B - average 

precipitation [mm], C - average dew point [℃], D - average morning relative humidity [%], E – 

average evening relative humidity [%], F – wind speed [km/h]. 

Figure 5. Scatter plot representation of rate of spread correlation to climate parameters in  

“warm” (red) and “cold” (blue) countries. A - average temperature [℃], B - average 

precipitation [mm], C - average dew point [℃], D - average morning relative humidity [%], E – 

average evening relative humidity [%], F – wind speed [km/h]. 

Supplementary Figure 1. Cumulative COVID-19 confirmed cases (logarithmic scale) of 

“warm” (A) and “cold” (B) countries in days from patient 30.  

Supplementary Figure 2. Doubling time in “warm” and “cold” countries on a world map. 
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