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ABSTRACT 

Background: False negative results of SARS-CoV-2 nucleic acid detection pose threats to 
COVID-19 patients and medical workers alike. 

Objective:  To develop multivariate models to determine clinical characteristics that contribute 
to false negative results of SARS-CoV-2 nucleic acid detection, and use them to predict false 
negative results as well as time windows for testing positive.  

Design: Retrospective Cohort Study (Ethics number of Tongji Hospital: No. IRBID: TJ-
20200320) 

Setting: A database of outpatients in Tongji Hospital (University Hospital) from 15 January 
2020 to 19 February 2020. 

Patients: 1,324 outpatients with COVID-19 

Measurements: Clinical information on CT imaging reports, blood routine tests, and clinic 
symptoms were collected. A multivariate logistic regression was used to explain and predict false 
negative testing results of SARS-CoV-2 detection. A multivariate accelerated failure model was 
used to analyze and predict delayed time windows for testing positive. 

Results: Of the 1,324 outpatients who diagnosed of COVID-19, 633 patients tested positive in 
their first SARS-CoV-2 nucleic acid test (47.8%), with a mean age of 51 years (SD=14.9); the 
rest, which had a mean age of 47 years (SD=15.4), tested negative in the first test. “Ground glass 
opacity” in a CT imaging report was associated with a lower chance of false negatives (aOR, 
0.56), and reduced the length of time window for testing positive by 26%. “Consolidation” was 
associated with a higher chance of false negatives (aOR, 1.57), and extended the length of time 
window for testing positive by 44%. In blood routine tests, basophils (aOR, 1.28) and 
eosinophils (aOR, 1.29) were associated with a higher chance of false negatives, and were found 
to extend the time window for testing positive by 23% and 41%, respectively. Age and gender 
also affected the significantly.  

Limitation: Data were generated in a large single-center study. 

Conclusion: Testing outcome and positive window of SARS-CoV-2 detection for COVID-19 
patients were associated with CT imaging results, blood routine tests, and clinical symptoms. 
Taking into account relevant information in CT imaging reports, blood routine tests, and clinical 
symptoms helped reduce a false negative testing outcome. The predictive AFT model, what we 
believe to be one of the first statistical models for predicting time window of SARS-CoV-2 
detection, could help clinicians improve the accuracy and efficiency of the diagnosis, and hence,  
optimizes the timing of nucleic acid detection and alleviates the shortage of nucleic acid 
detection kits around the world. 

Primary Funding Source: None. 
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Introduction 

COVID-19, the disease caused by SARS-CoV-2 virus that surfaced in Wuhan, China in 

early December 2019, is now plaguing the world. Due to its high intra-human transmission 

nature, there were more than one hundred and fifty thousand confirmed cases around the world 

by 15 March, 2020. In view of the rapid surge of infected patients, World Health Organization 

(WHO) has declared the viral disease a pandemic on 11 March, 2020.  

To contain COVID-19, a prompt and accurate diagnostic test is necessary. While new tests 

have been proposed, the SARS-CoV-2 nucleic acid test is currently the standard diagnostic 

criterion used by most countries. However, contradictory to clinical symptoms and chest CT 

scanning, many patients have shown false negative testing results during their initial clinic visits. 

As a result, hospital admission and treatment have been delayed for many of them. These 

patients have been stranded in outpatient clinics or isolation zones, increasing the risk of 

exposure of other non-COVID-19 patients and medical workers. Their confirmed diagnoses of 

COVID-19 have since raised concerns for the validity and reliability of the test.  To better 

contain COVID-19, it is essential to understand the factors that influence the test’s false-negative 

incidence rate.   

Several factors contribute to a relatively high false-negative incidence in the nucleic acid 

test: (1) the sensitivity of the detection kits; (2) inappropriate clinical sampling from patients; (3) 

the original viral load. The first factor is a concern for the manufacturers while the second can be 

remedied through staff training. The last factor, however, links to the progression of COVID-19, 

which is patient-specific. In other words, the viral load has demonstrated individual 

heterogeneity, and has gone beyond doctors’ subjective evaluation. Hence, it is essential to 
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conduct the test when viral load is high. Consequently, the right timing for the test will avoid 

repeated sampling, reduce exposure risk for outpatients and healthcare providers, and improve 

the efficiency of medical efforts to contain the epidemic.  

This study retrospectively analyzed the relationships between clinical characteristics and 

the nucleic acid test results of COVID-19 patients; it developed statistical models to predict 

nucleic acid test results for patients diagnosed with COVID-19: how likely they are to test 

positive, and when they are likely to test positive. Based on a patient’s clinical characteristics, 

the study proposed a model to predict a time window that would help doctors identify the right 

time for testing. The findings shed light on the development for more accurate and efficient 

clinical diagnosis procedures for COVID-19, and may alleviate the shortage of nucleic acid 

detection kits around the world. 
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Methods 

Study population and data collection 

This single-centered, retrospective study was approved by the Human Assurance 

Committee (HAC) of Tongji Hospital (No. IRBID: TJ-20200320), (affiliated with Tongji 

Medical College, Huazhong University of Science and Technology, Wuhan, China).  We 

collected the electronic records of 11,368 outpatients in Tongji Fever Clinic through 

standardized data collection tables in the electronic medical records. A total of 3,588 patients, 

from the 11,368 outpatients, who underwent the SARS-CoV-2 nucleic acid test were screened 

from 15 January 2020 to 19 February 2020.  Among them, 2,264 patients were excluded due to 

the unavailability of their CT imaging reports and/or blood routine tests. Finally, 1,324 patients 

diagnosed with COVID-19 were enrolled for this study (633 patients tested positive in their first 

nucleic acid test, and the rest 691 patients tested negative initially, and subsequently tested 

positive later on).  Their epidemiological information, including age and gender, CT imaging 

reports, clinical symptoms, and blood routine test results, nucleic acid test results were processed 

for analysis.  

Nucleic acid assay 

Laboratory confirmation of SARS-CoV-2 was conducted as follows: pharyngeal swab 

specimens from the upper respiratory tract were collected from outpatients. The swab was placed 

into a collection tube with virus preservation solution. Total RNA was extracted using the 

respiratory sample RNA isolation kit approved by the Food and Drug Administration of China. 

Two target genes, including the open reading frame 1ab (ORF1ab) and the nucleocapsid protein 

(N) of SARS-CoV-2, were simultaneously amplified by Real-time reverse transcriptase–

polymerase chain reaction (rRT-PCR) as previously described (1).  
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Variables of interest 

The variables for which we intend to seek explanations and make predictions are: 1) 

outcome of the first nucleic acid test for diagnosed COVID-19 patients; and 2) time duration 

between getting sick and testing positive. 

Based on previous research that studied the clinic characteristics and diagnosis of COVID-

19 (1-3), we assembled a list of characteristics from three information sources: CT imaging 

reports, clinic visit records, and blood routine tests to explain and predict the above two variables 

of interest. Six key important initial visit symptoms were extracted from clinic visit records and 

were coded as dummy variables (0 if such a symptom was not reported; and 1 if reported). Ten 

blood routine test items were collected, four of which were identified as diagnostic indicators via 

pilot analysis. They were lymphocytes, basophils, eosinophils, and neutrophils (all in counts).  

Through the text mining approach, a number of key phrases from CT imaging reports (in 

Chinese) were generated. Based on the findings in recent studies (4, 5), six of which were chosen 

to be included in the analyses. They were translated as “ground glass opacity (hereafter GGO)”, 

“patchy shadows”, “subsolid”, “consolidation”, “bilateral pulmonary”, and “unilateral 

pulmonary”.  They were also coded as dummy variables (0 if such a characteristic was not 

detected; and 1 if detected). The text mining task was conducted via an R package called “JiebaR” 

for text mining in Chinese. 

Initial probing 

We followed the norm in the time-to-event analysis (aka survival analysis), where the event 

is defined as a positive test result in the nucleic acid test. The time window is defined as the 

duration between the time of a patient getting sick and the time of the event (first positive test 

result) taking place. Since the time of testing positive was not the exact time the patient reached 
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the threshold of enough viral load for testing positive, the time window was indeed interval 

censored. Some patients’ test results remained negative during the data collection. For those 

patients, their time windows were treated as right censored following the standard treatment in 

the survival analysis.  

Statistical analysis 

Statistical tests were performed using R statistical software (version 3.3.6). Two different 

multivariate analyses were employed to retrospectively decompose the effects on the nucleic acid 

test results of patients diagnosed with COVID-19.  

One analysis used logistic regression to study how clinical characteristics were associated 

with the test results of diagnosed patients. The dependent variable for the logistic regression was 

the outcome of a patient’s first nucleic acid test (negative vs. positive).  The analysis was 

conducted via an R command “glm”.  

The other analysis used the accelerated failure time (AFT) models. AFT models 

investigated the time-to-event window by linking the time window of testing positive to clinical 

characteristics. The dependent variable was the logarithm of the time difference between getting 

sick and testing positive. Specifically, the AFT model is specified as  

������
� � ��	 
 �,      (1) 

where ��  include factors of CT imaging reports, clinic visit records, and blood tests introduced 

above.  The distribution of the error term � is assumed to be exponential. An R package 

“survival” was used, with the “survreg” function to estimate AFT models.   
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All reported P values were two-sided; and all reported results bear a statistical 

significance with a P value less than 0.05. 

Prediction  

The predictions of nucleic acid test outcomes for diagnosed patients were conducted in two 

different aspects: the on-the-spot outcome (positive vs. negative) for a patient’s first nucleic acid 

test; and a time window for testing positive.  In both aspects, we divided the data into the testing 

and validation samples by a ratio of 80%-20%.  We trained the model on the testing sample and 

generated predicted probabilities of false negative test result on the validation sample via the 

logistic regression. We then compared the predicted probabilities with actual test results and 

plotted ROC curves.   

Alternatively, the length of the time window for testing positive was predicted via the AFT 

model. We formulated the AFT model analysis with all three types of clinical characteristics (CT 

imaging, blood test results, and clinical symptoms) for prediction.  Once we estimated the 

coefficients on the training sample, we obtained a set of estimates 	. For any patient in the 

validation sample (with index k), we use equation (2) below to calculate the predicted 

probabilities of testing negative for a given time t, given by 

����� � ��� ����	�)                    (2) 

Since each patient in the validation sample was given a predictive curve that linked the 

probabilities of testing negative and the timespan since getting sick, we then calculated the cut-

off timespan where the probability of testing negative, S(t), started to become smaller than 50%:   

�� � ��� ��|��
��� � 50%�    (3) 
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We took into consideration the confidence intervals of  ��  to construct the time window for 

testing positive.  For those patients eventually testing positive in the data, the predicted time 

window is given as ��� � ��� , 
∞�, where ��  is the standard error, and c is a constant equal to 

1.96 for the 95% confidence interval.  For patients whose positive test results were censored (the 

exact time for testing positive is unavailable in the data), the time window for testing negative is 

given as �0,  �� 
 ����.  We then calculated the percentage of the patients whose timespan for 

the test correctly matched their predicted time window.  The prediction proposed in this study 

offered better interpretation and tractability than the concordance index. 

Role of the Funding Source 

This study received no external funding. 
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Results 

Baseline clinical characteristics 

A total of 1,324 patients who were diagnosed with COVID-19 were eligible for this study.  

Of the 1,324 patients, 1,270 were diagnosed as having a light condition (95.9%), and the rest 

were diagnosed as either severe (3.8%) or critical (0.3%).  633 patients tested positive in their 

first nucleic acid test (47.8%) (Table 1). 

In terms of age distribution, the average age for the diagnosed patients with a positive result 

in the first nucleic acid test (aka FNAC-P patients) was 51 years (SD=14.9). The diagnosed 

patients who tested negative in the first nucleic acid test (aka FNAC-N patients) was 47 years 

(SD=15.4). FNAC-P patients consisted of 308 males (48.7%) and 325 females (51.3%). In 

comparison, FNAC-N patients consisted of 343 males (49.6%) and 348 females (50.4%) 

(Table1). 

Remarkably, it is noteworthy that the typical CT images derived from FNAC-P patients 

were characterized by GGO and patchy shadows, which occurred at 60.5% or 65.1% of all 

FNAC-P patients, respectively. Only 41.7% or 52.2% of FNAC-N patients displayed the above 

manifestations, respectively. In contrast, the FNAC-P patients were less likely to have 

consolidation in their CT images than FNAC-N patients (11.2% vs. 13.9%) (Table 1). 

Some blood routine tests also showed significant differences.  The average number of 

lymphocytes in FNAC-P patients was 1.21×109/L (IQR 0.93-1.59), while it was 1.45×109 /L 

(IQR 1.07-1.93) for the FNAC-N patients (Table 1). In contrast, FNAC-P patients displayed 

lower numbers of eosinophils counts as compared to that of FNAC-N patients (0.01×109/L (IQR 

0.00-0.03) vs. 0.03×109/L (IQR 0.005-0.08)). Similarly, a lower number of basophils was 
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characterized in FNAC-P patients as compared to that of FNAC-N patients (0.01×109/L (IQR 

0.00-0.01) vs.0.01×109/L (IQR 0.01-0.02)) (Table 1).  

Kaplan–Meier time-to-event curves 

To echo the results in Table 1, we plotted several Kaplan–Meier time-to-event curves to 

illustrate the probabilities of remaining negative against the time window (in days) (Figure 1). 

The higher the position of a KM curve, the more likely were the patients to test positive given 

the same timespan since getting sick. In other words, they had a shorter time window for testing 

positive.  It was noticeable that the detection of the phrase “GGO” in CT imaging reports 

reduced the time window for testing positive (Figure 1 A).  In comparison, the detection of 

“consolidation” extended the time window for testing positive, leading to a higher chance of 

false negative if the test was taken in earlier time (Figure 1 B).  It was clear that higher levels of 

basophils and eosinophils delayed the time for testing positive, resulting in a higher likelihood 

for a false negative (Figure 1 C, D). Among clinic symptoms, fever was the only one to be 

associated with the time window by shortening its duration (Figure 1 E), whereas chest distress 

was the only symptom to be associated with the time window by extending it (Figure 1 F). 

Finally, in it was shown that elder male patients were likely to experience a shorter time window 

for testing positive (Figure 1 G, H).  

Logistic regression results  

The logistic regression provided factors of interest on the test outcome after the adjustment 

for age, gender, and timespan between getting sick and the test (Table 2). We found one 

characteristic of CT imaging reports, “GGO”, to be associated with a lower chance of false 

negative (adjusted odds ratio aOR, 0.56; 95% CI, 0.44-0.71; P <0.001). Nevertheless, two 

characteristics of CT imaging reports were associated with a higher chance of false negative: 
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“consolidation” (aOR, 1.57; 95% CI, 1.08-2.27; P = 0.02) and “unilateral Pulmonary” (aOR, 

1.46; 95% CI, 1.11-1.9; P = 0.01).  Fever was also found to be associated with a lower chance of 

false negative (aOR, 0.7; 95% CI, 0.51-0.96; P = 0.02). Out of the blood test items, two were 

found to be associated with a higher chance of false negative: Basophils and (aOR, 1.28; 95% CI, 

1.14-1.44; P < 0.001)   Eosinophils (aOR, 1.29; 95% CI, 1.03-1.62; P = 0.03).   These findings 

remained consistent when we used different model specifications. 

In order to implement the out-of-sample prediction, 1,324 patients were randomly divided 

into training (1,059 cases) and validation samples (265 cases). Three different ROC curves were 

plotted for three different model specifications of the logistic regression (Figure 2). AUC values 

ranged from 0.69 to 0.77.  

Accelerated failure time (AFT) model results 

The AFT model was used to calibrate the effects of factors of interests on the length of the 

time window of testing positive. The coefficient estimates from the AFT analysis provided the 

impact of a particular characteristic on the length of time window (in percentage) under a 

multivariate environment, controlling for other factors (Table 2). “GGO” was associated with a 

shorter window for testing positive: “GGO” (effect, -0.26, 95% CI, -0.38- -0.12; P < 0.001), 

suggesting the detection of this characteristic will on average reduce the length of the time 

window of testing positive by 26%. In comparison, the detection of “consolidation” (effect, 0.44; 

95% CI, 0.1-0.88; P = 0.01) will on average extend the length of the time window by 44%.  The 

results are consistent with the logistic regression. We also found that chest distress was 

associated with a longer window as well (effect, 0.4; 95% CI, 0.07-0.83; P = 0.01). Finally, two 

blood test items, basophils (effect, 0.23; 95% CI, 0.12-0.35; P < 0.001) and eosinophils (effect, 

0.41; 95% CI, 0.15-0.74; P < 0.001) were also linked to a longer time window for testing 
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positive, implying that higher values of test results supressed the positive testing outcome. These 

results were also consistent with the logistic regression.   

Time window prediction and validation 

The AFT model was used to predict each patient’s time window for testing positive. The 

training and validation were conducted on the same testing and validation samples. To illustrate 

the prediction process, we used two patients as examples (Figure 3). 

Patient A was a 37-year-old male. He had consolidation but not GGO detected in his CT 

imaging report, reported fever, and his blood routine test showed the following results: 

lymphocytes: 1.68×109/L, basophils: 0.01×109/L, eosinophils: 0.04×109/L and neutrophils: 2.56

×109/L. It was predicted that his time window for testing positive started at 10.49 days since 

getting sick. The patient took the test on day 21, and he had a chance greater than 50% to test 

positive (75.1%), which matched his actual test result (Figure 3 A).  

Patient B was a 66-year-old female with both GGO and consolidation detected in her CT 

imaging report. She also reported fever, and her blood routine test results were: lymphocytes: 

1.07×109/L, basophils: 0.015×109/L, eosinophils: 0.05×109/L and neutrophils: 5.65×109/L. It 

was predicted that her time window for testing positive started at 3.77 days since getting sick. 

Thus, having GGO detected significantly shortened the time window for testing positive, as 

predicted in the AFT model (Table 2). The patient took the test on day 11, so she had a chance 

greater than 50% to test positive (82.3%), as what happened to her (Figure 3 B).  
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We obtained the prediction outcome for all the patients in validation samples. Out of 265 

patients, 133 patients tested positive in the data. The predicted time window correctly matched 

87 patients’ actual testing time. For 132 patients who remained testing negative falsely in the 

sample, the predicted time window correctly matched 114 patients’ actual testing time. The 

overall accuracy is 75.8% (201/265).  
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Discussion 

COVID-19 is an acute infectious disease caused by SARS-CoV-2 infection. The standard 

diagnosis relies on the nucleic acid test (rRT-PCR) of the virus. Recent studies reported that 

higher viral loads in the swab were detected soon after symptom onset (6, 7). In the fever clinic 

of Tongji Hospital, we found that for many patients, whose CT images showed consolidations or 

diffuse infections, had more false negative nucleic acid tests. Maybe the viral load in the upper 

respiratory tract determines the time window for testing positive during this different course of 

COVID-19. The level and duration of infectious virus replication are important factors in 

assessing the risk of transmission and guiding decisions regarding isolation of patients. For 

diagnosed COVID-19 patients, a failure of early confirmation through the nucleic acid test could 

be disastrous.  This study aimed to develop multivariate models to explain false negative test 

results, and further to predict a time window for testing positive.  In other words, we also 

provided direct answers to the variety in the time windows of COVID-19 patients (8). 

A CT scan is critical in helping doctors diagnose COVID-19 patients as a clear destruction 

of the pulmonary parenchyma is a typical result (9, 10). In both the logistic regression and the 

AFT model, several CT imaging characteristics were found to play a key role in affecting test 

results. Specifically, both GGO and consolidation were identified as key characteristics, but they 

worked in an opposite manner. As mentioned above, some patients presented characteristic 

radiographic features of COVID-19 from the first scan, while the nucleic acid test result was 

falsely negative (11). And then these patients were confirmed by positive repeat swab testing 

during the isolated observation or treatment. From our study, we found that there was a higher 

incidence rate of GGO in FNAC-P patients than in FNAC-N patients. GGO was the main 

radiological demonstration in the early stage of COVID-19 (12), and the time windows depicted 
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in Figures 3 A and 3B highlight the importance of GGO in bringing in a shorter time window for 

testing positive.  Our finding is also consistent with a recent study (13) that found GGO was 

linked to inflammatory lesions (Grayish-white lesion under naked eye).  Combined with the 

multivariate analyses in our study, it suggests both GGO and consolidation should both serve as 

a heads-up for doctors to interpret test results.   

This study also identified age as a key indicator for testing positive. While age was found to 

play an important role in susceptibility and prognosis of COVID-19 patients (1, 2, 14),  this study 

identified that older patients were more prone to testing positive, and had a shorter window for 

doing so. This result was consistent with Liu (15). It further revealed that the age effect did not 

fade as time elapsed. 

While previous research showed that both genders are susceptible to SARS-CoV-2 virus 

infection(1, 3), this study found that gender difference between FNAC-P and FNAC-N patients 

was statistically significant.  Although gender was not significant in the univariate context, in the 

multivariate context, the effect of gender was significant and robust, as both the logistic 

regression and the AFT model provided strong evidence to support it. 

This study also prompts us to think about whether the current quarantine standards for 

discharging patients are correct. According to the guidelines for the diagnosis and treatment of 

COVID-19 in China, when a patient tested negative twice in the nucleic acid test (an interval of 

1-2 days), the patient could go home. However, one recent study reported that the detectable 

SARS-CoV-2 RNA persisted for a median of 20 days in survivors and that it was sustained until 

death in nonsurvivors (8). And some patients were later found to test positive after discharge. 

Some researchers believe that recovered patients may still carry the virus (16); and that the viral 
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load of some patients may not accumulate to a high level enough for testing positive. While 

others believe that sampling, patient stages, reagent sources, laboratory operations, and other 

factors could affect test outcome.  Our models help detect a delayed time window of testing 

positive with the analysis of some clinical characteristics and explained the variety in the time 

windows of COVID-19 patients.  As a result, medical staff should sample at an appropriate time, 

taking clinical characteristics into consideration, so as to reduce false negatives. 

Several limitations should be considered when interpreting these findings. Firstly, this is a 

single center, and retrospective study. The results need more multiple, prospective research to 

verify it. Secondly, with the exception of the time window, there are other reasons related to 

false negative results. For example, it has been reported that the sensitivity of SARS-CoV-2 

nucleic acid detection of sputum specimens is higher than that of pharyngeal swabs (7, 17), 

which may be related to the main invasion of SARS-CoV-2 on lower respiratory tract cells. 

However, a dry cough is the main manifestation of COVID-19 patients, imposing difficulty on 

obtaining sputum specimens. With an unsatisfactory liquefaction of sputum specimen, false 

negative nucleic acid results increase. In addition, the collection of sputum specimen from the 

lower respiratory tract is easy to cause spatter, which increases the risk of infection for the 

operator, so it is not recommended to be used in an outpatient clinic.  

In conclusion, we present what we believe to be one of the first statistical models for 

predicting nucleic acid test results for patients diagnosed with COVID-19. The predictive model 

of time window for testing positive could help clinicians identify patients at a higher risk and 

improve the rate of accurate diagnosis of COVID-19. The model can be extended to predict false 

negative of other tests for SARS-CoV-2. More external validation studies are now required to 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 30, 2020. .https://doi.org/10.1101/2020.03.26.20043042doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20043042


 19 

demonstrate predictions in diverse patient populations. In our follow-up studies, further 

refinement of this model could be achieved by including novel clinical predictors.  
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Figure Legends 

Figure 1. Kaplan–Meier time-to-event curves.  

A. K-M plot for ground glass opacity (GGO) detected vs. not detected in CT imaging reports. 

The lower detected curve showed a shorter time window for testing positive. 

B. K-M plot for consolidation detected vs. not detected in CT imaging reports. The higher 

detected curve showed a longer time window for testing positive. 

C. K-M plot for basophils in blood routine tests. Lab results were divided into four quartiles by 

the values, with the 1st quartile including 25% of patients of the lowest test results, and so on. 

Higher level of basophils delayed the time window for testing positive. 

D. K-M plot for eosinophils in blood routine tests. Lab results were divided into four quartiles by 

the values, with the 1st quartile including 25% of patients of the lowest test results, and so on. 

Higher level of eosinophils delayed the time window for testing positive. 

E. K-M plot for fever symptom reported in patients’ visits. Patients with fever had a shorter time 

window for testing positive. 

F. K-M plot for chest distress symptom reported in patients’ visits. Patients with chest distress 

had a longer time window for testing positive. 

G. K-M plot for four age groups difference. “Young” was defined as age ≤ 35. “Middle age” was 

for age in the range of (35, 55]. “Younger old” was for age in (55, 74], and “Old” was for age 

greater than 74. Older patients were related to a shorter time window for testing positive. 

H. K-M plot for gender difference. Male patients on average had a shorter time window for 

testing positive.  
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Figure 2. Receiver operating characteristic curves of three different model specifications. 

Receiver operating characteristic curves of three different model specifications are plotted. 

Model 1 included CT imaging factors, controlling for age and gender. Model 2 included the 

factors in model 1, plus six clinical symptoms and time gap between getting sick and CT/tests. 

Model 3 included all the factors in model 2, plus four blood routine test items. 

Figure 3. Predicting positive testing outcome windows for diagnosed patients.  

A. For a 37-year-old male patient with consolidation detected but not ground glass opacity in his 

CT imaging report, fever reported from his clinic visit record, and the blood routine test results 

(lymphocytes: 1.68×109/L, basophils: 0.01×109/L, eosinophils: 0.04×109/L and neutrophils: 2.56

×109/L), it was predicted that the time window for testing positive started at 10.49 days since 

getting sick. The patient took the test on day 21, and he had a chance greater than 50% to test 

positive. 

B. a 66-year-old female patient with both ground glass opacity and consolidation detected in her 

CT imaging report, fever reported from her clinic visit record, and the blood routine tests results 

(lymphocytes: 1.07×109/L, basophils: 0.015×109/L, eosinophils: 0.05×109/L and neutrophils: 

5.65×109/L), it was predicted that the time window for testing positive started at 3.77 days since 

getting sick. The patient took the test on day 11, so she had a chance greater than 50% to test 

positive.  
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Table 1. Baseline and characteristics of 1324 patients 

Diagnosed COVID-19 

Patients (N=1324)  

First nucleic acid test outcome 

Basic characteristics 
Positive  

(N=633) 

Negative 
(N=691)  

Total  

(N=1324)  
P value† 

Age, mean (SD), y  51 (14.9) 47 (15.4) 49 (15.3) <0.001‡ 

Young (≤35) y, n(%) 105 (16.6) 177 (25.6) 282 (21.3) <0.001 

Middle age (>35–≤55) y, n(%) 254 (40.1) 288 (41.7) 542 (40.9) 

Younger old (>55–≤74) y, n(%) 247 (39.0) 208 (30.1) 455 (34.4) 

Old (>74) y, n(%) 27 (4.3) 18 (2.6) 45 (3.4) 

Gender, n(%)     

Female  325 (51.3) 348 (50.4) 673 (50.8) 0.721 

Male 308 (48.7) 343 (49.6) 651 (49.2) 

Classification of disease, n(%)     

Light 604 (95.4) 666 (96.4) 1 270 (95.9) 0.455§ 

Severe  26 (4.1) 24 (3.5) 50 (3.8) 

Critical  3 (0.5) 1 (0.1) 4 (0.3) 

CT image characteristics, n(%)     

Ground-glass opacity 383 (60.5) 288 (41.7) 671 (50.7) <0.001 

Patchy shadows  412 (65.1) 361 (52.2) 773 (58.4) <0.001 

Subsolid 7 (1.1) 9 (1.3) 16 (1.2) 0.744 

Consolidation 71 (11.2) 96 (13.9) 167 (12.6) 0.143 

Bilateral pulmonary 533 (84.2) 498 (72.1) 1 031 (77.9) <0.001 

Unilateral pulmonary 284 (44.9) 404 (58.5) 688 (52.0) <0.001 

Initial symptoms, n(%)     

Fever 507 (80.1) 470 (68.0) 977 (73.8) <0.001 

Cough  201 (31.8) 215 (31.1) 416 (31.4) 0.802 

Fatigue  84 (13.3) 85 (12.3) 169 (12.8) 0.598 

Chest distress 71 (11.2) 98 (14.2) 169 (12.8) 0.106 
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Diarrhea 15 (2.4) 13 (1.9) 28 (2.1) 0.537 

Loss of appetite 32 (5.1) 23 (3.3) 55 (4.2) 0.116 

Blood routine test     

Lymphocytes (×109/ L; NR: 1.1-3.2)     

Median (IQR) 1.21 (0.93-1.59) 1.45 (1.07-1.93) 1.33 (1.00-1.76) <0.001†† 

Increased, n% 4 (0.6) 20 (2.9) 24 (1.8) <0.001 

Decreased, n% 247 (39.0) 180 (26.1) 427 (32.3) 

Basophils (×109/L; NR: 0-0.1)     

Median (IQR) 0.01 (0.00-0.01) 0.01 (0.01-0.02) 0.01 (0.005-0.02) < 0.001†† 

Increased, n% 0 (0.0) 5 (0.7) 5 (0.4) 0.063§ 

Eosinophils (×109 /L; NR: 0.02-0.52)      

Median (IQR) 0.01 (0.00-0.03) 0.03 (0.005-0.08) 0.02 (0.00-0.06) < 0.001†† 

Increased, n% 1 (0.2) 6 (0.9) 7 (0.5) < 0.001§ 

Decreased, n% 398 (62.9) 263 (38.1) 661 (49.9) 

Neutrophils (×109/L; NR: 1.8-6.3)      

Median (IQR) 3.50 (2.59-4.64) 3.77 (2.70-5.27) 3.63 (2.63-4.91) 0.001†† 

Increased, n% 59 (9.3) 102 (14.8) 161 (12.2) 0.009 

Decreased, n% 42 (6.6) 47 (6.8) 89 (6.7)  

COVID-19 = Coronavirus Disease 2019; SD = Standard deviation; NR = Normal range; IQR = interquartile range. 

†P values comparing COVID-19 positive group and negative group were from χ² test. 

‡P value was calculated by T test. 

§P values were calculated by Fisher exact test. 

††P values were calculated by Mann-Whitney test.    
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Table 2. Estimation results for logistic regression and accelerated failure time (AFT) model 

 
Logistic regression for 

false negative testing outcome 

 AFT model on 

time window for testing positive 

Characteristic Odds ratio (95% CI) P value  Effect on timespan (95% CI) P value 

CT imaging factors      

Ground glass opacity 0.56 (0.44-0.71) < 0.001  -0.26 (-0.38 - -0.12) < 0.001 

Patchy shadows 0.82 (0.64-1.06) 0.12  0.02 (-0.14-0.22) > 0.2 

Subsolid 1.93 (0.66-5.68) > 0.2  0.36 (-0.37-1.92) > 0.2 

Consolidation 1.57 (1.08-2.27) 0.02  0.44 (0.1-0.88)  0.01 

Bilateral pulmonary 0.74 (0.53-1.04) 0.08  -0.08 (-0.29-0.2) > 0.2 

Unilateral pulmonary 1.46 (1.11-1.9) 0.01  0.16 (-0.04-0.4) 0.12 

Blood routine tests      

Lymphocytes 1.1 (0.9-1.35) > 0.2  0.18 (-0.01-0.41) 0.07 

Basophils* 1.28 (1.14-1.44) < 0.001  0.23(0.12-0.35) < 0.001 

Eosinophils* 1.29 (1.03-1.62) 0.03  0.41(0.15-0.74) < 0.001 

Neutrophils 1.06 (1-1.12) 0.07  0.03 (-0.02-0.07) > 0.2 

Clinic symptoms      

Fever 0.7 (0.51-0.96) 0.02  0.00 (-0.21-0.26) > 0.2 

Cough 0.86 (0.65-1.13) > 0.2  -0.03 (-0.2-0.18) > 0.2 

Fatigue 0.9 (0.61-1.34) > 0.2  0.14 (-0.13-0.49) > 0.2 

Chest distress 1.17 (0.8-1.69) > 0.2  0.4 (0.07-0.83) 0.01 

Diarrhea 0.74 (0.31-1.74) > 0.2   0.12 

Loss of appetite 0.86 (0.46-1.63) > 0.2   > 0.2 

Demographic factors       

Age 0.98 (0.97-0.99) < 0.001  -0.02 (-0.03- -0.01) < 0.001 

Gender-Male 0.36 (0.15-0.84) 0.02  -0.61(-0.8- -0.26) < 0.001 

* Unit adjustment in both analyses with basophils (measured as X107 per L) and eosinophils (measured as X108 per 
L) used.  
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Figure 1. Kaplan–Meier time-to-event curves

A. K-M plot for ground glass opacity (GGO) detected vs. not detected in CT imaging reports. The
lower detected curve showed a shorter time window for testing positive.

B. K-M plot for consolidation detected vs. not detected in CT imaging reports. The higher detected
curve showed a longer time window for testing positive.
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C. K-M plot for basophils in blood routine tests. Lab results were divided into four quartiles by the
values, with the 1st quartile including 25% of patients of the lowest test results, and so on. Higher level
of basophils delayed the time window for testing positive.

D. K-M plot for eosinophils in blood routine tests. Lab results were divided into four quartiles by the
values, with the 1st quartile including 25% of patients of the lowest test results, and so on. Higher level
of eosinophils delayed the time window for testing positive.
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E. K-M plot for fever symptom reported in patients’ visits. Patients with fever had a shorter time window
for testing positive.

F. K-M plot for chest distress symptom reported in patients’ visits. Patients with chest distress had a
longer time window for testing positive.
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G. K-M plot for four age groups difference. “Young” was defined as age ≤ 35. “Middle age” was for
age in the range of (35, 55]. “Younger old” was for age in (55, 74], and “Old” was for age greater than
74. Older patients were related to a shorter time window for testing positive.

H. K-M plot for gender difference. Male patients on average had a shorter time window for testing
positive.
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Figure 2. Receiver operating characteristic curves of three different model
specifications

Receiver operating characteristic curves of three different model specifications are plotted. Model
1 included six CT imaging characteristics, controlling for age and gender. Model 2 included all the
factors in model 1, plus six clinical symptoms and time gap between getting sick and CT/tests.
Model 3 included all the factors in model 2, plus four blood routine test items.
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Figure 3. Predicting positive testing outcome windows for diagnosed patients
A

For a 37-year-old male
patient with consolidation
detected but not ground
glass opacity in his CT
imaging report, fever
reported from his clinic visit
record, and the blood
routine test results
(lymphocytes: 1.68X109/L,
basophils: 0.01X109/L,
eosinophils: 0.04X109/L
and neutrophils:
2.56X109/L), it was
predicted that the time
window for testing positive
started at 10.49 days since
getting sick. The patient
took the test on day 21,
and he had a chance
greater than 50% to test
positive.

B

For a 66-year-old female
patient with both ground
glass opacity and
consolidation detected in
her CT imaging report,
fever reported from her
clinic visit record, and the
blood routine tests
results (lymphocytes:
1.07X109/L, basophils:
0.015X109/L, eosinophils:
0.05X109/L and
neutrophils: 5.65X109/L),
it was predicted that the
time window for testing
positive started at 3.77
days since getting sick.
The patient took the test
on day 11, so she had a
chance greater than 50%
to test positive.
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