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Abstract: The key parameter that characterizes the transmissibility of a disease is the 

reproduction number 𝑅. If it exceeds 1, the number of incident cases will inevitably 

grow over time, and a large epidemic is possible. To prevent the expansion of an 

epidemic, 𝑅 must be reduced to a level below 1. To estimate the reproduction number, 

the probability distribution function of the generation interval of an infectious disease 

is required to be available; however, this distribution is often unknown. In this letter, 

given the incomplete information for the generation interval, we propose a maximum 

entropy method to estimate the reproduction number. Based on this method, given the 

mean value and variance of the generation interval, we first determine its probability 

distribution function and in turn estimate the real-time values of reproduction number 

of COVID-19 in China. By applying these estimated reproduction numbers into the 

susceptible-infectious-removed epidemic model, we simulate the evolutionary track of 

the epidemic in China, which is well in accordance with that of the real incident cases. 

The simulation results predict that China’s epidemic will gradually tend to disappear by 

May 2020 if the quarantine measures can continue to be executed. 
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In December, 2019, a cluster of pneumonia cases in Wuhan, China was caused by 

a novel coronavirus, the COVID-19 [1-4]. At first the local governments did not take 

effective measures which leaded to local people not paying enough attention to the risk. 

However, with the epidemic in Wuhan further expanding, the Chinese Government 

started to take emergency actions to lock down the Wuhan city on January 23, 2020. 

Despite this, the epidemic still spread throughout the entire country. By March 12, 2020, 

controlling the spread of the epidemic has become a global challenge. One of the key 

parameters in epidemic models is the basic reproduction number 𝑅0, defined as the 

number of secondary infections that arise from a typical primary case in a completely 

susceptible population [5]. As an infection is spreading through a population, it is more 

convenient to work with an effective reproduction number 𝑅𝑡, which is defined as the 

number of secondary infections that arise from a typical primary case [5]. The 

magnitude of 𝑅𝑡 is a useful indicator for evaluating the risk of an infectious disease 

and the validity of controlling the epidemic. If 𝑅𝑡 exceeds 1, the number of incident 

cases will inevitably grow over time, and a large epidemic is possible. To prevent the 

expansion of an epidemic, 𝑅𝑡 must be reduced to a level below 1. Using the parameter 

𝑅𝑡 , one can establish the susceptible-infectious-removed (SIR) epidemic model as 

below [6-8]: 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝑆(𝑡)

𝑁

𝑅𝑡

𝜏
𝐼(𝑡),                                              (1) 

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑆(𝑡)

𝑁

𝑅𝑡

𝜏
𝐼(𝑡) −

𝐼(𝑡)

𝜏
,                                           (2) 

𝑑ℛ(𝑡)

𝑑𝑡
=

𝐼(𝑡)

𝜏
.                                                     (3) 

where 𝑆(𝑡), 𝐼(𝑡) and ℛ(𝑡) are the number of susceptible, infectious, and removed 

(including recovered and death) individuals at time 𝑡 ; 𝜏  denotes the generation 

interval that is the time from infection of an individual to the infection of a secondary 

case by that individual, namely, the “contagion period” of an infection [5]. The 

generation interval 𝜏  should be a random variable. If we denote the number of 

populations by 𝑁, we have:   

𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + ℛ(𝑡).                                          (4) 

If  𝑅𝑡 and 𝜏 of an epidemic are known, one can employ the SIR model (1)-(4) to 
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simulate the evolutionary track of this epidemic. To estimate the reproduction number 

𝑅𝑡 , the probability distribution function of the generation interval of an infectious 

disease, 𝑝(𝜏), is required to be available [5, 9-12]; however, this distribution is often 

unknown. In the existing literature, many scholars used exponential distribution [5], 

normal distribution [5], Weibull distribution [9, 10], and Gamma distribution [3, 12] to 

approximate 𝑝(𝜏). Theoretically, to use these distributions to approximate 𝑝(𝜏), one 

needs to know enough information about symptom onsets of all cases, namely, large 

sample cases for 𝜏. Regarding the incomplete information, one also applied the Monte-

Carlo method [4] and Bayesian statistical inference [11] to estimating 𝑝(𝜏). However, 

thus far, there is scant literature to discuss the potential application of the maximum 

entropy method (MaxEnt) [13-15] in estimating the reproduction number. Our letter 

fills this gap. In the statistical inference, MaxEnt is a powerful tool of predicting 

probability distributions. The main idea of MaxEnt is to estimate a target probability 

distribution by finding the probability distribution of maximum entropy, subject to a set 

of constraints that represent our incomplete information for the target distribution [13]. 

Due to the advanced predictive capacity, MaxEnt has been widely applied in 

thermodynamics [13], economics [16-19], artificial intelligence [20-21], and ecology 

[22-26].  

In this letter, we apply the MaxEnt to determining the function shape of 𝑝(𝜏). 

Before doing so, we first introduce the relationship between 𝑅𝑡 and 𝑝(𝜏). Here, we 

adopt Wallinga and Lipsitch’s method [5] for deriving the reproduction number. By 

both authors’ method, the number of infectious individuals at time 𝑡 can be written as 

[5]: 

𝐼(𝑡) = ∫ 𝐼(𝑡 − 𝜏)𝑛(𝜏, 𝑡)𝑑𝜏
𝜏𝑚𝑎𝑥

0
,                                      (5) 

where 𝑛(𝜏, 𝑡) denotes the number of cases infected by a 𝜏-day infectious individual 

at time 𝑡. Here 𝜏𝑚𝑎𝑥 denotes the maximum symptom duration. Wallinga and Lipsitch 

assumed [5] 𝜏𝑚𝑎𝑥 = +∞. To make the model more realistic, we assume that 𝜏𝑚𝑎𝑥 is 

a finite number. Thus, the reproduction number 𝑅𝑡 can be defined as [5]: 

𝑅𝑡 = ∫ 𝑛(𝜏, 𝑡)𝑑𝜏
𝜏𝑚𝑎𝑥

0
.                                              (6) 
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Let us order                                                 

𝑝(𝜏) =
𝑛(𝜏,𝑡)

𝑅𝑡
.                                                     (7) 

Substituting equation (7) into equation (6) yields: 

∫ 𝑝(𝜏)𝑑𝜏
𝜏𝑚𝑎𝑥

0
= 1,                                                (8)  

where 𝑝(𝜏) is the probability distribution function of the generation interval 𝜏 [5]. 

   Using equation (8), the mean value of the generation interval can be written as: 

∫ 𝑝(𝜏 ) ∙ 𝜏  𝑑𝜏 
𝜏𝑚𝑎𝑥

0
= 𝜏̅.                                            (9) 

If the mean value 𝜏̅  is known, then by using equation (8) one can obtain the 

variance of the generation interval: 

∫ 𝑝(𝜏 ) ∙ (𝜏 − 𝜏̅)2 𝑑𝜏
𝜏𝑚𝑎𝑥

0
= 𝜎2.                                     (10) 

   Substituting equation (7) into equation (5) we finally obtain: 

𝑅𝑡 = 𝐼(𝑡) ∫ 𝐼(𝑡 − 𝜏 )𝑝(𝜏 )𝑑𝜏 
𝜏𝑚𝑎𝑥

0
⁄ .                                  (11) 

Equation (11) is the basic formula for calculating the reproduction number. If 𝐼(𝑡) 

and 𝑝(𝜏 ) are known, one can calculate the reproduction number by using equation 

(11). Generally speaking, the number of infectious individuals 𝐼(𝑡) is reported for 

each day, while the function shape of 𝑝(𝜏 ) is unknown. Therefore, many scholars 

used exponential distribution [5], normal distribution [5], Weibull distribution [9, 10] 

and Gamma distribution [3, 12] to approximate 𝑝(𝜏). To do so, one needs to collect 

enough information of 𝜏, which requires examining a large number of cases. From a 

practical point of view, it is easier to collect a sample set of cases (at least 30 samples) 

to calculate the approximate estimates of the mean value 𝜏̅ and the variance 𝜎2. Given 

the approximate estimates of 𝜏̅ and 𝜎2 as the prior information, we maximize the 

information entropy of the generation interval 𝜏 to infer the function shape of the 

probability distribution 𝑝(𝜏 ). This is the basic idea of the MaxEnt, which agrees with 

everything that is known, but avoids assuming anything that is not known [15]. The 

resulting statistical inference gives the least biased predictions of the shapes of 

probability distributions consistent with prior knowledge [23]. 

   Now we apply the MaxEnt to determining the probability distribution function 
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𝑝(𝜏 ). To this end, we assume that the mean value 𝜏̅ and the variance 𝜎2  of the 

generation interval 𝜏 are known. By equation (8), we define the information entropy 

of the generation interval 𝜏 as: 

𝑆 = −∫ 𝑝(𝜏 ) ∙ ln𝑝(𝜏 )𝑑𝜏
𝜏𝑚𝑎𝑥

0
.                                      (12) 

Because we only know the mean value 𝜏̅ and the variance 𝜎2, maximizing the 

information entropy (12) should yield: 

{
 
 

 
 

𝑠. 𝑡.

max 𝑆[𝑝(𝜏 )] = −∫ 𝑝(𝜏 ) ∙ ln𝑝(𝜏 ) 𝑑𝜏
𝜏𝑚𝑎𝑥

0

∫ 𝑝(𝜏 )𝑑𝜏
𝜏𝑚𝑎𝑥

0
= 1

∫ 𝑝(𝜏 ) ∙ 𝜏 𝑑𝜏
𝜏𝑚𝑎𝑥

0
= 𝜏̅

∫ 𝑝(𝜏 ) ∙ (𝜏 − 𝜏̅)2 𝑑𝜏
𝜏𝑚𝑎𝑥

0
= 𝜎2

.                       (13) 

To solve the optimal problem (13), we construct the Lagrange function:   

ℒ[𝑝(𝜏 )] = −∫ 𝑝(𝜏) ∙ ln𝑝(𝜏) 𝑑𝜏
𝜏𝑚𝑎𝑥

0
− 𝛼′(∫ 𝑝(𝜏)𝑑𝜏

𝜏𝑚𝑎𝑥

0
− 1) − 𝛽(∫ 𝑝(𝜏) ∙

𝜏𝑚𝑎𝑥

0

𝜏 𝑑𝑥 − 𝜏̅) − 𝛾(∫ 𝑝(𝜏) ∙ (𝜏 − 𝜏̅)2 𝑑𝜏
𝜏𝑚𝑎𝑥

0
− 𝜎2),                        (14) 

where 𝛼′, 𝛽, and 𝛾 are Lagrange multipliers. 

Plugging equation (14) into the functional derivative 𝛿ℒ[𝑝(𝜏 )] 𝛿𝑝(𝜏)⁄ = 0 we get 

the optimal solution: 

𝑝(𝜏) = 𝑝(𝜏|𝛼, 𝛽, 𝛾) = 𝛼 ∙ exp[−𝛽𝜏 − 𝛾(𝜏 − 𝜏̅)2],                      (15) 

where 𝛼 = exp(−𝛼′ − 1). 

Theoretically, substituting equation (15) into equations (8), (9), and (10) one can 

calculate the values of 𝛼, 𝛽, and 𝛾. However, it is difficult to obtain the analytic 

results of integrals (8), (9) and (10). To do numerical calculation for equations (8), (9), 

and (10), we assume that 𝑝(𝜏) quickly tends to 0 as 𝜏 ≫ 1. The validity of this 

assumption can be justified by checking equation (15); therefore, equations (8), (9) and 

(10) can be written as: 

   ∫ 𝑝(𝜏 )𝑑𝜏
𝜏𝑚𝑎𝑥

0
≈ ∫ 𝑝(𝜏 )𝑑𝜏

+∞

0
,                                      (16) 

∫ 𝑝(𝜏 ) ∙ 𝜏 𝑑𝜏
𝜏𝑚𝑎𝑥

0
≈ ∫ 𝑝(𝜏 ) ∙ 𝜏 𝑑𝜏

+∞

0
,                                (17) 

∫ 𝑝(𝜏 ) ∙ (𝜏 − 𝜏̅)2  𝑑𝜏
𝜏𝑚𝑎𝑥

0
≈ ∫ 𝑝(𝜏 ) ∙ (𝜏 − 𝜏̅)2  𝑑𝜏

+∞

0
.                    (18) 

Based on equations (16), (17) and (18), we propose a numerical method to calculate 
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the approximate values of 𝛼, 𝛽, and 𝛾. To this end, let us order: 

𝐻(𝛼, 𝛽, 𝛾) = ∫ 𝑝(𝜏|𝛼, 𝛽, 𝛾) 𝑑𝜏
+∞

0
.                                   (19) 

   The partial derivatives of equation (19) with respect to 𝛽 and 𝛾 yield: 

𝜕𝐻(𝛼,𝛽,𝛾)

𝜕𝛽
= −∫ 𝑝(𝜏|𝛼, 𝛽, 𝛾) ∙ 𝜏 𝑑𝜏

+∞

0
,                                (20) 

𝜕𝐻(𝛼,𝛽,𝛾)

𝜕𝛾
= −∫ 𝑝(𝜏|𝛼, 𝛽, 𝛾) ∙ (𝜏 − 𝜏̅)2 𝑑𝜏

+∞

0
.                          (21) 

Using equations (19), (20) and (21), equations (8), (9) and (10) can be rewritten in 

the form: 

{
 
 

 
 𝐻(𝛼, 𝛽, 𝛾) = 1
𝜕𝐻(𝛼,𝛽,𝛾)

𝜕𝛽
= −𝜏̅ 

𝜕𝐻(𝛼,𝛽,𝛾)

𝜕𝛾
= −𝜎2

,                                                (22) 

where we have used the approximations (16), (17) and (18). 

By solving equation (22), one can obtain the approximate values of 𝛼, 𝛽, and 𝛾. 

Substituting equation (15) into equation (19) we have 

𝐻(𝛼, 𝛽, 𝛾) =
𝛼

2
√
𝜋

𝛾
erfc (

𝛽

2√𝛾
− 𝜏̅) exp (

𝛽2

4𝛾
− 𝜏̅𝛽),                       (23) 

where erfc(𝜉) =
2

√𝜋
∫ exp(−𝑥2)
∞

𝜉
𝑑𝑥 denotes the error function. 

   By equation (23) it is easy to get: 

𝜕𝐻(𝛼,𝛽,𝛾)

𝜕𝛽
=

𝛼

2
√
𝜋

𝛾
 exp(−𝛾𝜏̅2) [erfc (

𝛽−2�̅�𝛾

2√𝛾
) exp (

(𝛽−2�̅�𝛾)2

4𝛾
)
𝛽−2�̅�𝛾

2𝛾
−

1

√𝜋𝛾
],     (24) 

                                                          

𝜕𝐻(𝛼,𝛽,𝛾)

𝜕𝛾
=

𝛼

2
√
𝜋

𝛾
 exp(−𝛾𝜏̅2) [

𝛽+2�̅�𝛾

2𝛾√𝜋𝛾
− erfc (

𝛽−2�̅�𝛾

2√𝛾
) exp (

(𝛽−2�̅�𝛾)2

4𝛾
)
𝛽2+2𝛾

4𝛾2
].   (25) 

                                                          

   Solving equation (22) is equivalent to minimizing the following function: 

𝑒[𝛼, 𝛽, 𝛾] = (𝐻(𝛼, 𝛽, 𝛾) − 1)2 + (
𝜕𝐻(𝛼,𝛽,𝛾)

𝜕𝛽
+ 𝜏̅ )

2

+ (
𝜕𝐻(𝛼,𝛽,𝛾)

𝜕𝛾
+ 𝜎2 )

2

.     (26) 

                                                          

Here we employ the Matlab software to depict 𝑒[𝛼, 𝛽, 𝛾] as a 100 × 100 × 100 

lattice-point matrix, where the lattice spacing is 0.01. Given the accuracy of 0.01, by 

inputting the observed values of 𝜏̅ and 𝜎2, we calculate 𝛼, 𝛽, and 𝛾. We first apply 

equation (26) to the SARS epidemic in Singapore in 2003, where 𝜏̅ = 8.4 (days) and 
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𝜎 = 3.8 (days) [9]. Substituting both observed values into equation (26), we seek the 

lattice-point minimizing equation (26) as below: 

{
𝛼 ≈ 0.27
𝛽 ≈ 0.11
𝛾 ≈ 0.04

.                                                      (27) 

   Substituting equation (27) into equation (15) we have:  

𝑝(𝜏 ) = 0.27 ∙ exp[−0.11𝜏 − 0.04(𝜏 − 8.4)2].                         (28) 

The shape of equation (28) is showed in the Figure 1, see the blue curve. It is well 

in accordance with the sample data of generation interval of the SARS in Singapore in 

2003, see the red histogram in Figure 1. This result supports the validity of the MaxEnt. 

The latest clinical research [1] showed that the generation interval of COVID-19 is 

similar to that of SARS. Therefore, we assume that the generation interval of COVID-

19 shares the same probability function shape as that of SARS. This assumption was 

also adopted by Wu et al [4]. Based on this assumption, we apply equation (28) to 

estimating the reproduction number of COVID-19 in China. To this end, substituting 

equation (28) into equation (11) we have: 

   𝑅𝑡 = 𝐼(𝑡) ∫ 𝐼(𝑡 − 𝜏) ∙ 𝑝(𝜏|0.27,0.11,0.04)𝑑𝜏
𝜏𝑚𝑎𝑥

0
⁄ .                     (29) 

Because the observed data of 𝐼(𝑡) was reported for each day, we denote the unit 

of time 𝑡 by “day”. To calculate 𝑅𝑡 by using equation (29), we need to rewrite the 

integral (29) as a summation formula. To do so, by Figure 1 we observe 𝑝(𝜏 = 14 ) ≈

0. By equations (16)-(18), this means 𝜏𝑚𝑎𝑥 ≈ 14. Therefore, the maximum generation 

interval of COVID-19 can be approximately denoted by 14. Based on this setting, 

equation (29) can be rewritten in the form: 

𝑅𝑡=𝑎𝜏𝑚𝑎𝑥 ≈ 𝐼(14𝑎) (∑ 𝐼(14𝑎 − 𝜏)14
𝜏=0 𝑝(𝜏|0.27,0.11,0.04))⁄ ,            (30) 

where 𝑎 = 1,2, … denote the ordinal number of the period and 𝜏𝑚𝑎𝑥 = 14. Without 

loss of generality, in equation (30) we have approximately identified the reproduction 

number of the last day of a period as the reproduction number of this period. From the 

perspective of entire time span of an epidemic, this approximation satisfies the spirit of 

statistical mean-field method. 

By using equation (30) we can report the reproduction number every 14 days. 
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Before doing so, we first determine the starting point of each contagion period for 

COVID-19 in China. According to the report of China CDC [2], January 8, 2020 was 

considered as the last day of a contagion period in Wuhan, China; therefore, we mark 

January 9, 2020 as the first day of the next contagion period. Based on this setting, the 

first period we report is from January 9, 2020 to January 22, 2020. In fact, this setting 

agrees with the date of locking down the Wuhan city, January 23, 2020. Here, we have 

collected the national-level data of the accumulative infected, recovered, and death 

cases of China’s epidemic from January 10, 2020 to March 4, 2020, see Figure 2. By 

using the data in Figure 2, it is easy to calculate the number of real-time infected cases, 

𝐼(𝑡), in China for each day. This result has been shown in Figure 3. Using the data in 

Figure 3, we can report the reproduction number every 14 days by using equation (30). 

The results have been listed in Table 1. The first period (from January 9, 2020 to January 

22, 2020) can be regarded as a free propagation stage of COVID-19 because most 

Chinese people were aware of the outbreak of COVID-19 after January 21, 2020 and 

local governments did not take effective measures to control the epidemic during this 

period. Unfortunately, the data in the first period is very incomplete. By contrast, the 

reported infected cases on January 10 (41 cases) and January 22 (571 cases) can be 

roughly used. Consider that the first period is a free propagation stage, we use both data 

to approximately restore real-time data of this period by the exponential growth formula 

571 = 41 ∙ exp(12 ∙ 𝑟), where 𝑟 denotes the growth rate. Using the restored data, the 

estimated value of the reproduction number for the first period is calculated to be 3.7069, 

see Table 1, which implies that the intensity of free transmission of COVID-19 is quite 

high. The World Health Organization announced [27], up to March 12, 2020, the 

COVID-19 had spread to 118 countries. The rapid worldwide spread of COVID-19 is 

an evidence for supporting our calculation. After January 22, 2020, Chinese 

Government started to take emergency actions to lock down the Wuhan city, and 

quickly performed different quarantine measures in every provinces. The powerful 

quarantine measures substantially reduce the contagion probability among individuals. 

Therefore, the subsequent periods no longer belong to free transmission. For these 

periods, the results of the reproduction number have been listed in Table 1. Due to the 
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quarantine measures, the reproduction number for the second period (from January 23, 

2020 to February 5, 2020) has been reduced to 3.122 with the reduction amplitude being 

15.78%. For the third period (from February 6, 2020 to February 19, 2020), the 

reproduction number has remarkably been reduced to 1.2114, which is close to 1. This 

implies that the epidemic has been effectively controlled. It should be pointed out that 

the last day of the third period (February 19) is just the turning point of the epidemic, 

refer to Figure 3; therefore, the real data supports our calculations for the reproduction 

number. As the epidemic come to the fourth period (from February 20, 2020 to March 

4, 2020), the reproduction number is eventually reduced to 0.6028, a level below 1. In 

this sense, China’s quarantine measures have obtained a preliminary success. 

   To further test the validity of the reproduction numbers in Table 1, we substitute 

them into the SIR model (1)-(4) for simulating the evolution of China’s epidemic. To 

this end, let us first check the scope of application of the reproduction number formula 

(11), which is derived by equation (5). By the mean value theorem of integrals, equation 

(5) can be rewritten in the form: 

   𝐼(𝑡) = 𝐼(𝑡 − 𝜏𝑐) ∫ 𝑛(𝜏, 𝑡)𝑑𝜏
𝜏𝑚𝑎𝑥

0
,                                    (31) 

where 0 ≤ 𝜏𝑐 ≤ 𝜏𝑚𝑎𝑥.  

   By equation (6) and (31) we have: 

𝐼(𝜏𝑐) = 𝐼(0) ∫ 𝑛(𝜏, 𝜏𝑐)𝑑𝜏
𝜏𝑚𝑎𝑥

0
= 𝐼(0) ∙ 𝑅𝜏𝑐.                            (32) 

On the other hand, if we assume that 𝑅𝑡  is a constant (step function) for each 

period, by equations (1)-(4) it is easy to get: 

𝐼(𝑡) = 𝐼(0) + 𝑆(0) − 𝑆(𝑡) +
𝑁

𝑅𝑡
ln

𝑆(𝑡)

𝑆(0)
.                               (33) 

Let us order: 

𝜖 ≈
𝑆(0)−𝑆(𝑡)

𝑆(0)
≪ 1.                                                (34) 

By using equation (34), equation (33) can be approximately written as: 

   𝐼(𝑡) ≈ 𝐼(0) + 𝑆(0) − 𝑆(𝑡) +
𝑁

𝑅𝑡
(
𝑆(𝑡)−𝑆(0)

𝑆(0)
) ≈ 𝐼(0) + 𝐼(𝑡) −

𝑁

𝑅𝑡

𝐼(𝑡)

𝑆(0)
,         (35) 

which implies 

𝐼(𝜏𝑐) ≈
𝑆(0)

𝑁
∙ 𝐼(0) ∙ 𝑅𝜏𝑐 ≈ 𝐼(0) ∙ 𝑅𝜏𝑐 ,                                 (36) 
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where equation (35) is derived by using the approximations |𝑅𝑡 − 1| ∙ ℛ(𝑡) ≪ 𝐼(𝑡) 

and 𝑆(0) ≈ 𝑁. 

   Comparing equations (32) and (36), we find that the reproduction number formula 

(11) can be applied to the SIR model (1)-(4) if the approximation (34) holds. Equation 

(34) implies (𝑁 − 𝑆(𝑡))/𝑁 ≪ 1. The approximation obviously holds for China, where 

𝑁 ≈ 1.4 × 109  and 𝑁 − 𝑆(𝑡) ≈ 1 × 105 . Therefore, we substitute the reproduction 

numbers in Table 1 into the SIR model (1)-(4) to simulate the evolution of China’s 

epidemic. The result is shown by Figure 5, where the evolutionary track (red circles) of 

the epidemic is well in accordance with that (black circles) of the real incident cases in 

China. The simulation result requires 𝜏 ≈ 8, which agrees with our previous setting 

𝜏 = 8.4 ± 3.8 [9]. Furthermore, we find that the reproduction numbers of quarantine 

periods in Table 1 can be fitted by an exponential function with 𝑅2 = 0.9924, see 

Figure 4. Therefore, we apply this exponential function to predicting the reproduction 

numbers for the next seven periods (from March 5, 2020 to June 10, 2020). The results 

have been listed in Table 2, where we also present the predicted values of the number 

of real-time infected cases for the last day in each period. These predicted values imply 

that China’s epidemic will gradually tend to disappear by May 2020, see the blue circles 

in Figure 5. 

In conclusion, to estimate the reproduction number, the probability distribution 

function of the generation interval of an infectious disease is required to be available; 

however, this distribution is often unknown. In the existing literature, many scholars 

used exponential distribution, normal distribution, Weibull distribution, and Gamma 

distribution to approximate the generation interval distribution. To do so, one needs to 

collect enough information about symptom onsets of all cases, which requires 

examining a large number of cases. By contrast, the maximum entropy method has 

more advantage of predicting probability distributions given the incomplete 

information. In this letter, we argue that, given the mean value and variance of the 

generation interval, one can determine its probability distribution function by using 

maximum entropy method. Because the overall data (population) of the generation 
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interval is always absent, the maximum entropy method is a more convenient approach 

for estimating the probability distribution function of generation interval. By the 

maximum entropy method we first determine the probability distribution function of 

generation interval of COVID-19 and further apply it to estimating the real-time values 

of reproduction numbers of China’s epidemic. Plugging these estimated reproduction 

numbers into the susceptible-infectious-removed epidemic model, we simulate the 

evolutionary track of the epidemic in China, which is well in accordance with that of 

the real incident cases.  
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Figure 1. The function shape of equation (28) is showed by a blue curve. The sample 

data of generation interval of the SARS in Singapore (2003) is showed by a red 

histogram, and the data resource refers to [9]. 
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Figure 2. National-level data of the accumulative infected, recovered, and death cases 

of China’s epidemic from January 10, 2020 to March 4, 2020. The data of January 8 

and 9 is simply assumed to be same as that of January 10. 

Data resource: 

https://voice.baidu.com/act/newpneumonia/newpneumonia/?from=osari_pc_3 
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Figure 3. The number of real-time infected cases for each day =  the number of 

accumulative infected cases for each day − the number of accumulative recovered 

cases for each day − the number of accumulative death cases for each day. The data 

comes from Figure 2.  
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Figure 4. The reproduction numbers of quarantine periods in Table 1 are fitted by an 

exponential function.  
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Figure 5. The SIR simulation result by using the reproduction numbers in Table 1 is 

showed by red circles and the SIR simulation result by using the reproduction numbers 

in Table 2 is showed by blue circles, where 𝑁 ≈ 1.4 × 109 and 𝜏 ≈ 8. The real-time 

infected cases in Figure 3 are showed by black circles.  
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Table 1: The reproduction number for each period (2020) 

Period number 𝒂 Period interval 𝑹𝒕 Amplitude reduction 

1 9-Jan to 22-Jan 3.7069 — 

2 23-Jan to 5-Feb 3.1220 15.78% 

3 6-Feb to 19-Feb 1.2114 61.20% 

4 20-Feb to 4-Mar 0.6028 50.24% 

 

 

Table 2: Predicted values (2020) 

Period number 𝒂 Period interval 𝑹𝒕 infected case number  

5 5-Mar to 18-Mar 0.2545 8047  (last day) 

6 19-Mar to 1-Apr 0.1119 1519  (last day) 

7 2-Apr to 15-Apr 0.0492 253  (last day) 

8 16-Apr to 29-Apr 0.0216 40   (last day) 

9 30-Apr to 13-May 0.0095 6   (last day) 

10 14-May to 27-May 0.0042 1   (last day) 

11 28-May to 10-Jun 0.0018 0    (June 1) 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 20, 2020. .https://doi.org/10.1101/2020.03.14.20035659doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.14.20035659
http://creativecommons.org/licenses/by-nc-nd/4.0/

