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ABSTRACT. Existing methods to infer the relative roles of age groups in epidemic transmission can

normally only accommodate a few age classes, and/or require data that are highly specific for the dis-

ease being studied. Here, symbolic transfer entropy (STE), a measure developed to identify asym-

metric transfer of information between stochastic processes, is presented as a way to determine

which age groups drive an epidemic. STE provides a ranking of which age groups dominate trans-

mission, rather than a reconstruction of the explicit between-age-group transmission matrix. Using

simulations, we establish that STE can identify which age groups dominate transmission, even when

there are differences in reporting rates between age groups and even if the data is noisy. Then, the

pairwise STE is calculated between time series of influenza-like illness for 12 age groups in 884 US

cities during the autumn of 2009. Elevated STE from 5-19 year-olds indicates that school-aged chil-

dren were the most important transmitters of infection during the autumn wave of the 2009 pandemic

in the US. The results may be partially confounded by higher rates of physician-seeking behaviour

in children compared to adults, but it is unlikely that differences in reporting rates can explain the

observed differences in STE.

KEYWORDS: Symbolic transfer entropy; pandemic influenza; age structure; electronic medical

records; influenza-like illness

1. INTRODUCTION1

Age is a key predictor of a person’s rate of both acquiring [1, 2, 3, 4, 5, 6] and transmitting [7, 8, 9]2

influenza. Children tend to contribute more to influenza transmission than adults do [4, 7, 8], but3

the precise epidemiological roles of different age groups can shift from season to season [10] and4

may change markedly in pandemic years [11]. From a public health perspective, untangling the5

relative roles of different age groups could help guide targeted vaccination strategies [7, 12, 13, 14]6
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and other age-related interventions, like the selective closure of schools [15, 16, 17]. However,7

data with sufficient resolution to identify detailed epidemiological relationships between age groups8

has so far been scarce, and even when such data exist, current methods are insufficient for reliably9

uncovering those relationships.10

Electronic medical records (EMRs) help address the issue of data scarcity by providing high-11

volume influenza-like illness (ILI) incidence data with detailed age structure [18]. EMRs are rou-12

tinely produced by physicians for insurance purposes during the majority of outpatient visits in the13

United States [18]. Since EMRs generally contain syndromic illness classifications, EMR-based14

estimates of influenza incidence are subject to noise from non-ILI respiratory infection. EMR-15

based disease incidence estimates are also subject to geographic and demographic variation in16

physician-seeking behaviour. Laboratory-confirmed influenza cases, as collected routinely by the17

Centers for Disease Control and Prevention (CDC) [19], provide more specific estimates of in-18

fluenza incidence, but at substantially lower volume. Influenza incidence estimates from online19

search platforms and social media websites like Google [20] and Twitter [21] can provide massive20

amounts of data, but these sources’ reliability has been called into question, and they lack detailed21

age information [22]. Dedicated online platforms such as FluNearYou in the US and FluSurvey in22

the UK, which gather reports of ILI symptoms from community volunteers [23, 24], hold some23

promise for supplementing traditional ILI data streams [25, 26, 27], but represent a relatively small24

convenience sample of the population. So, while other data sources exist, EMRs offer a relatively25

promising and so-far underutilised source of fine-scale data on influenza incidence in the United26

States [18, 22].27

Previous attempts to infer the relative importance of different age groups for the transmission of28

influenza have sought to either reconstruct the explicit next-generation matrix (NGM) [3, 28, 29]29

or to infer the relative risk of infection between age groups [4]. The NGM-based methods have30

only been applied to scenarios with at most two age groups (children and adults), in part because31

they require strong assumptions about the structure of the next-generation matrix which become32

increasingly unrealistic as the number of age classes grows. The relative risk method [4] has been33

used to rank the importance of five age groups for the transmission of influenza, but requires data34

with high specificity for influenza, effectively precluding ILI datastreams and the use of EMRs in35

particular.36

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 19, 2019. .https://doi.org/10.1101/19005710doi: medRxiv preprint 

https://doi.org/10.1101/19005710
http://creativecommons.org/licenses/by-nc-nd/4.0/


STE REVEALS THE AGE STRUCTURE OF PANDEMIC INFLUENZA TRANSMISSION 3

Symbolic transfer entropy (STE) [30] offers a way to infer the relative transmissive importance of37

possibly many age groups from ILI data. STE is an extension of transfer entropy (TE) [31], which38

measures the amount of information the past states of one stochastic process provide about the39

transition probabilities of another. Intuitively, the TE is a measure of the amount of information40

“transferred” from one stochastic process to another. To compute the STE, a time series is sym-41

bolised using a scheme that encodes its qualitative structure in a low-dimensional space, and then42

the TE is calculated from the relative frequencies of these symbols. The symbolisation scheme43

makes the STE robust to minor point-wise noise and to systematic shifts in amplitude, which in the44

context of EMR ILI data might arise from the presence of non-influenza ILI cases and from differ-45

ences in reporting rate between age groups. These benefits come with the trade-off of requiring46

relatively large amounts of data compared to existing methods for inferring the age structure of47

disease transmission. STE has been used to study epileptogenic neural signals and the dis-48

semination of information through social networks [30, 32], but to our knowledge has not been49

systematically evaluated as a means of providing insight into infectious disease transmission. TE50

and STE are similar to other model-free methods that measure shared information and so-called51

‘causal’ relationships between stochastic processes, including mutual information [31], Granger52

causality [33], and convergent cross mapping [34]. Permutation entropy, a related measure, has53

recently been used to quantify the predictability of infectious disease outbreaks [35].54

Here, we use influenza-like outbreak simulations to demonstrate that STE reliably identifies the55

age groups that drive influenza transmission. Then, we utilise an EMR-based dataset capturing56

ILI incidence from 884 ZIP (postal) codes and 12 age classes across the United States to rank57

the relative importance of the various age groups in the transmission of the autumn wave of the58

2009 A/H1N1pdm influenza pandemic in that country. We conclude that school-aged children59

(5–19 year-olds) were disproportionately responsible for transmitting influenza to infants through60

working-age adults in the autumn of 2009, in broad agreement with other findings. Our work61

demonstrates that STE could serve as an important tool for the detailed epidemiological analysis62

of age structure, especially as EMR data become more prevalent.63

2. MATERIALS AND METHODS64

2.1. Data. The data come from a convenience sample of CMS-1500 electronic medical claims65

forms submitted by primary care physicians across the US and maintained by SDI health (now66
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IQVIA). Each claim is associated with a single outpatient visit, and includes one or more ICD-967

codes [36] listed by the physician that describe the patient’s illness. The overall sample is thought68

to capture over 50% of all outpatient visits in the US in 2009 [18]. The records are binned weekly69

and aggregated geographically by the first three digits of the ZIP (postal) code of the practice from70

which they are submitted [37]. These three-digit ZIP codes will be referred to simply as ‘ZIPs’ (not71

to be confused with the finer five- or ten-digit ZIP codes, also assigned to many mailing addresses72

in the US [36]). Time series of weekly influenza-like illness (ILI) incidence are created by extracting73

claims with a direct mention of influenza, or fever combined with a respiratory symptom, or febrile74

viral illness (ICD-9 487-488 OR [780.6 and (462 or 786.2)] OR 079.99), following Viboud et al.75

(2014) [18]. For each ZIP, the number of ILI cases in each week is divided by the total number76

of patients who visited a physician in that ZIP during that week, yielding an ‘ILI ratio’ time series.77

There are 884 ILI ratio time series, one for each ZIP in the lower 48 US states, each spanning78

52 weeks from the week commencing 4 Jan 2009 through the week commencing 27 Dec 2009.79

The correspondence between the SDI-ILI dataset and reference influenza surveillance data from80

the US Centers for Disease Control and Prevention (CDC) is described in depth by Viboud et al.81

(2014) [18].82

2.2. Symbolic transfer entropy. If I and J are discrete-state and discrete-time random pro-83

cesses such that it and jt are the states of processes I and J at time t, then the transfer entropy84

(TE) from process J to process I is defined as85

(1) TJ→I =
∑

ΩI ,ΩJ

p(it+1, i
(k)
t , j

(l)
t ) log

(p(it+1|i(k)
t , j

(l)
t )

p(it+1|i(k)
t )

)

where i
(k)
t is shorthand notation for the k-step history of process i, (it, . . . , it−k+1), and similarly86

j
(l)
t = (jt, . . . , jt−l+1). The logarithm has base 2, so that the transfer entropy is measured in87

bits. The sum is over all possible combinations of states (it+1, i
(k)
t , j

(l)
t ), where it+1, i

(k)
t ∈ ΩI and88

j
(l)
t ∈ ΩJ , and ΩI and Ωj are the state spaces for processes I and J . Eq. 1 is a Kullback-Leibler89

divergence that measures how much process I deviates from the generalised Markov property90

p(it+1|it, . . . , i1) = p(it+1|i(k)
t ), given the last l states of process J . In practice, the histories are91

often fixed at length 1 (k = l = 1) and the probabilities are estimated from simple counts of the92

observed data [31].93
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The TE is limited in that it is only defined for stochastic processes with a discrete state space.94

Staniek and Lehnertz (2008) [30] introduce symbolic transfer entropy (STE) as a way to calculate95

information transfer between time series processes that have continuous- or near-continuous state96

spaces. Motivated by the insight that the relative amplitudes of subsequent observations from97

these sorts of processes may provide enough information to reveal interactions between them,98

they propose symbolising the time series based on ordered m-tuples of observations (Fig. S1).99

This reduces the (near-)continuous state space of the original stochastic process to a discrete set100

of m! symbols. In practice, m is often chosen to be 2 or 3, giving a state space of 2 or 6 symbols,101

respectively. For m = 3, we also tested the effect of collapsing the two concave-up and the two102

concave-down symbols into a single symbol each, resulting in a smaller state space (four vs. six103

symbols) while capturing a similar level of qualitative detail. Details on the symbolisation of time104

series and the empirical calculation of the STE are provided in the Supplemental Information.105

2.3. SIR epidemic simulation model. For simulations with just two age classes, we use a sto-106

chastic SIR model implemented using the Gillespie algorithm [38]. For all simulations, the basic107

reproduction number R0 is set at 1.5, consistent with estimates of the basic reproduction number108

of 2009 A/H1N1 pandemic influenza [39, 40]. We consider a population size of N = 1, 000 split109

evenly between classes 1 and 2, so that N1 = N2 = 500 (age groups with different population110

sizes are also considered in the Supplemental Information). The expected time to recovery 1/γ is111

assumed constant for all age groups and is set at 7 days, which is consistent with estimates of the112

infectious period for 2009 pandemic influenza [40]. Table S1 gives the rates at which individuals of113

each class stochastically progress from susceptible to infected to recovered. Infections are binned114

into week-long intervals, and Poisson noise is added to simulate non-influenza influenza-like ill-115

ness. Fig. S7 depicts five incidence time series produced using the model. Full details on the116

model and simulation procedure are given in the Supplemental Information.117

2.4. Poisson epidemic simulation model. For more than two age classes, the full stochastic118

SIR model becomes too computationally demanding for repeated simulations to be practical. So,119

we also define an outbreak simulation model based on a self-exciting Poisson process, similar to120

[41]. We choose the time units t to match the mean generation interval of the infection, which we121

set at 3.5 days [42]. To generate epidemics, we use a stepwise-constant effective reproduction122

number Rt, such that Rt = 1.5 for the first four weeks (eight generations) of the outbreak and123
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Rt = 0.8 thereafter. Infections are binned from the half-week generations into week-long intervals,124

and additional Poisson noise is added to each bin to simulate non-influenza influenza-like illness.125

For simulations with two age classes, the Poisson model yields epidemics of similar length and126

magnitude as the two-age-class SIR model (compare Figs S7 and S8), and yields comparable STE127

inferences (see Fig. 1), which suggests that the Poisson model is an acceptable approximation to128

the stochastic SIR model. Full details on the implementation of the Poisson model are given in the129

Supplemental Information.130

2.5. Reporting rates. Only a fraction of influenza cases are represented in the SDI-ILI dataset,131

since many people do not seek medical care for their symptoms. The tendency to seek medical132

care given infection with an ILI can vary by age group [43]. To factor this into the outbreak simula-133

tions, we introduce a reporting rate vector c in which element ci gives the expected proportion of134

individuals in age class i who seek medical care when infected with an ILI. It is then possible to135

simulate a ‘reported’ disease incidence time series:136

(2) Y obs
i,t ∼ Binomial(Yi,t, ci)

where Yi,t is the simulated number of infected individuals in age class i at time t (under either137

model) and Y obs
i,t is the simulated reported number of infections in age class i at time t.138

3. RESULTS139

3.1. STE reveals transmission asymmetries between two coupled age groups. We first cal-140

culate the STE between two age groups as the within- and between-group reproduction ratios141

vary. We consider between-group transmission that ranges from (a) fully decoupled to fully sym-142

metric, and (b) fully symmetric to strongly driven by Group 1. The between-group infectiousness is143

specified using a “relative reproduction matrix” r, which is a scaled version of the next-generation144

matrix [28], such that ri,j/rk,j gives the proportional difference in group j’s infectiousness for145

group i vs. group j. For example, if ri,j/rk,j = 2, then a member of group j is expected to infect146

twice as many members of group i than of group k. Scenario (a) is encapsulated by the relative147

reproduction matrix148
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(3) ra =

 1 za

za 1


where za ∈ [0, 1]. Scenario (b) is encapsulated by the relative reproduction matrix149

(4) rb =

1 + 3zb 1

1 + zb 1


where zb ∈ [0, 1].150

Fig. 1 depicts the change in STE under these two transmission scenarios, calculated from151

epidemics simulated using the stochastic SIR model (Fig. 1 A–B) and the Poisson model (Fig. 1152

C–D). Each pane in Fig. 1 is produced using 100 ensembles of 800 simulated epidemics for each153

value of za and zb between 0 and 1 in steps of size 0.1. For each ensemble, the 800 simulated154

incidence time series are symbolised using symbols of length m = 3, and then the between-group155

transfer entropies are estimated using the relative symbol frequencies (see Fig. S3), producing 100156

STE estimates for each value of za and zb. The solid blue (black) lines in Fig. 1 depict the mean157

Group 1→2 (Group 2→1) STE for each value of za and zb across the 100 ensembles. The shaded158

blue (black) bands depict the range of the middle 95 Group 1→2 (Group 2→1) STE estimates for159

each value of za and zb across the 100 ensembles, analogous to a 95% confidence interval. Under160

both the stochastic SIR and the Poisson models, the between-group STE increases steadily as161

the transmissive coupling ranges from none to symmetric (Fig. 1 A, C). Once Group 1 begins to162

dominate transmission, the Group 1→2 STE increases and the Group 2→1 STE decreases (Fig.163

1 B, D), accurately capturing the transmissive relationship between the age groups.164

When Group 1 drives transmission, the Poisson model yields a smaller difference in the STE165

between the two age groups than the stochastic SIR model does (Fig. 1 B, D). Visual inspection166

suggests that the simulated time series produced using the stochastic SIR model tend to feature167

more stochastic fluctuations than the time series produced using the Poisson model (Figs S7 and168

S8). Since STE is effectively a measure of how these stochastic fluctuations transmit from one169

age group to another, this may explain why the differences in STE calculated using the Poisson170

model are relatively less pronounced. Overall, the qualitative similarity between the STE estimates171
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from the two transmission models suggests that the Poisson model is an acceptable approxima-172

tion to the stochastic SIR model, and that simulations from the Poisson model tend to produce173

more conservative estimates of the difference in STE between age groups than the stochastic SIR174

model.175
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FIGURE 1. Mean (95% CI) Group 1→2 (blue) and Group 2→1 (black) STE values
as the coupling between the two groups ranges from none to fully symmetric (A
and C), and from fully symmetric to strongly driven by Group 1 (B and D). The
curves are produced by simulating 100 ensembles of 800 epidemics each from the
stochastic SIR model (A and B) or the Poisson model (C and D) for each value of
za and zb between 0 and 1 in steps of 0.1, and then calculating the between-group
STE for each ensemble. The relative reproduction matrices that capture these two
coupling scenarios are given in Eqs 3 and 4.

3.2. STE reveals transmission asymmetries despite incomplete reporting. Next, we evaluate176

how incomplete reporting influences the detection of asymmetries in transmission strength. Fig.177

2 depicts the mean estimated STE across 100 ensembles of 800 epidemics each for reporting178

rates ci between 0.1 and 1 in steps of 0.1, with equal reporting rates across all age groups. The179

epidemic simulations are produced using the Poisson model with relative reproduction matrix180
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(5) r =


1 2 1 1

1 4 1 1

1 2 1 1

1 1 1 1


which could represent ‘children’ (Group 2) having strong within-group transmission (r2,2 = 4) and181

intermediate transmission to ‘infants’ (Group 1) and ‘adults’ (Group 3) (r1,2 = r3,2 = 2). Even for182

reporting rates as low as 0.1, the STE values from Group 2 are higher than those from any other183

group. As the reporting rates increase, the differences become more pronounced, accurately184

capturing the transmissive dominance of Group 2 over the other groups. The estimated STE185

increases with reporting rate for all age groups, but more quickly for Group 2 than for the other186

age groups. According to Biggerstaff et al. (2012) [43], true reporting rates for ILI in the US during187

the 2009 pandemic were between 0.4 and 0.6, for which the transmissive dominance of Group 2188

is clear.189

3.3. STE reveals transmission asymmetries between twelve coupled age groups. To test the190

ability of STE to identify transmission asymmetries from data on the scale of the SDI-ILI dataset,191

we use the Poisson model to simulate 100 ensembles of 800 epidemics each with 12 age groups.192

We consider the scenarios (a) with the 12× 12 relative reproduction matrix Eq. S48, representing193

high transmission from Groups 3–5 to Groups 3–5 (ri,j = 4 for i, j ∈ {3, 4, 5}), intermediate194

transmission from groups 3–5 to groups 1–2 and 6–9 (ri,j = 2 for i ∈ {1, 2, 6, 7, 8, 9} and j ∈195

{3, 4, 5}), baseline transmission (ri,j = 1) between all other groups, and uniform 50% reporting196

rate across all groups, and (b) with uniform transmission strength across all age groups (i.e. a197

12× 12 relative reproduction matrix with ‘1’ for all entries), 60% reporting rate for groups 1–5, and198

40% reporting rate for groups 6–12, following the estimates of Biggerstaff et al. (2012) [43] for the199

ILI reporting rates in the United States during the 2009 influenza pandemic for children and adults,200

respectively.201

Fig. 3 depicts the mean pairwise STE estimates between the 12 age groups under both sce-202

narios. The square in row i and column j represents the STE from Group j to Group i. Darker203

squares correspond to higher STE. For the asymmetric transmission/uniform reporting rate sce-204

nario (scenario (a), Fig. 3A), the STE clearly captures the transmissive dominance of Groups 3,205
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FIGURE 2. Mean pairwise STE values (solid lines) with 95% confidence intervals
(shaded bands) for epidemics strongly driven by Group 2 under a range of reporting
rates c. The curves are produced by simulating 100 ensembles of 800 epidemics
each from the Poisson model for each value of c between 0.1 and 1 in steps of 0.1,
and then calculating the between-group STE for each ensemble. The reporting rate
ci (see Eq. 2) is varied uniformly across all age groups i. The relative reproduction
matrix that specifies within- and between-group transmission rates is given by Eq.
5. The plot in row i and column j depicts the STE from group j to group i.

4, and 5. The pairwise STE does not simply reproduce the structure of the relative reproduction206

matrix, as evidenced by the variability in mean pairwise STE for age groups other than Groups207

3–5. This is because the STE captures a ‘knock-on’ effect for which information transferred from208

a strongly-driving age group can propagate through other age groups. For the uniform transmis-209

sion/variable reporting rate scenario (scenario (b), Fig. 3B), it is evident that elevated reporting210

rates can also lead to elevated STE, both to and from the groups with elevated reporting rate211

(Groups 1–5). Overall, the variability in STE due to differences in reporting rate appears to be212

smaller than the variability in STE due to differences in transmission strength. Further discussion213

on the effect of reporting rates on STE may be found in the Supplemental Information.214
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FIGURE 3. Mean pairwise STE values between 12 groups for epidemics strongly
driven by Groups 3, 4, and 5 and uniform 50% reporting rate across all age groups
(A), and for epidemics driven equally by all age groups, 60% reporting for Groups
1–5, and 40% reporting for Groups 6–12 (B). A box in row i and column j corre-
sponds to the STE from group j to group i, where darker shades corresponds to
higher STE. To generate the STE values, 100 ensembles of 800 epidemics were
simulated from the Poisson model using relative rate matrix Eq. S48 for (A) or a
relative rate matrix with all entries equal to 1 for (B). Each ensemble generates 144
pairwise STE values, so that each box represents the mean value across the 100
ensembles. The raw values are listed in Eqs S49 and S50.

3.4. School-aged children contributed disproportionately to transmission during the au-215

tumn 2009 A/H1N1pdm influenza outbreak in the US. To estimate the pairwise STE between216

the 12 age groups represented in the SDI-ILI dataset during the 2009 A/H1N1pdm influenza pan-217

demic, we extract data from the 25 weeks between 12 July 2009 and 27 December 2009 and218

symbolise the ILI time series for each age group in each ZIP using a symbol length of m = 3.219

The pairwise STE values between all age groups are depicted in Fig. 4. The STE is highest in220

the columns representing 5–19 year-olds. This provides evidence that there was systematically221

elevated transmission from school-aged children to infants through adults. The adult-adult STE222

is also moderately elevated, suggesting that adults may have played a relatively important role in223

transmitting the outbreak amongst themselves, though this could also be explained by elevated224

transmission from children alone. Compare, for example, to the left-hand plot in Fig 3: in that225

simulation, only transmission from children is elevated, but it causes a moderate elevation in the226

STE from adults and infants to the other age groups due to the knock-on effect.227
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As a control, we also calculated the pairwise STE between all age groups during 25 post-228

pandemic weeks, from 10 January 2010 through 27 June 2010. For these months, there is no229

apparent age structure in transmission (see Supplemental Information). We also calculated the230

pairwise STE between age groups for six previous influenza seasons (see Supplemental Informa-231

tion). For the 2009 pandemic, there is is a higher maximum pairwise STE and greater variation232

in the pairwise STEs than for any previous season. This could reflect differences in baseline ILI,233

which was likely lower during the autumn 2009 pandemic wave than during the seasonal out-234

breaks, due to the pandemic’s earlier timing. A lower baseline ILI might have made pairwise dif-235

ferences in STE easier to detect in 2009. However, the relatively higher and more heterogeneous236

STE values in 2009 are also consistent with the hypothesis that school-aged children played a dis-237

proportionately large role in the spread of the 2009 pandemic, as has been described elsewhere238

[4].239

It is unlikely that differences reporting rates alone can account for the elevated STE from 5–19240

year-olds to the other age groups. The mean pairwise STE values computed from simulations241

with uniform transmission rates and unequal reporting rates in Section 3.3 range from .0057 to242

0.0084 (see Eq. S50), while the pairwise STE values computed from the SDI-ILI data range from243

0.0056 to 0.084 (see Eq. S51), an order of magnitude larger. The mean pairwise STE values244

computed from simulations with asymmetric transmission and uniform reporting rates Section 3.3245

range from 0.0047 to 0.014 (see Eq. S49), closer to the range observed from the SDI-ILI data246

but still somewhat smaller. This points towards a possible combined effect of strong transmissive247

driving from children plus elevated reporting in children. In addition, re-calculating the pairwise248

STE using probabilistic reconstructions of the pre-reporting SDI-ILI incidence time series (see249

Supplemental Information) indicate that the observed transmissive dominance of 5–19 year-olds250

persists even after adjusting for potential differences in reporting rate between children and adults.251

Furthermore, Biggerstaff et al. (2012) [43] report that 0-4 year-olds had the highest reporting rates252

for ILI in the United States in 2009, yet the STE from 0-4 year-olds is relatively low compared to253

the other age groups. If reporting rates alone could explain the observed differences in STE, the254

STE from infants should be at least as high as the STE from school-aged children.255

It is also unlikely that the unequal partitions of the age groups can explain the observed pat-256

terns in the pairwise STE. The age groups under 20 years are partitioned such that they span257
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fewer years, and thus contain fewer individuals, than the age groups above 20 years. Direct cal-258

culations and simulations (see Supplemental Information) indicate that, all else being equal, the259

out-going STE for a given group tends to increase as the group’s population size increases rel-260

ative to the sizes of the other groups. If differences in the groups’ population sizes were driving261

the observed pairwise STE values, we would expect the age groups over 20 years to appear to262

dominate transmission – which is the opposite of what we observe here.263
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FIGURE 4. Mean pairwise STE values between the 12 groups represented in the
SDI-ILI dataset during the autumn 2009 A/H1N1pdm pandemic influenza outbreak.
A box in row i and column j corresponds to the STE from group j to group i, where
darker shades corresponds to higher STE. The raw values are listed in Eq. S51.

4. DISCUSSION264

Here, we propose STE as a means of ranking which age groups contribute most to the trans-265

mission of infectious disease outbreaks. STE is chosen for its robustness to point-wise noise266

and overall amplitude shifts in time series, which especially affect the ILI data stream due to non-267

influenza respiratory illness and incomplete reporting. Simulation studies indicate that STE can268

correctly rank transmissive asymmetries between age groups. However, STE is also positively as-269

sociated with reporting rates, which can partially confound estimates of asymmetric transmission.270
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STE estimates from ILI time series data from July-December 2009 in the United States suggest271

that 5–19 year-olds were primarily responsible for driving transmission of the autumn wave of272

the A/H1N1pdm pandemic influenza outbreak. It is unlikely that this result can be explained by273

differences in reporting rates alone.274

The identification of school-aged children as the primary drivers of transmission of the 2009275

influenza pandemic in the United States agrees with most other studies on age-specific transmis-276

sion of both seasonal and pandemic influenza [4, 7, 8, 9]. Elevated transmission from school-aged277

children is likely due in part to the relatively high number of daily interpersonal contacts made by278

members of these age groups. Mossong et al. (2008) [8] for example estimate that 10–19 year-279

olds have more contacts per day than any other age group, and conclude from a modelling study280

based on empirical contact data that 5–19 year-olds are likely to both suffer the highest burden of281

disease and to drive the early-stage transmission of an outbreak transmitted by droplets through282

close contacts, like influenza. This underscores the importance of monitoring children during pan-283

demic influenza outbreaks, and potentially prioritizing school-aged children for vaccination.284

TE is closely linked to mutual information [31] and Granger causality [33]. Unlike TE, mutual in-285

formation is symmetric; that is, it measures the probabilistic dependence between two processes,286

but cannot determine the direction of information transfer between them, if there is any [31]. Mea-287

suring the delayed mutual information between two processes is one way to introduce asymmetry.288

This takes a step toward inferring whether one process influences another, by measuring shared289

information between the present state of one process and the past states of another [31]. While290

the lagged mutual information describes how one process’ history predicts the static probabilities291

of another, the TE measures how one process’ history influences the transition probabilities of292

another. Because of this, the TE is less likely to be confounded by a shared input signal, and293

is a better measure of stochastic ‘driving’ [31]. Section 2 of Kaiser and Schreiber (2002) [44]294

provides a detailed description of the differences between TE and mutual information. Granger295

causality, on the other hand, is a special case of TE that arises when the stochastic processes are296

jointly Gaussian-distributed [45]. The TE is thus better suited than Granger causality for making297

inferences on more general, possibly nonlinear, processes, though this comes at the expense of298

requiring more data and having no clear way to test statistical significance [45].299

Convergent cross mapping (CCM) [34] was developed to solve a similar problem as TE, but is300

based on somewhat different underlying theory. CCM was developed to detect so-called ‘causal’301
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relationships in partially stochastic systems with underlying deterministic structure. CCM relies302

on Takens’ theorem [46] to reconstruct candidate manifolds of the underlying dynamical system303

using lagged observations from two time series. ‘Causality’ is inferred if nearby points on one304

reconstructed manifold consistently map to nearby points on the other reconstructed manifold.305

CCM has been used to provide evidence that temperature and absolute humidity fluctuations306

drive the timing of global seasonal influenza outbreaks [47], though some controversy surrounds307

these findings [48, 49]. Nevertheless, it would be interesting to see whether CCM can reveal308

asymmetric epidemiological interactions between age groups, and to compare its findings with309

those identified using TE. Lungarella et al. (2007) [50] provide more detail on the relationships310

between various methods that infer asymmetric relationships from time series data. (As an aside,311

we prefer to avoid the term ‘causality’ with respect to these methods, despite its frequent use in312

the literature. Regardless of the vocabulary used, they have successfully detected meaningful313

relationships between real-world coupled dynamic processes [30, 32, 34, 51, 52, 53]).314

Despite the apparent well-suitedness of STE for making inferences from ILI data, its epidemio-315

logical relevance currently remains limited. The calculation of STE requires no prior epidemiolog-316

ical information whatsoever, which makes its success somewhat surprising. The next-generation317

matrix [28] is the key object for characterising age-structured, or more generally population-structured,318

disease transmission dynamics, and yet there is no obvious direct link between STE estimates319

and the NGM. It is possible that further simulation studies could help identify such a link; even320

though the STE values seem to bear little mechanistic meaning apart from the relative ordering321

of age groups that they yield, it is possible that regressing the inferred STE values on an under-322

lying known NGM could connect the pairwise STE matrix with the NGM under certain conditions.323

However, it appears unlikely that a simple link exists, especially since STE can say nothing about324

transmission within a single age group, which is necessary for filling in the diagonal entries of325

the NGM. STE and related methods such as CCM that do not explicitly incorporate mechanis-326

tic descriptions of the underlying physical system are unlikely to be able to reveal more than an327

approximate hierarchy of driving processes. Nevertheless, such a hierarchy can contain valu-328

able information, especially if developing and fitting a mechanistic model is too demanding to be329

practicable. Certain extensions to STE could also enhance its relevance for epidemiological in-330

ference. Local transfer entropy [54] and state-dependent transfer entropy [55], like the contextual331

STE (see Supplemental Information), are intended to make the TE more flexible and general, by332
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considering how information transfer may change under varying conditions or ‘meta-states’. These333

extensions may yield better insight into epidemic processes, which are inherently nonlinear and334

context-dependent, than the more traditional measurements of transfer entropy can provide.335

Perhaps the most important challenge confronting the TE and related measurements is decid-336

ing how to measure statistical power and significance. STE calculations rely on a middle level337

of stochasticity in the underlying stochastic processes; for a deterministic system, the STE will338

always be exactly zero, while for a stochastic system with too much within-sequence noise, the339

small-scale variation in amplitudes will likely mask important patterns from which the transfer of340

information might be inferred. The acceptable range of stochasticity has not been clearly defined.341

Similarly, it is unclear how best to measure when a difference in STE should be called statistically342

significant. Though this is recognised as an open and difficult problem [45, 48], it may be possible343

to make some progress by assuming that the underlying process follows certain epidemiological,344

or otherwise well-specified, dynamics.345
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[51] M. Kamiński, M. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: Granger466

causality, directed transfer function and statistical assessment of significance,” Biological Cybernetics, vol. 85,467

no. 2, pp. 145–157, 2001.468

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 19, 2019. .https://doi.org/10.1101/19005710doi: medRxiv preprint 

https://doi.org/10.1101/19005710
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 SM KISSLER, C VIBOUD, BT GRENFELL, JR GOG

[52] J. Pahle, A. K. Green, C. J. Dixon, and U. Kummer, “Information transfer in signaling pathways: a study using469

coupled simulated and experimental data.,” BMC bioinformatics, vol. 9, p. 139, 2008.470

[53] G. V. Steeg and A. Galstyan, “Information Transfer in Social Media,” Entropy, vol. 90292, no. 1, pp. 1–8, 2011.471

[54] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, “Local information transfer as a spatiotemporal filter for complex472

systems,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 77, no. 2, pp. 1–11, 2008.473

[55] P. L. Williams and R. D. Beer, “Generalized measures of information transfer,” arXiv:1102.1507, pp. 1–6, 2011.474

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 19, 2019. .https://doi.org/10.1101/19005710doi: medRxiv preprint 

https://doi.org/10.1101/19005710
http://creativecommons.org/licenses/by-nc-nd/4.0/

