
 1

A Fully Automatic Deep Learning System for COVID-19 Diagnostic and 1 

Prognostic Analysis 2 

Authors:  Shuo Wang1+, Yunfei Zha2+, Weimin Li3+, Qingxia Wu4+, Xiaohu Li5+, Meng Niu6+, 3 

Meiyun Wang7+, Xiaoming Qiu8,+, Hongjun Li9,+, He Yu3, Wei Gong2, Yan Bai7, Li Li9, Yongbei Zhu1, 4 

Liusu Wang1, Jie Tian1,10* 
5 

Affiliations: 6 

1. Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine 7 

and Engineering, Beihang University, Beijing, 100191, China. 8 

2. Department of Radiology, Renmin Hospital of Wuhan University, Hubei, 430060, China. 9 

3. Department of respiratory and critical care medicine, West China hospital of Sichuan University, 10 

Sichuan, 610041, China. 11 

4. College of Medicine and Biomedical Information Engineering, Northeastern University, 12 

Shenyang, Liaoning 110819, China. 13 

5. Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Anhui 14 

230022, China. 15 

6. Department of Interventional Radiology, the First Hospital of China Medical University, Liaoning 16 

110001, China.  17 

7. Department of Medical Imaging, Henan Provincial People’s Hospital & the People’s Hospital of 18 

Zhengzhou University, Zhengzhou 450003, Henan, China. 19 

8. Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic 20 

University, Edong Healthcare Group, Hubei, 435000, China. 21 

9. Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, 22 

China. 23 

10. CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of 24 

Sciences, Beijing, 100190, China. 25 

+ contribute equally. 26 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2020. .https://doi.org/10.1101/2020.03.24.20042317doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.24.20042317
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Corresponding author:  1 

Jie Tian, PhD 2 

Fellow of IAMBE, AIMBE, ISMRM, IEEE, SPIE, OSA, IAPR 3 

Director of CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of 4 

Sciences, Beijing 100190, China; 5 

Phone: 86-010-82618465; Fax: 86-010-82618465;  E-mail: jie.tian@ia.ac.cn 6 

  7 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2020. .https://doi.org/10.1101/2020.03.24.20042317doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.24.20042317
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

Abstract 1 

Coronavirus disease 2019 (COVID-19) has spread globally, and medical 2 

resources become insufficient in many regions. Fast diagnosis of COVID-19, and 3 

finding high-risk patients with worse prognosis for early prevention and medical 4 

resources optimization is important. Here, we proposed a fully automatic deep 5 

learning system for COVID-19 diagnostic and prognostic analysis by routinely used 6 

computed tomography. 7 

We retrospectively collected 5372 patients with computed tomography images 8 

from 7 cities or provinces. Firstly, 4106 patients with computed tomography images 9 

and gene information were used to pre-train the DL system, making it learn lung 10 

features. Afterwards, 1266 patients (924 with COVID-19, and 471 had follow-up for 11 

5+ days; 342 with other pneumonia) from 6 cities or provinces were enrolled to train 12 

and externally validate the performance of the deep learning system. 13 

In the 4 external validation sets, the deep learning system achieved good 14 

performance in identifying COVID-19 from other pneumonia (AUC=0.87 and 0.88) 15 

and viral pneumonia (AUC=0.86). Moreover, the deep learning system succeeded to 16 

stratify patients into high-risk and low-risk groups whose hospital-stay time have 17 

significant difference (p=0.013 and 0.014). Without human-assistance, the deep 18 

learning system automatically focused on abnormal areas that showed consistent 19 

characteristics with reported radiological findings. 20 

Deep learning provides a convenient tool for fast screening COVID-19 and 21 

finding potential high-risk patients, which may be helpful for medical resource 22 

optimization and early prevention before patients show severe symptoms. 23 

 24 
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 3 

Take-home message: Fully automatic deep learning system provides a convenient 4 

method for COVID-19 diagnostic and prognostic analysis, which can help COVID-19 5 

screening and finding potential high-risk patients with worse prognosis. 6 
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Introduction 1 

In Dec. 2019, the novel coronavirus disease 2019 (COVID-19) occurred in 2 

Wuhan, China and became a global health emergency very fast with more than 3 

170,000 people infected [1-3]. Due to its high infection rate, fast diagnosis and 4 

optimized medical resource assignment in epidemic areas are urgent. Accurate and 5 

fast diagnosis of COVID-19 can help isolating infected patients to slow the spread of 6 

this disease. On the other hand, in epidemic area, insufficient medical resources have 7 

become a big challenge [4]. Therefore, finding high-risk patients with worse 8 

prognosis for prior medical resources and special care is crucial in the treatment of 9 

COVID-19. 10 

Currently, reverse transcription polymerase chain reaction (RT-PCR) is used 11 

as the gold truth for diagnosing COVID-19. However, the limited sensitivity of RT-12 

PCR and the shortage of testing kits in epidemic areas increase the screening burden, 13 

and many infected people are thereby not isolated immediately [5, 6]. This accelerates 14 

the spread of COVID-19. On the other hand, due to the lack of medical resources, 15 

many infected patients cannot receive immediate treatment. In this situation, finding 16 

high-risk patients with worse prognosis for prior treatment and early prevention is 17 

important. Consequently, fast diagnosis, finding high-risk patients with worse 18 

prognosis are very helpful for the control and management of COVID-19. 19 

In recent studies, radiological findings demonstrated that computed 20 

tomography (CT) has great diagnostic and prognostic value for COVID-19.  For 21 

example, CT showed much higher sensitivity than RT-PCR in diagnosing COVID-19 22 

[5, 6]. For patients with COVID-19, bilateral lung lesions consisting of ground-glass 23 

opacities (GGO) were frequently observed in CT images [6-8]. Even in asymptomatic 24 

patients, abnormalities and changes were observed in serial CT [9, 10]. As a common 25 
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diagnostic tool, CT is easy and fast to acquire without adding much cost. Building a 1 

sensitive diagnostic tool using CT image can accelerate the diagnostic process and is 2 

complementary to RT-PCR. On the other hand, predicting personalized prognosis 3 

using CT image can identify the potential high-risk patients who are more likely to 4 

become severe and need urgent medical resources. 5 

Deep learning (DL) as an artificial intelligence method, has shown promising 6 

results in assisting lung disease analysis using CT images [11-14]. Benefiting from 7 

the strong feature learning ability, DL can mine features that are related to clinical 8 

outcomes from CT images automatically. Features learned by DL models can reflect 9 

high-dimensional abstract mappings which are difficult for human to sense but are 10 

strongly associated with clinical outcomes. Different from the published DL models 11 

[15, 16], we aim to provide a fully automatic DL system for COVID-19 diagnostic 12 

and prognostic analysis. Without requiring any human-assisted annotation, this novel 13 

DL system is fast and robust in clinical use. Moreover, we collected a large multi-14 

regional dataset for training and validating the proposed DL system, including 1266 15 

patients (471 had follow-up) from six cities or provinces. Notably, different with 16 

many studies using transfer learning from natural images. We collected a large 17 

auxiliary dataset including 4106 patients with chest CT images and gene information 18 

to pre-train the DL system, aiming at making the DL system learn lung features that 19 

can reflect the association between micro-level lung functional abnormalities and 20 

chest CT images.  21 
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Methods 1 

Study design and participants  2 

The institutional review board of the seven hospitals (supplementary methods 3 

1) approved this multi-regional retrospective study and waived the need to obtain 4 

informed consent from the patients. In this study, we collected two datasets: COVID-5 

19 dataset (n=1266) and CT-EGFR dataset (n=4106). In the COVID-19 dataset, 1266 6 

patients were finally included who met the following inclusion criteria: (i) RT-PCR 7 

confirmed COVID-19; (ii) lab-confirmed other types of pneumonia before Dec. 2019; 8 

(iii) have non-contrast enhanced chest CT at diagnosis time. Since RT-PCR has a 9 

relatively high false-negative rate, we collected other types of pneumonia before Dec. 10 

2019 when the COVID-19 did not show up to guarantee the diagnosis of typical 11 

pneumonia are correct. In the COVID-19 dataset, patients from Wuhan city and 12 

Henan province formed the training set; patients from Anhui province formed the 13 

external validation set 1; patients from Heilongjiang province formed the validation 14 

set 2; patients from Beijing formed the validation set 3; patients from Huangshi city 15 

formed the validation set 4 (figure 1).  16 

In the CT-EGFR dataset, 4106 patients with lung cancer were finally included 17 

who met the following criteria: (i) epidermal growth factor receptor (EGFR) gene 18 

sequencing was obtained; (ii) non-contrast enhanced chest CT data obtained within 4 19 

weeks before EGFR gene sequencing. The CT-EGFR dataset was used for auxiliary 20 

training of the DL system, making the DL system learn lung features automatically. 21 

CT scanning parameters about the COVID-19 and CT-EGFR datasets were available 22 

in supplementary methods S1. 23 
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For prognostic analysis, 471 patients with COVID-19 and regular follow-up 1 

for at least 5 days were used. We defined the prognostic end event as the hospital-stay 2 

time which is counted from the diagnosis of COVID-19 to the time when the patient 3 

is allowed to discharge hospital (supplementary methods S2). A short hospital-stay 4 

time corresponds to good prognosis, and a long hospital-stay time means worse 5 

prognosis. Patients with long hospital-stay time take longer time to recover, and are 6 

defined as high-risk patients in this study. These patients need prior medical resources 7 

and special care since they are more likely to become severe. 8 

The training set was used to train the proposed DL system; the validation set 1 9 

and 2 were used to evaluate the diagnostic performance of the DL system; and the 10 

validation set 3 and 4 were used for evaluating the prognostic performance of the DL 11 

system. 12 

The fully automatic deep learning system for COVID-19 diagnostic and 13 

prognostic analysis 14 

The proposed DL system includes three parts: automatic lung segmentation, 15 

non-lung area suppression, and COVID-19 diagnostic and prognostic analysis. In this 16 

DL system, two DL networks were involved: DenseNet121-FPN for lung 17 

segmentation in chest CT image, and the proposed novel COVID-19Net for COVID-18 

19 diagnostic and prognostic analysis. DL is a family of hierarchical neural networks 19 

that aim at learning the abstract mapping between raw data to the desired clinical 20 

outcome. The computational units in DL model are defined as layers and they are 21 

integrated to simulate the inference process of human brain. The main computational 22 

formulas are convolution, pooling, activation and batch normalization as defined in 23 

the supplementary methods S3. 24 
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Automatic lung segmentation  1 

Routinely used chest CT image includes some non-lung areas (muscle, heart, 2 

et al.) and blank space outside body. To focus on analyzing lung area, we used a fully 3 

automatic DL model (DenseNet121-FPN) [17, 18] to segment lung areas in chest CT 4 

image. This model is pre-trained using 1.4 million natural images, and fine-tuned on 5 

VESSEL12 dataset [19] (supplementary methods S4). 6 

Through this automatic lung segmentation procedure, we acquired the lung 7 

mask in CT image. However, some inflammatory tissues attaching to lung wall may 8 

be excluded falsely by the DenseNet121-FPN model. To increase the robustness of 9 

the DL system, we used the cubic bounding box of the segmented lung mask to crop 10 

lung areas in CT image, and defined this cubic lung area as lung-ROI (figure 2). In 11 

this lung-ROI, all inflammatory tissues and the whole lung were correctly reserved, 12 

and most areas outside of lung were eliminated. 13 

Non-long area suppression 14 

After the above processing, some non-lung tissues or organs (e.g., spine, heart) 15 

inside the lung-ROI may also exists. Consequently, we proposed a non-lung area 16 

suppression operation to suppress the intensities of non-lung areas inside the lung-17 

ROI (supplementary methods S4). Finally, the lung-ROI is standardized by z-score 18 

normalization, and resized to the size of 48×240×360 for further process. 19 

Deep learning model for COVID-19 diagnosis and prognosis 20 

After non-lung area suppression operation, the standardized lung-ROI is sent 21 

into the COVID-19Net for diagnostic and prognostic analysis. In figure 2, we 22 

illustrated the topological structure of the proposed novel COVID-19Net 23 

(supplementary table S1). This DL model used DenseNet-like structure [17], 24 
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consisting of four dense blocks, where each dense block is multiple stacks of 1 

convolution, batch normalization, and ReLU activation layers. Inside each dense 2 

block, we used dense connection to consider multi-level image information. At the 3 

end of the last convolutional layer, we used global average pooling to generate the 64-4 

dimensional DL features. Finally, the output neuron is fully connected to the DL 5 

features to predict the probability of the input patient has COVID-19. 6 

To enable the COVID-19Net learn discriminative features associated with 7 

COVID-19, a large training set is needed. Consequently, we proposed a two-step 8 

transfer learning process. Firstly, we proposed an auxiliary training process use our 9 

collected large CT-EGFR dataset (4106 patients) as illustrated in figure 2. In this 10 

auxiliary training process, we trained the COVID-19Net to predict EGFR mutation 11 

status (EGFR-mutant or EGFR wild type) use the lung-ROI [11]. Benefitting from the 12 

large CT-EGFR dataset, the COVID-19Net learned CT features that can reflect the 13 

associations between micro-level lung functional abnormality and macro-level CT 14 

images.  15 

In the second training process, we transferred the pre-trained COVID-19Net to 16 

the COVID-19 dataset to specifically mine lung characteristics associated with 17 

COVID-19. After iterative training process in the COVID-19 dataset (supplementary 18 

methods S5), the COVID-19Net can predict a probability of the input patient being 19 

infected with COVID-19; this probability was defined as DL score in this study.  20 

To predict personalized prognosis for patient with COVID-19, we extracted 21 

the 64-dimensional DL feature from the COVID-19Net to build a prognostic 22 

prediction model. Firstly, we combined the 64-dimensional DL feature and clinical 23 

features (age, sex, and comorbidity) to construct a combined feature vector. 24 

Afterwards, we used stepwise method to select prognostic features. These selected 25 
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features were then used to build a multivariate Cox proportional hazard (CPH) model 1 

to predict the hazard of the patient needing a long hospital-stay time to recover. 2 

Visualization of lung features learned by the DL system 3 

 Through the two-step transfer learning technique, the DL system learned lung 4 

features from CT images of 4815 patients. To further understand the inference process 5 

of the DL system, we used DL visualization algorithm to analyze features learned by 6 

the COVID-19Net from two perspectives: 1) visualizing DL-discovered suspicious 7 

lung area that contribute most for identifying COVID-19 for the DL system; 2) 8 

visualizing the feature patterns extracted by hierarchical convolutional layers in the 9 

COVID-19Net (supplementary methods S6, S7). 10 

Statistical analysis 11 

Area under the receiver operating characteristic (ROC) curve (AUC), accuracy, 12 

sensitivity, and specificity were used to assess the performance of the DL system in 13 

diagnosing COVID-19. Kaplan-Meier analysis and log-rank test were used to evaluate 14 

the performance of the DL system for prognostic analysis. The implementation of the 15 

DL system used the Keras 2.0.0 toolkit and Python 2.7. 16 

  17 
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Results 1 

Clinical characteristics of patients in the COVID-19 dataset were presented in 2 

table 1. This dataset was collected from six cities or provinces including Wuhan in 3 

China. 4 

Diagnostic performance of the DL system 5 

Table 2 and figure 3 illustrated the diagnostic performance of the DL system. 6 

In the training set, the DL system showed good diagnostic performance (AUC=0.90). 7 

This performance was further confirmed in the two external validation sets 8 

(AUC=0.87 and 0.88). The good performance in the validation cohorts indicated that 9 

the DL system generalized well on diagnosing COVID-19 of unseen new patients. 10 

Meanwhile, we illustrated the ROC curves of the DL system in the three sets in figure 11 

3a. The DL score revealed a significant difference between COVID-19 and other 12 

pneumonia groups in the three sets (p<0.0001). 13 

In other types of pneumonia, viral pneumonia has similar radiological 14 

characteristics to COVID-19, and therefore is more difficult to identify. 15 

Consequently, we performed a stratified analysis in the validation set 2. Table 1 16 

indicated that the DL system also achieved good results in distinguish COVID-19 to 17 

other viral pneumonia (AUC=0.86). 18 

Prognostic performance of the DL system 19 

In the COVID-19 dataset, 471 patients had follow-up for 5+ days. Through the 20 

stepwise prognostic feature selection, 3 features were selected (supplementary table 21 

S2). These selected prognostic features were fed into the multivariate CPH model to 22 

predict a hazard value for each patient. We used median value of the hazards in the 23 

training set as cut-off value to stratify patients into high-risk and low-risk groups. This 24 
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cut-off value was also applied to the validation set 3 and 4. Kaplan-Meier analysis in 1 

figure 4 demonstrated that patients in high-risk and low-risk groups had significant 2 

difference in hospital-stay time in the three datasets (p<0.0001, p=0.013, and p=0.014, 3 

log-rank test). 4 

For a given patient, if the DL system predicts him/her as COVID-19, the DL 5 

system predicts a prognostic hazard simultaneously. For the patients who are 6 

predicted as high-risk by the DL system, prior medical resources and special care are 7 

suggested. 8 

Suspicious lung area discovered by the DL system 9 

Through DL visualization algorithm [20, 21], we are able to visualize the lung 10 

area that draws most attention to the DL system. These DL-discovered suspicious 11 

lung areas usually demonstrated abnormal characteristics consistent with radiologists’ 12 

findings. Figure 5 illustrated DL-discovered suspicious lung areas of eight patients 13 

with COVID-19. From this figure, we can see that although the input lung-ROI to the 14 

DL system includes some non-lung tissues such as muscle and bones, the DL system 15 

can always focus on areas inside lung for prediction instead of being disturbed by 16 

other tissues. 17 

Moreover, the DL-discovered suspicious lung areas showed high overlap with 18 

the actual inflammatory areas. In figure 5 a-d, we can see that, although we did not 19 

involve any human-annotation in the DL system, the DL system focused on the GGO 20 

area automatically for inference. This is consistent with radiologists’ experiences that 21 

many COVID-19 illustrated GGO features [6, 9]. In figure 5 e-h, the DL-discovered 22 

suspicious lung areas distributed on bilateral lung, and mainly focused on lesions with 23 

consolidation, GGO, diffuse or mixture patterns. When comparing these DL-24 
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discovered suspicious lung areas with actual abnormal lung areas, we found a high 1 

overlap and consistent. 2 

Although we did not use human annotation (e.g., human annotated ROI) to tell 3 

the DL system where to watch, the DL system is capable of discovering the abnormal 4 

and important lung areas automatically. This phenomenon could come from the 5 

advantage of using the large CT-EGFR dataset and the large COVID-19 dataset for 6 

training. 7 

DL feature visualization 8 

Since DL is an end-to-end prediction model that learns abstract mappings 9 

between lung CT image and COVID-19 directly, it is helpful to explain the inference 10 

process of the DL system. The most important component of DL model is 11 

convolutional filter. Therefore, we visualized the 3-dimensional feature patterns 12 

extracted by hierarchical convolutional layers in figure 6.  The shallow convolutional 13 

layer learned low-level simple features such as spindle edges (figure 6a) and wave-14 

like edges (figure 6b). A deeper convolutional layer learned more complex and 15 

detailed features (figure 6c). When going deeper, the feature pattern became more 16 

abstract and lack visual characteristics (figure 6d) for our eyes. However, these high-17 

level feature patterns are more related to COVID-19 information.   18 

At the end of the DL model, the outputs of convolutional filters were 19 

compressed into a 64-dimensional vector, which was defined as DL feature. In figure 20 

6e, we reduced the 64-dimensional DL feature into two-dimensional space to see the 21 

DL feature distribution in the two classes (COVID-19 vs. other types of pneumonia). 22 

This figure demonstrated that the two classes distributed separately in the DL feature 23 
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space, which means the DL features are discriminative to identify COVID-19 from 1 

other types of pneumonia.  2 
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Discussion 1 

In this study, we proposed a novel fully automatic DL system using raw chest 2 

CT image to help COVID-19 diagnostic and prognostic analysis. To let the DL 3 

system mine lung features automatically without involving any time-consuming 4 

human annotation, we used a two-step transfer learning strategy. Firstly, we collected 5 

4106 lung cancer patients with both CT image and EGFR gene sequencing. Through 6 

training in this large CT-EGFR dataset, the DL system learned hierarchical lung 7 

features that can reflect the associations between chest CT image and micro-level lung 8 

functional abnormality. Afterwards, we collected a large multi-regional COVID-19 9 

dataset (n=1266) from 6 cities or provinces to train and validate the diagnostic and 10 

prognostic performance of the DL system. 11 

The good diagnostic and prognostic performance of the DL system illustrates 12 

that DL could be helpful in the epidemic control of COVID-19 without adding much 13 

cost. Given a suspected patient, CT scanning can be acquired within minutes. 14 

Afterwards, this DL system can be applied to predict the probability of the patient has 15 

COVID-19. If the patient is diagnosed as COVID-19, the DL system also predicts 16 

his/her prognostic situation simultaneously, which can be used to find potential high-17 

risk patients who need urgent medical resources and special care. More importantly, 18 

this DL system is fast and does not require human-assisted image annotation, which 19 

increases its clinical value and become more robust. For a typical chest CT scan of a 20 

patient, the DL system takes less than ten seconds for prognostic and diagnostic 21 

prediction. 22 

During building and training the DL system, we did not involve any human 23 

annotation to tell the system where the inflammatory area was. However, the DL 24 

system managed to automatically discover the important features that are strongly 25 
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associated with COVID-19. In figure 5, we visualized the DL-discovered suspicious 1 

lung areas that were used by the DL system for inference. These DL-discovered 2 

suspicious lung areas have high overlap with the actual inflammatory areas that are 3 

used by radiologists for diagnosis. In previous studies, some radiological features 4 

such as GGO, crazy-paving pattern, and bilateral involvement are reported to be 5 

important for diagnosing CVOID-19 [7]. In the DL-discovered suspicious lung areas, 6 

we also observed these radiological features. This demonstrates that the high-7 

dimensional features mined by the DL system can probably reflect these reported 8 

radiological finding. 9 

Despite the good performance of the DL system, this study has several 10 

limitations. First, there are other prognostic end events such as death or admission to 11 

intensive care unit, and they were not considered in this study. Second, the 12 

management of severe and mild COVID-19 are different, thereby, explore prognosis 13 

of COVID-19 in these two groups separately should be helpful. 14 
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Tables 1 

Table 1. Clinical characteristics of patients. 2 

 
Training set 

(n = 709) 

Validation 1 

(n = 226) 

Validation 2 

(n=161) 

Validation 3 

(n=53) 

Validation 4 

(n = 117) 

Region (city or province) Wuhan city, 
and Henan 

Anhui Heilongjiang Beijing Huangshi 
city 

Type      

COVID-19 560 102 92 53 117 

Bacterial pneumonia 127 119 25 0 0 

Mycoplasma pneumonia 11 5 15 0 0 

Viral pneumonia 0 0 29 0 0 

Fungal pneumonia 11 0 0 0 0 

Sex      

Male 337 131 108 25 60 

Female 372 95 53 28 57 

Age 50.52±18.91 49.15±18.44 58.44±16.19 50.26±19.29 47.67±14.20 

Comorbidity      

Any 204 NA NA 16 27 

Diabetes 45   2 12 

Hypertension 120   10 12 

Cerebrovascular disease 18   1 0 

Cardiovascular disease 21   5 9 

Malignancy 19   0 1 

COPD 10   1 2 

Pulmonary tuberculosis 6   1 0 

Chronic kidney disease 10   0 2 

Chronic liver disease 16   3 2 

Follow-up > 5 days 301 NA NA 53 117 

AUC is area under the receiver operating characteristic curve. 3 
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Table 2. Diagnostic performance of the DL system. 1 

 
Training 

(n=709) 

Validation 1 

(n=226) 

Validation 2 

(n=161) 

Validation 2-viral 

(n=120) 

AUC (95%CI) 0.90 (0.89-0.91) 0.87 (0.86-0.89) 0.88 (0.86-0.90) 0.86 (0.83, 0.89) 

Accuracy (%) 81.24 78.32 80.12 85.00 

Sensitivity (%) 78.93 80.39 79.35 79.35 

Specificity (%) 89.93 76.61 81.16 71.43 

AUC is area under the receiver operating characteristic curve. 2 

Validation 2-viral is a stratified analysis using the patients with COVID-19 and viral pneumonia in 3 

the validation set 2. 4 

  5 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2020. .https://doi.org/10.1101/2020.03.24.20042317doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.24.20042317
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

Figure legends 1 

Figure 1. Datasets used in this study. 2 

A total of 5372 patients with CT images from 7 cities or provinces were enrolled in this study. The 3 

auxiliary training set includes 4106 patients with lung cancer and EGFR gene mutation status 4 

information, and is used to pre-train the COVID-19Net to learn lung features from CT images. 5 

The training set includes 709 patients from Wuhan city and Henan province. The external 6 

validation set 1 (226 patients) from Anhui province, and the external validation set 2 (161 patients) 7 

from Heilongjiang province are used to test the diagnostic performance of the DL system. The 8 

external validation set 3 (53 patients with COVID-19) from Beijing, and the external validation set 9 

4 (117 patients with COVID-19) from Huangshi city are used to evaluate the prognostic 10 

performance of the DL system. 11 

 12 

Figure 2. Illustration of the proposed DL system. 13 

Given the chest CT scanning of a patient, the DL system predicts the probability of the patient has 14 

COVID-19 and the prognosis of this patient directly without any human-annotation. The DL 15 

system includes three parts: automatic lung segmentation (DenseNet121-FPN), non-lung area 16 

suppression, and COVID-19 diagnostic and prognostic analysis (COVID-19Net). To let the 17 

COVID-19Net learn lung features from large dataset, we used the auxiliary training process for 18 

pre-training, which trained the DL network to predict EGFR gene mutation status using CT 19 

images of 4106 patients. The dense connection in this figure means each convolutional layer is 20 

connected to all of its previous convolutional layers inside the same dense block. 21 

 22 

Figure 3. Diagnostic performance of the DL system. 23 

a). ROC curves of the DL system in the training set and the two independent external validation 24 

sets. Validation 2-viral is a stratified analysis using the patients with COVID-19 and viral 25 

pneumonia in the validation set 2. b). AUC and distribution of the training set and the two external 26 

validation datasets. 27 

 28 
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Figure 4. Kaplan-Meier analysis of the prognostic performance of the DL system. 1 

Vertical lines in this figure represents censored data. 2 

 3 

Figure 5. DL-discovered suspicious lung area. 4 

(a)-(h) are CT images of eight patients with COVID-19. The first and the third rows are CT 5 

images of the patients (these CT images are processed by the DL system). The second and the 6 

fourth rows are heat maps of the DL-discovered suspicious lung area. In the heat map, areas with 7 

bright red color are more important than dark blue areas. 8 

 9 

Figure 6.  DL feature visualization. 10 

(a)-(d) are four 3-dimensional (3D) convolutional filters from different convolutional layers. (e) is 11 

the distribution of patients in the 64-dimensional DL feature space. For display convenience, the 12 

64-dimensional DL feature space is reduced to 2-dimensional by principle component analysis 13 

algorithm. 14 
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