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Abstract: 

The sudden increase of COVID-19 cases is putting a high pressure on healthcare services 

worldwide. At the current stage, fast, accurate and early clinical assessment of the disease 

severity is vital. To support decision making and logistical planning in healthcare systems, this 

study leverages a database of blood samples from 404 infected patients in the region of Wuhan, 

China to identify crucial predictive biomarkers of disease severity. For this purpose, machine 

learning tools selected three biomarkers that predict the survival of individual patients with 

more than 90% accuracy: lactic dehydrogenase (LDH), lymphocyte and high-sensitivity C-

reactive protein (hs-CRP). In particular, relatively high levels of LDH alone seem to play a 

crucial role in distinguishing the vast majority of cases that require immediate medical 

attention. This finding is consistent with current medical knowledge that high LDH levels are 

associated with tissue breakdown occurring in various diseases, including pulmonary disorders 

such as pneumonia. Overall, this paper suggests a simple and operable formula to quickly 

predict patients at the highest risk, allowing them to be prioritised and potentially reducing the 

mortality rate. 
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Introduction 

The outbreaks of COVID-19 epidemic have been causing worldwide health concerns since 

December 2019. The virus causes fever, cough, fatigue and mild to severe respiratory 

complications, eventually leading to patient death. On March 6, the total amount of cumulated 

infection cases over the world was 97,000 and 3,400 deaths [WHO]. On March 11, the virus 

outbreak was declared a pandemic by the World Health Organization, as the virus spread to 

114 countries, totalling over 118,000 recorded cases and 4,300 deaths [WHO]. So far, it has 

been reported that 26.1-32.0% of COVID-19 infected patients are prone to develop critically 

ill cases1,2. Furthermore, recent reports expose an astonishing case fatality rate of 61.5% for 

critical cases, increasing sharply with age and for patients with underlying comorbidities3. Both 

the reach and severity of cases is putting great pressure on the medical services, and readily 

lead to a shortage of intensive care resources.  

Unfortunately, so far, there is currently no available prognostic biomarker to distinguish 

patients that require immediate medical attention, and their associated mortality rate. The 

capacity to distinguish cases that are at imminent risk of mortality, therefore, has become an 

urgent yet challenging necessity. Under those circumstances, we retrospectively analysed 

blood samples of 404 patients from the region of Wuhan, China to identify robust and 

meaningful markers of mortality risk. For this purpose, a mathematical modelling approach 

based on state-of-the-art interpretable machine learning algorithms was devised to identify the 

most discriminative biomarkers of patient survival. The problem is formulated as a 

classification task, where the inputs are basic information, symptoms, blood samples, 

laboratory test, including liver function, kidney function, coagulation function, electrolyte, 

inflammatory factors taken from originally general, severe and critical patients (Table 1) and 

their associated outcomes corresponding to either survival or death at the end of the 

examination period. Through optimization, the classifier aims to reveal the most crucial 
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biomarkers distinguishing patients at imminent risk, thereby relieving clinical burden and 

potentially reducing the mortality rate.  

Medical records were collected using standard case report forms that included epidemiological, 

demographic, clinical, laboratory, drugs, nursing, and mortality outcome (Table 2). The clinical 

outcomes were followed up to 20 February 2020. The study was approved by the Tongji 

Hospital Ethics Committee. 

Statistical Analysis of Electronical Records 

We considered the medical information of all patients collected between 10 January and 20 

February 2020. Data originating from pregnant and breast-feeding women, patients younger 

than 18 years old, and recordings without at least 80% of complete data materials, were 

excluded from subsequent analysis. Out of the 404 remaining patients, 213 recovered from the 

virus, while the remaining 191 died. This high mortality rate is related to the fact that Tongji 

Hospital admitted most severe cases in Wuhan. Upon admission, patient’s severity was 

empirically assessed by medical doctors according to the rules in Table 14. Figure 1A 

summarises the outcome of patients in the three different classifications. 

Diagnosis Criteria 

One of epidemiological history: 

- Lived in Wuhan within 14 days before 

onset;  

- had contact with patients with fever and 

respiratory symptoms from Wuhan within 

14 days before onset; 

Any two of clinical manifestation: 

- fever and/or respiratory symptoms;  

- normal or decreased total white blood cell 

count or decreased lymphocyte count during 

early stage of onset; 

- typical imaging features. 

One of the following etiological evidence: 
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- had contact with COVID-19 patients 

(positive for COVID-19 nucleic acid) within 

14 days before onset;  

- or part of a familial cluster of onsets. 

- SARS-CoV-2 nucleic acid is positive in 

respiratory or blood samples detected by 

RT-PCR; 

- virus sequence detected in respiratory or 

blood samples share high homology with the 

known sequence of SARS-CoV2. 

Patients classification 

General (197) Severe (27+29) Critical (151) 

At least one epidemiological 

history + at least two clinical 

manifestations + one of the 

etiological evidence of COVID 

infection. 

Patients with pneumonia signs in 

CT scans are defined as general. 

Evidence of COVID 

infection + one of the 

following etiological 

evidence: 

1) RR interval ≥30bpm; 

2) SPO2 ≤93% at rest. 

Evidence of COVID infection 

+ one of the three following 

conditions:  

1) shock; 

2) need mechanical ventilation; 

3) admitted into ICU because of 

MODS. 

Table 1: Criteria for assessment of disease severity upon Hospital admission.  

 

 

Figure 1: A: A flowchart of patient enrollment. B: Dividing of data for training and testing. 

375 cases for 
algorithm 

development

70% cases 
for training 

30% cases 
for testing 

Randomised 5 times

B
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Data of 404 patients were recovered from Excel 2016, and double checked through SPSS 26.0 

analysis data. Then, patients’ data were separated into training, test and additional validation 

sets. Training and test sets altogether considered 375 patients, while the validation set consisted 

of 29 patients (Figure 1). The validation set was chosen with only severe patients since these 

are the most unpredictable in terms of clinical outcome. Table 2 displays the statistics of blood 

samples for those patients. Fever was the most common initial symptom (49.9%), followed by 

cough (13.9%), fatigue (3.7%), and dyspnoea (2.1%). The age distribution of the 375 patients 

was 58.83 ± 16.46 years old, with 58.7% of males.  The epidemiological history included 

Wuhan residents (37.9%), familial cluster (6.4%), and health workers (1.9%).  

 

 

Items Value M(P25, P75) 

Age 58.83±16.46  

Sex   

male  58.7�  

female 40.3�  

Epidemiological history   

Wuhan residents 37.9�  

Contact with confirm or suspected 

patients 

0.5�  

Familial cluster 6.4�  

Health worker 1.9�  
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Contact with HUANAN seafood 

market 

0.5�  

Undefined contact history 52.8�  

Symptoms on onset   

fever 49.9�  

cough 13.9�  

fatigue 3.7�  

Abdominal pain 1.9�  

dyspnea 2.1�  

Chest distress 1.9�  

Muscular soreness 0.5�  

Outcomes   

survival 53.6�  

death 46.4�  

Lab test   

Lactate dehydrogenase�U/L�  268.50(196.00, 

593.25) 

Lymphocytes���  14.35(4.13, 27.58) 

High-sensitivity C-reactive protein

�mg/L� 

 25.80(1.98, 98.08) 

High-sensitivity cardiac troponin I

�pg/ml� 

 11.50(2.40, 72.70) 
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Procalcitonin (ng/ml�  0.10(0.03, 0.45) 

Urea�mmol/L�  5.40(3.80, 11.58) 

Glucose�mmol/L�  6.54(5.12, 9.99) 

Lymphocyte�×109/L�  0.99(0.52, 1.54) 

Albumin�g/L� 32.67±6.31  

NT-proBNP  286.00(56.00, 

11762.00) 

Calcium 2.10±0.18  

Monocytes���  6.25(2.93, 8.90) 

Prothrombin activity  86.50(67.00, 98.00) 

Eosinophils���  0.25 (0.00, 1.50) 

Total protein  65.28±7.75  

Neutrophils(×109/L)  5.38(3.10, 11.31) 

D-D dimer quantification  0.88(0.41, 2.18) 

International Normalized Ratio  1.10(1.01, 1.31) 

White Blood Cell Count  7.93 (5.12, 13.25) 

Neutrophils(%)  77.55(61.58, 91.98) 

Table 2: the continuity variables of normal distributions were described by mean ± standard 

deviation, and the continuity variables of non-normal distributions were described by median 

and quartile. Data were first tested for normality. The Kolmogorov-Smirnov test (K-S test for 

short) tested whether a single sample is from a particular distribution; then, this single sample 

K-S test checked the normality of data. A test level of α=0.05, and P <0.05 indicate that a 

sample does not fit a normal distribution. Since age, total protein, albumin, and calcium all 

fitted normal distributions, only their means ± standard deviations were used to describe their 
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concentration trend. For all other continuous variables (fitting non-normal distributions), 

median described their concentration trend.  

Model Training  

While most patients were taken multiple blood samples throughout their stay at the hospital, 

the model training and testing uses only the last available recordings of patients as inputs to 

the model to assess crucial biomarkers of disease severity, distinguish patients that require 

immediate medical assistance, and accurately matching corresponding features to each label. 

Missing data were “–1" padded. The model output corresponds to patient survival. Patients that 

survived were assigned to class 0, and those that died to class 1. 

The 375 cases used to develop the model were first separated into a training and a test set 

following a 7:3 ratio, further cross-validated 5 times (Figure 1B). The performance models 

were evaluated by assessing the classification accuracy (ratio of true predictions over all 

predictions), the precision, sensitivity/recall and F1 scores (defined below).  
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where &	 ∈ 	W represents the class, N is the number of all samples, R) is the number of samples, 

TN) in class &, TP), FP), and FN) stand for true positive, true negative, false positive and false 

negative rates for class &, respectively. In total, 84 features were considered.  

This study uses a supervised XGBoost classifier5 as the predictor model. XGBoost is a high-

performance machine learning algorithm that benefits from great interpretability potential due 

to its recursive tree-based decision system. In contrast, internal model mechanisms of black-

box modelling strategies are typically difficult to interpret. The importance of each individual 

feature in XGBoost is determined by its accumulated use in each decision step in trees. This 

computes a metric characterizing the relative importance of each feature, which is particularly 

valuable to estimate features that are the most discriminative of model outcomes. Especially, 

when they are related to meaningful clinical parameters. 

Model Optimization : 

XGBoost was originally trained with default parameter settings: max depth equal to 4, learning 

rate equal to 0.2, number of tree estimators set to 150, value of the regularization parameter α 

set to 1 and ‘subsample’ and ‘colsample_bytree’ both set to 0.9 to prevent overfitting for cases 

with many features and small sample size5.  

Feature Selection: To evaluate markers of imminent mortality risk, we assessed the 

contribution of each patient parameters to decisions of the algorithm through a feature selection 

process. Features were ranked by XGBoost according to their importance (Supplementary 

Figure 1). Essentially, the algorithm, detailed in Supplementary Algorithm 1, selected three 

features. Supplementary Figure 2 shows no performance improvement in F1-scores when the 
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number of top features increased to 4. Hence, the number of key features was set to the 

following 3: LDH, lymphocytes and hs-CRP. 

Table 3 displays the performances of the model for both the train/test splits and the additional 

validation set. The results show that the model is able to accurately predict the outcome of 

patients, regardless of their original diagnosis upon Hospital admission. Moreover, the 

performance of the additional validation set is similar to that of the training and test sets. This 

suggests that the model captures the key biomarkers for patient survival. The table further 

emphasizes the importance of LDH as a crucial biomarker for patient survival rate.  

Features 
Cross-validation F1-score 

(mean +- std) 

Additional 

validation set F1-

score (mean +- std) 

LDH 93.85% +- 0.87% 91.69% +- 2.88% 

LDH, Lymphocyte 96.43% +- 0.48% 93.98% +- 2.44% 

LDH, Lymphocyte, hs-CRP 97.59% +- 0.40% 94.67% +- 2.34% 

Table 3: performances of the XGBoost classification in discriminating between mortality 

outcomes. 

Explainable model 

Following previous findings on the importance of LDH, lymphocytes and hs-CRP, the next 

step is to construct a simplified and clinically operable decision model. XGBoost algorithms 

are based on recursive decision tree building from past residuals and can identify those trees 

that contribute the most to the decision of the predictive model. Decision trees are simple 

classifiers consisting of sequences of binary decisions organized hierarchically. Single decision 

trees are intuitively appealing since they are based on a recursive dichotomic partitioning of 

the data following an optimal separating decision rule at each node. Hence, if the accuracy of 
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a tree remains high, reducing the complexity of the model to such structure has the potential to 

reveal a clinically portable decision algorithm. Below, we further refer to the latter as 

“explainable model”, or “single-tree XGBoost”. 

There was a total of 24 patients with incomplete measurements for at least one of the three 

principal biomarkers, leaving 351 patients to identify a single-tree XGBoost model. To identify 

such a  model, XGBoost is re-trained with the same parameters as described above, except: 

number of tree estimators set to 1, values of the regularization parameters α and β both set to 

0, and the subsample and max features both are set to 1 as over-fitting issues have  been avoided 

based on previous modelling5. The algorithm computed accuracy, precision, sensitivity, recall 

and F1 scores on the test samples and additional validation set. The best performing tree chosen 

based on test datasets, together with its accuracy, is shown in Figure 2. Supplementary Tables 

1 and 2 show performance of the Multi-tree XGBoost algorithm on the training and testing 

datasets, with accuracies of 96% and 97%, respectively.  

 

Figure 2. Discovered a decision rule using three key features and their threshold in absolute 

value. Num represents the number of patients in a class, T represents the number of corrected 

classified while F represents the number of misclassified patients. 
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The performance of the model on the external validation data, which has not been part of 

training or testing the model, can be found in Table 4. Its associated confusion matrix is shown 

on the left of Figure 3, showing 100% death prediction accuracy and 90% survival prediction 

accuracy. The confusion matrix on the right of Figure 3 corresponds to the latest measurements 

of 375 patients. Overall, scores for survival and death prediction, accuracy, macro and 

weighted averages are consistently over 0.90. Remarkably, both Multi-tree XGBoost and 

Single-tree XGBoost return the similar Predictions (Supplementary Figure 3).  

 Precision Recall F1-score Support 

Survival 1.00 0.83 0.91 12 

Death 0.89 1.00 0.94 17 

accuracy     0.93 29 

macro avg 0.95 0.92 0.93 29 

weighted avg 0.94 0.93 0.93 29 

Table 4: Performance of the proposed algorithm on testing dataset. 

 

Figure 3: Confusion matrices for the additional validation set (29 severe patients) (left) and 

training and testing sets (375 patients) (right). 

Finally, most patients were taken multiple blood samples throughout their stay at the hospital. 

In total, there were 1523 blood samples with complete measurements of these three features 

for the training and test set of 375 patients plus 228 blood samples for the validation set of 29 
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patients. We validated our model with these additional blood tests (Supplementary Figure 4). 

Overall, the accuracy is 90%, further showing that the model can be applied to any blood 

sample, even this is far from a patient’s clinical outcome. The three selected features on 

survived and dead patients can be seen in Supplementary Figure 5. On average, the model 

could predict the outcome of the 26 validation patients from Tongji Hospital about 16 days in 

advance using all their blood samples (Figure 4), and it could predict the outcome of 377 

(351+26) patients from Tongji Hospital in all training, test and validation sets about 9 days in 

advance using all available blood samples (Supplementary Figure 6).  

 

Figure 4: Histogram of the maximum number of days containing only true positive predictions 

until clinical outcome for 26 severe patients in the validation set (Tongji Hospital). 

Discussion 

The significance of our work is two-fold. First, it goes beyond providing high-risk factors2. It 

provides a simple and intuitive clinical test to precisely and quickly quantify the risk of death. 

For example, a routine sequential respiratory support therapy for patients with SPO2 below 

93% is: intranasal catheterization of oxygen, oxygen supply through mask, high flow oxygen 

supply through nasal catheter, non-invasive ventilation support, invasive ventilation support, 

and ECMO. Predicting that for some patients this sequential oxygen therapy leads to 

unsatisfactory therapeutic effects could pre-empt physicians to pursuit different approaches. 
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The goal is for the model to identify high-risk patients before irreversible lesions occur. 

Second, the three key features, LDH, lymphocytes and hs-CRP, can easily be collected by any 

hospital. In crowed hospitals, and with shortage of medical resources, this simple model can 

help to quickly prioritise patients. 

The increase of LDH reflects tissue/cell destruction and is regarded as a common sign of 

tissue/cell damage. Serum LDH has been identified as an important biomarker for the activity 

and severity of Idiopathic Pulmonary Fibrosis (IPF)6. In patients with severe pulmonary 

interstitial disease, the increase of LDH is significant and is one of the most important 

prognostic markers of lung injury6. For the critically ill patients with COVID-19, the rise of 

LDH level indicates an increase of the activity and extent of lung injury.  

Higher serum hs-CRP could also be used to predict the risk of death in severe COVID-19 

patients. The increase of hs-CRP, an important marker for poor prognosis in ARDS7,8, reflects 

the persistent state of inflammation9. The result of this persistent inflammatory response is 

large grey-white lesions in the lungs of patients with COVID-19 (what was seen in the 

autopsy)10. In the tissue section, a large amount of sticky secretion was also seen overflowing 

from the alveoli10. 

Finally, our results also suggested that lymphocyte may serve as a potential therapeutic target. 

The hypothesis is supported by results of clinical studies2,11. Moreover, Lymphopenia is a 

common feature in patients with COVID-19 and might be a critical factor associated with 

disease severity and mortality12. Injured alveolar epithelial cells could induce the infiltration of 

lymphocytes, leading to persistent lymphopenia as SARS-CoV and MERS-CoV did, given that 

they share similar alveolar penetrating and antigen presenting cells (APC) impairing 

pathways13,14. A biopsy study has provided strong evidence that the counts of peripheral CD4 

and CD8 T cells were substantially reduced, while their status was hyperactivated15. Also, Jing 
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and colleagues reported the lymphopenia is mainly related to the decrease of CD4 and CD8 T 

cells16. Thus, it is likely that lymphocytes play distinct roles in COVID-19, which deserves 

further investigation. 

Conclusion 

This study has room for further improvement. First, since the proposed machine learning 

method is purely data driven, our model may vary if starting from different datasets. As more 

data become available, the whole procedure can easily be repeated to obtain more accurate 

models. This is a single-centred, retrospective study, which provides a preliminary assessment 

of the clinical course and outcome of severe patients. Although the original database covered 

more than 3,000 patients, most clinical outcomes had not yet been released at the time of this 

study. We look forward to subsequent large sample and multi-centred studies. Second, 

although we had a pool of more than 80 clinical measurements, here our modelling principle 

is a trade-off between the minimal number of features and the capacity of good prediction, 

therefore avoiding overfitting. Finally, this study strikes a balance between model 

interpretability and improved accuracy. While clinical settings tend to prefer interpretable 

models, it is possible that a black box model may lead to improved performance. 

The recent data base of retrospective blood samples collected from 404 patients infected by 

COVID-19 in the Tongji Hospital in Wuhan, China, was used to identify predictive and 

potentially life-saving discriminative biomarkers of patients within a critical condition range. 

Our state-of-the-art machine learning framework suggests that the disease severity can be 

accurately predicted using three biomarkers, therefore greatly reducing the space of clinical 

parameters to be monitored and the associated medical burden. 

In summary, this study identified three indicators (LDH, hs-CRP, and lymphocytes), with 

thresholds (LDH: 365U/l, hs-CRP: 41.2mg/L, and lymphocytes%: 14.7%) for COVID-19 
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prognostic prediction. We developed an XGBoost machine learning-based prognostic model 

that can predict the survival rates of severe patients with more than 90% accuracy using the 

last sample and 90% from any other blood sample, enabling detection, early intervention and 

potentially reduction of mortality in high-risk patients with COVID-19. From a technical point 

of view, this work helps pave the way for using machine learning method in COVID-19 

prediction and diagnosis in the triage of the large scale explosive epidemic COVID-19 cases. 

 

Reference  

1. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in 
Wuhan, China. Lancet 395, 497–506 (2020). 

2. Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel 
coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507–513 (2020). 

3. Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS CoV-2 
pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet 
Resp. Med. https://doi.org/10.1016/S2213-2600(20)30079-5 (2020). 

4. Diagnosis and treatment of pneumonia infected by the new novel coronavirus (the trial 
fifth edition). National Health Commission of the people’s Republic of China, The 
Medical Letter from the National Health Office (2020) 

5. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proc. 22nd ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 
(ACM, 2016) 

6. Kishaba, T., Tamaki, H., Shimaoka, Y., Fukuyama, H. & Yamashiro, S. Staging of acute 
exacerbation in patients with idiopathic pulmonary fibrosis. Lung 192, 141–149 (2014).  

7. Ridker, P. M. et al. Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular 
events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195-
2207 (2008). 

8. Sharma, S. K. et al. A-etiology, outcomes & predictors of mortality in acute respiratory 
distress syndrome from a tertiary care centre in north India. Indian J. Med. Res. 143, 782-
792 (2016). 

9. Bajwa E. K. et al. Plasma C-reactive protein levels are associated with improved outcome 
in ARDS. Chest 136, 471-480 (2009). 

10. Liu, X. et al. A general report on the systematic anatomy of COVID-19. Journal of 
Forensic Medicine 36, 1–3 (2020). 

11. Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel 
coronavirus-infected pneumonia in Wuhan, China. JAMA 
https://doi.org/10.1001/jama.2020.1585 (2020).  

12. Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel 
coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 
395, 514–523 (2020). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 17, 2020. .https://doi.org/10.1101/2020.02.27.20028027doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.27.20028027
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

13. Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-
binding domain complexed with receptor. Science 309, 1864-1868 (2005). 

14. Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the 
ACE2 receptor. Nature 503, 535-538 (2013). 

15. Xu, Z. et al. Pathological findings of covid-19 associated with acute respiratory distress 
syndrome. Lancet Resp. Med. https://doi.org/10.1016/S2213-2600(20)30076-X (2020) 

16. Liu, J. et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in 
the peripheral blood of SARS-CoV-2 infected patients. Preprint at 
https://medrxiv.org/content/10.1101/020.02.16.20023671v2 (2020) 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 17, 2020. .https://doi.org/10.1101/2020.02.27.20028027doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.27.20028027
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information 

In the Supplementary Information, we shall illustrate data analysis using a step-by-step 

procedure below: 

Step1. Obtain the Top10 features using 375 samples with all features:  

 

 

Supplementary Figure 1: Top ten key clinical features that are ranked according to its 

importance in the Multi-tree XGBoost algorithm.  

 

Multi-tree XGBoost with 375 samples (all features): 

It is trained with the parameters setting as the max depth with 4, the learning rate is equal 0.2, 

the tress number of estimators is set to 150, the value of the regularization parameter α is set 

to 1, the ‘subsample’ and ‘colsample_bytree’ both are set to 0.9 to prevent overfitting when 

there are many features and the sample size is not large. 

 

Step 2. Reduce the number of features used: 

 

Supplementary Algorithm 1:  
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Algorithm 1 Feature selection 

Input: The training set of {#$%&'( ∈ *
(+×-, /$%&'( ∈ [0,1]

4+}	, the validation set of 

{#7&8'9&$':( ∈ *
(;×-, /7&8'9&$':( ∈ [0,1]

4;} ,where <= and	<> are the number of samples 

in the training set and validation set, respectively , m is the total number of features, and 

/$%&'( , /7&8'9&$':(	are the true labels in the training set and the validation set, respectively. 

A list of features’ name ?&88 is sorted by the importance in the Multi-tree XGBoost model. 

Output: The selected features name list ?@A8AB$A9C8&@$. 

Step 1 Initialization 

1) 	i	 = 0, ?1@B:%AC8&@$ = 0,	?@A8AB$A9 = [], 	?@A8AB$A9C8&@$  = [], threshold = 0.5% 

Step 2 Feature selection 

2) 	?@A8AB$A9C8&@$ ← 	 	?@A8AB$A9 

3) 	Add element ?GHH[i] to ?@A8AB$A9 

4) #$%&'(C@A8AB$A9  is the matrix formed by the corresponding columns of ?@A8AB$A9  in 

#$%&'(. 

5) #7&8'9&$':(C@A8AB$A9 is the matrix formed by the corresponding columns of ?@A8AB$A9 

in #7&8'9&$':(. 

Step 3 Training and Prediction 

6) Fit the {#$%&'(C@A8AB$A9, /$%&'(} with XGBoost and get the I∗(L)  

7) Predict the /N7&8'9&$':( ← I∗(#7&8'9&$':(C@A8AB$A9), where  /N7&8'9&$':( is the predicted 

labels of validation set samples. 

Step 4 Calculating the f1-scores and judgments 

8) ?1@B:%A ← ?1@B:%A(/7&8'9&$':(, /N7&8'9&$':() 

9) If (?1@B:%A − ?1@B:%AC8&@$) 	< 	threshold 

10)         Then  ?1@B:%ACYA@$ = ?1@B:%AC8&@$ and return	?@A8AB$A9C8&@$ 

11)  Else Z	 ← 	Z	 + 1 and return to Step 2 
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Supplementary Figure 2: Illustration of F1 scores using Supplementary Algorithm 1.  

 

Multi-tree XGBoost with 375 samples (Top-X features): 

It is trained with the parameters setting as the max depth with 4, the learning rate is equal 0.2, 

the value of the regularization parameter α is set to 1. 

 

Step 3. The results on the Multi-tree XGBoost with Top 3 features selected in Step 2 (375 

samples).  

 

Supplementary Figure 3: Confusion matrix for the additional validation dataset using the Multi-

tree XGBoost algorithm.    
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 Precision Recall F1-score Support 

Survival 1.00 0.95 0.98 145 

Death 0.94 1.00 0.97 117 

accuracy     0.97 262 

macro avg 0.97 0.98 0.97 262 

weighted avg 0.97 0.97 0.97 262 

Supplementary Table 1. Performance of the Multi-tree XGBoost algorithm on training 

dataset. 

 

 Precision Recall F1-score Support 

Survival 0.96 0.95 0.95 56 

Death 0.95 0.96 0.96 57 

accuracy     0.96 113 

macro avg 0.96 0.96 0.96 113 

weighted avg 0.96 0.96 0.96 113 

Supplementary Table 2�Performance of the Multi-tree XGBoost algorithm on testing 

dataset. 

 

Step 4. Reduce number of tree to 1, which leads to the Single-tree XGBoost algorithm. Because 

there are 24 samples with at least one of top-3 features missing. In order to obtain a better 

decision rule, we have deleted these samples and obtain a new dataset with the 351 samples 

and 3 features. 

 

Single-tree XGBoost with 351 samples (Top3 features): 

It is trained with the parameter setting as the tress number of estimators is set to 1, the values 

of the two regularization parameters α and β are both set to 0, the subsample and max 

features both are set to 1. 

 

 Precision Recall F1-score Support 

Survival 1.00 0.98 0.99 135 

Death 0.97 1.00 0.99 110 

accuracy   0.99 245 
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macro avg 0.99 0.99 0.99 245 

weighted avg 0.99 0.99 0.99 245 

Supplementary Table 3. Performance of the proposed algorithm on training dataset for the 

Single-tree XGBoost algorithm. 

 

 Precision Recall F1-score Support 

Survival 0.95 0.96 0.96 57 

Death 0.96 0.94 0.95 49 

accuracy   0.95 106 

macro avg 0.95 0.95 0.95 106 

weighted avg 0.95 0.95 0.95 106 

Supplementary Table 4�Performance of the proposed algorithm on validation dataset for the 

Single-tree XGBoost algorithm. 

 

 

Supplementary Figure 4: Confusion matrices for additional validation set (29 severe patients) 

with all 228 available blood samples (left), and training and testing sets (375 patients) with 

all 1523 available complete blood samples (right). 
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Supplementary Figure 5: Visualization of data over three selected features. 
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Supplementary Figure 6: For 377 patients in both training and test sets, we plot the histogram 

of the number of days between their prediction and outcome. Note that there are three 

patients with negative days as their blood sample results arrived one and two days after their 

clinical outcome. 
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