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ABSTRACT 

Background: Studies in humans and experimental models highlight a role of interleukin-6 (IL-

6) in cardiovascular disease. Indirect evidence suggests that inhibition of IL-6 signaling could 

lower risk of coronary artery disease. However, whether such an approach would be effective for 

ischemic stroke and other cardiovascular outcomes remains unknown. 

Methods: In a genome-wide association study (GWAS) of 204,402 European individuals, we 

identified genetic proxies for downregulated IL-6 signaling as genetic variants in the IL-6 

receptor (IL6R) locus that were associated with lower C-reactive protein (CRP) levels, a 

downstream effector of IL-6 signaling. We then applied two-sample Mendelian randomization 

(MR) to explore associations with ischemic stroke and its major subtypes (large artery stroke, 

cardioembolic stroke, small vessel stroke) in the MEGASTROKE dataset (34,217 cases and 

404,630 controls), with coronary artery disease in the CARDIoGRAMplusC4D dataset (60,801 

cases and 123,504 control), and with other cardiovascular outcomes in the UK Biobank (up to 

321,406 individuals) and in phenotype-specific GWAS datasets. All effect estimates were scaled 

to the CRP-decreasing effects of tocilizumab, a monoclonal antibody targeting IL-6R.  

Results: We identified 7 genetic variants as proxies for downregulated IL-6 signaling, which 

showed effects on upstream regulators (IL-6 and soluble IL-6R levels) and downstream effectors 

(CRP and fibrinogen levels) of the pathway that were consistent with pharmacological blockade 

of IL-6R. In MR, proxies for downregulated IL-6 signaling were associated with lower risk of 

ischemic stroke (Odds Ratio [OR]: 0.89, 95%CI: 0.82-0.97) and coronary artery disease (OR: 

0.84, 95%CI: 0.77-0.90). Focusing on ischemic stroke subtypes, we found significant 

associations with risk of large artery (OR: 0.76, 95%CI: 0.62-0.93) and small vessel stroke (OR: 

0.71, 95%CI: 0.59-0.86), but not cardioembolic stroke (OR: 0.95, 95%CI: 0.74-1.22). Proxies for 

IL-6 signaling inhibition were further associated with a lower risk of myocardial infarction, 

aortic aneurysm, atrial fibrillation and carotid plaque. 
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Conclusions: We provide evidence for a causal effect of IL-6 signaling on ischemic stroke, 

particularly large artery and small vessel stroke, and a range of other cardiovascular outcomes. 

IL-6R blockade might represent a valid therapeutic target for lowering cardiovascular risk and 

should thus be investigated in clinical trials. 

 

Key Words: Interleukin-6; inflammation; cytokines; Mendelian randomization; genetics, 

human; atherosclerosis; stroke; coronary artery disease; cardiovascular disease. 
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CLINICAL PERSPECTIVE 

 

What is new? 

• We identified genetic proxies for downregulated IL-6 signaling that had effects on 

upstream and downstream regulators of the IL-6 signaling pathway consistent with those 

of pharmacological IL-6R blockade  

• Genetically downregulated IL-6 signaling was associated with a lower risk of ischemic 

stroke, and in particular large artery and small vessel stroke 

• Similar associations were obtained for a broad range of other cardiovascular outcomes 

 

What are the clinical implications? 

• Inhibition of IL-6 signaling is a promising therapeutic target for lowering risk of stroke 

and other cardiovascular outcomes and should be further investigated in clinical trials 
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INTRODUCTION 

Stroke is the leading cause of adult disability and the second most common cause of mortality 

worldwide1, 2 with an increasing burden on global health.3, 4 Inflammation is involved in the 

pathogenesis of ischemic stroke, as has specifically been demonstrated for large artery 

atherosclerotic stroke.5, 6 Cytokines regulate inflammatory responses5 and could thus serve as 

targets for cardiovascular disease prevention.7 In the recent Canakinumab Anti-Inflammatory 

Thrombosis Outcomes Study (CANTOS), treatment with an interleukin-1β (IL-1β) antagonist 

reduced cardiovascular event rates in patients with a history of myocardial infarction.8 However, 

whether interfering with other cytokines would likewise offer benefit remains largely unknown. 

Also, there are few data on stroke and other cardiovascular outcomes beyond coronary artery 

disease.9-11 

Interleukin-6 (IL-6), a key regulator of the inflammatory cascade, acts by binding to either its 

membrane-bound or soluble receptor (IL-6R) and induces proinflammatory downstream effects 

including increases in the levels of C-reactive protein (CRP).12, 13 IL-6 has been implicated in the 

pathogenesis of multiple inflammatory diseases and inhibitors of IL-6R are used for the 

treatment of rheumatoid arthritis,14 inflammatory bowel disease,15 and other autoimmune 

disorders.16 Downregulation of IL-6 signaling has further been proposed as a potential strategy 

for lowering cardiovascular risk.11, 13 IL-6 levels have consistently been associated with risk of 

coronary artery disease in cohort studies.17, 18 Mendelian randomization (MR) studies further 

showed that a variant in the gene encoding IL-6R with effects resembling pharmacological IL-

6R inhibition is associated with a lower risk of coronary artery disease.19, 20 Finally, secondary 

analyses from CANTOS demonstrated that the magnitude of the therapeutic benefit of IL-1β 

targeting was associated with the reduction of circulating IL-6 levels11, 21 and that even after IL-

1β inhibition, the residual cardiovascular risk was proportional to the post-treatment IL-6 

levels.22 These results provide indirect clinical evidence that interfering with IL-6 signaling 
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might lower cardiovascular risk and suggest that an approach directly targeting IL-6 signaling 

could offer additional benefit for cardiovascular prevention beyond IL-1β inhibition. 

The effects of IL-6 signaling on risk of ischemic stroke remain largely unknown. While 

population-based cohort studies have found that circulating IL-6 levels are associated with a 

higher risk of ischemic stroke,23, 24 these associations preclude conclusions about causal 

relationships because of possible confounding and reverse causation bias.25 Also, there are no 

data on etiological stroke subtypes and other cardiovascular outcomes beyond coronary artery 

disease. Developing meaningful strategies for the prevention of ischemic stroke and 

cardiovascular disease in general would require defining these relationships.26  

By using genetic variants as proxies for a trait of interest, MR overcomes key limitations of 

observational studies such as confounding and reverse causation and allows for investigation of 

causal effects on outcomes.27, 28 MR further allows for prediction of the effects of 

pharmacological interventions by using variants located close to genes encoding candidate drug 

targets.29, 30 Hence, MR has become a powerful strategy to prioritize interventions for 

exploration in clinical trials.28 

Here, leveraging data from large genome-wide association studies (GWASs)31-33 and applying 

MR analyses, we aimed to: (i) identify genetic proxies for downregulated IL-6 signaling on the 

basis of their effects on CRP levels, a well-established IL-6 signaling downstream effector,13, 20, 

34 (ii) validate their utility by comparing the consistency of their effects on upstream regulators 

and downstream effectors of the IL-6 signaling pathway with the effects of pharmacological IL-

6R inhibition, as derived from clinical trials, (iii) explore associations of genetic predisposition 

to downregulated IL-6 signaling with the risk of ischemic stroke and coronary artery disease, (iv) 

examine associations with major etiological subtypes of ischemic stroke (large artery, 

cardioembolic, and small vessel stroke), and (v) examine associations with a broad range of 

other cardiovascular phenotypes. To derive clinically meaningful effect sizes that would be 
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comparable to those derived from potential future clinical trials, we weighted our instruments 

based on the CRP-decreasing effects of tocilizumab, a monoclonal antibody targeting IL-6R. 

 

METHODS 

Selection of genetic proxies for IL-6 signaling and validation of the instruments 

The data sources for this study are described in Table 1. To identify instruments for genetic 

predisposition to downregulated IL-6 signaling, we selected variants within or near the IL6R 

gene, which encodes the receptor of IL-6. Specifically, we selected single-nucleotide 

polymorphisms (SNPs) in the IL6R gene or a region of 300 kB upstream or downstream from the 

IL6R gene (GRCh37/hg19 coordinates: chr1:154,077,669-154,741,926; Supplementary Figure 

1) that were associated with circulating CRP levels. We selected and weighted genetic 

instruments for genetic predisposition to IL-6 signaling on the basis of their associations with 

CRP levels, because elevated CRP levels are a well-described downstream effect of IL-6 

signaling (Figure 1).13, 20, 34 Genetic association estimates with circulating CRP levels were 

obtained from a GWAS of 204,402 individuals of European ancestry drawn from the Cohorts for 

Heart and Aging Research in Genomic Epidemiology (CHARGE) Inflammation Working 

Group.31 We selected variants that were associated with circulating CRP levels at genome-wide 

significance (p<5x10-8) and clumped these variants to a linkage disequilibrium (LD) threshold of 

r2 < 0.1 according to the European reference panel of the 1000 Genomes project.35 We estimated 

the variance in CRP levels explained by each of the SNPs by calculating the R2,36 and the 

strength of the instruments by calculating the F-statistic.37  

In sensitivity analyses, we restricted our selection of instruments to SNPs within the IL6R gene 

(GRCh37/hg19 coordinates: chr1:154,377,669-154,441,926), to avoid potential pleiotropic 

effects through genes neighboring IL6R and increase confidence in the effects of the instruments 

through IL-6 signaling. As the instruments used in the current setting were not identified based 
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on established biological effects, but solely on the basis of their statistical associations with CRP 

levels, in an additional sensitivity analysis, we restricted our genetic instrument to a single SNP 

(rs2228145) within the IL6R gene with well-established biological effects leading to a 

downregulation of the IL-6 signaling.20, 34, 38, 39  

To disentangle the effects of IL-6 signaling from the respective effects of CRP, we selected 

SNPs associated with CRP levels at genome-wide significance (p<5x10-8) throughout the 

genome and clumped them to r2 < 0.1. We then performed MR analyses using all these SNPs as 

instruments, and performed 10,000 permutations for each outcome using 7 randomly selected 

SNPs (the same number as those used as instruments for IL-6 signaling). We further performed 

MR analyses using SNPs at the CRP locus as instruments (within a region of 300 kB upstream or 

downstream to the CRP gene; GRCh37/hg19 coordinates: chr1: 159,382,079- 159,984,379).  

To validate the instruments, we explored their associations with circulating levels of IL-6 and 

soluble IL-6R, which have previously been reported to increase as a result of both 

pharmacological inhibition and genetic downregulation of IL-6 signaling.20 We further explored 

association with fibrinogen levels, which is a downstream effector of IL-6 signaling and 

decreases after its blockade.20 The effects of genetic variants on IL-6 levels were obtained from a 

GWAS of 8,293 healthy individuals of Finnish ancestry.40 For soluble IL-6R levels, we used the 

summary statistics from the INTERVAL study exploring the human plasma proteome,41 as made 

publicly available through the PhenoScanner database.42 For fibrinogen levels, we used GWAS 

data from the CHARGE Inflammation Working Group on 120,246 European individuals.43 

 

Outcomes 

The primary outcomes for this study were ischemic stroke and coronary artery disease. Genetic 

association estimates for ischemic stroke and coronary artery disease were derived from the 

MEGASTROKE32 and CARDIoGRAMplusC4D44 consortia, respectively. Specifically, for 
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ischemic stroke we used the European sub-dataset of MEGASTROKE (34,217 cases and 

404,630 controls) to avoid population stratification with the CRP GWAS dataset, which also 

included solely individuals of European ancestry.32 The CARDIoGRAMplusC4D refers to a 

GWAS of 60,801 cases with coronary artery disease and 123,504 controls, primarily (77%) of 

European ancestry.44 Definitions for major ischemic stroke subtypes in MEGASTROKE 

followed the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria with the following 

samples for analysis: large artery stroke (4,373 cases), cardioembolic stroke (7,193 cases), and 

small vessel stroke (5,386 cases; 404,630 controls for all subtypes).45 We further extended our 

analyses to other cardiovascular outcomes including myocardial infarction, aortic aneurysm, 

carotid artery plaque, peripheral artery disease, heart failure, atrial fibrillation, venous 

thromboembolism, deep vein thrombosis, and pulmonary embolism. The data sources and the 

sample sizes for these studies are presented in Table 1. For aortic aneurysm, heart failure, 

peripheral artery disease, deep vein thrombosis, and pulmonary embolism we used data from the 

UK Biobank, as described in Supplementary Methods.  

 

Mendelian Randomization analyses 

After extracting the association estimates between the variants and the outcomes and harmonizing 

the direction of estimates by effect alleles, we computed MR estimates for each instrument with 

the Wald estimator and standard errors with the Delta method.46 We then pooled individual MR 

estimates using fixed-effects inverse-variance weighted (IVW) meta-analyses.47 To provide 

clinically relevant results, all effect estimates were scaled to the CRP-decreasing effect of 

tocilizumab (8 mg/kg), between 4 and 24 weeks after administration (a decrease of CRP levels by 

67%), as determined by a meta-analysis of 4 clinical trials.20 For the main IVW analyses, we 

performed power calculations and estimated the minimum and maximum effects that we had 80% 

statistical power to detect.48 
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The IVW method was our primary MR analysis approach. Although the selection of instruments 

on a specific gene reduces the possibility of invalid variants,49 the derived estimates might still be 

biased in case of directional pleiotropy. Hence, we further applied sensitivity MR analyses that are 

more robust to the inclusion of pleiotropic variants: the weighted median estimator, the 

contamination mixture method, and the MR Pleiotropy Residual Sum and Outlier (MR-PRESSO). 

The weighted median estimator provides consistent estimates as long as at least half of the variants 

used in the MR analysis are valid.50 The contamination mixture method constructs a likelihood 

function of the individual estimates and under the assumption that the estimates of the valid 

instruments would follow a distribution centered around the causal effect and any invalid 

instruments would follow a distribution around zero, it calculates MR estimates that would 

maximize this likelihood.51 The contamination method assumes that only some of the genetic 

variants used are valid instruments and it has been found to perform better than other methods 

under the presence of invalid instruments.52 Finally, we applied MR-PRESSO, which regresses 

the SNP-outcome estimates against the SNP-exposure estimates to test, using residual errors, 

whether there are outlier SNPs. Outliers are detected by sequentially removing all genetic variants 

from the analyses and comparing the residual sum of squares as a global heterogeneity measure 

(p-value for detecting outliers <0.05).53 MR-PRESSO then removes the identified outliers and 

provides outlier-corrected MR estimates.53 MR-PRESSO, is outlier-robust, but still relies on the 

assumption that at least half of the variants are valid instruments.53 

For the primary analyses (associations between downregulated IL-6 signaling and risk of ischemic 

stroke or coronary artery disease), we set a statistical significance threshold at a two-sided p-value 

of < 0.05. For ischemic stroke subtypes and for other cardiovascular outcomes, we corrected for 

multiple comparisons with the Bonferroni method. Thus, the statistical significance thresholds 

were set at p<0.05/3=0.017 for the 3 ischemic stroke subtypes, and at p<0.05/9=0.0055 for the 9 

cardiovascular outcomes. Associations not reaching these thresholds, but showing p-values <0.05 
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were considered suggestive. All analyses were performed in R (v3.5.0; The R Foundation for 

Statistical Computing). 

 

RESULTS 

Identification and validation of genetic variants as proxies of downregulated IL-6 signaling  

Using our pre-defined selection criteria, we identified 7 SNPs to serve as instruments for 

downregulated IL-6 signaling (Table 2). Three of these instruments were situated within the 

IL6R gene (Supplementary Figure 1). The F-statistics of the 7 SNPs ranged from 81 to 764 

indicating a low probability of weak instrument bias.37 Power calculations indicated that these 

instruments provide adequate statistical power (>80%) to detect ORs at the magnitude of 0.90 or 

lower for ischemic stroke and coronary artery disease regarding the effect of genetically 

downregulated IL-6 signaling (scaled to the CRP-decreasing effect of tocilizumab) (Table S1). 

We were further sufficiently powered (>80%) to detect ORs at the magnitude of 0.80 or lower 

for ischemic stroke subtypes.  

To validate the 7 instruments, we explored associations of genetically downregulated IL-6 

signaling with circulating IL-6, soluble IL-6R, and fibrinogen levels. In accordance with 

randomized clinical trials testing the effects of tocilizumab versus placebo (8 mg/kg),20 

genetically downregulated IL-6 signaling was associated with higher circulating IL-6 and soluble 

IL-6R levels and with lower circulating concentration of fibrinogen with the strongest effects 

seen for soluble IL-6R levels (Figure 2).  
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Genetically downregulated IL-6 signaling, ischemic stroke and coronary artery disease 

We next explored associations between genetically downregulated IL-6 signaling (scaled to the 

CRP-decreasing effect of tocilizumab) with the risk of ischemic stroke and coronary artery 

disease (Figure 3). In the primary IVW analysis, downregulated IL-6 signaling was associated 

with a lower risk of both ischemic stroke (OR: 0.89, 95%CI: 0.82-0.97, p=3x10-3) and coronary 

artery disease (OR: 0.84, 95%CI: 0.77-0.90, p=7x10-6). The alternative MR approaches 

(weighted median, contamination mixture, MR-PRESSO) all showed consistent association 

estimates (Figure S2).  

In sensitivity analyses restricted to the 3 instruments within the IL6R gene, we likewise found 

genetically downregulated IL-6 signaling to be associated with a lower risk of ischemic stroke 

and coronary artery disease (Figure 3 and Figure S2). Further restricting the analysis to a single 

SNP (rs2228145) with a well-described effect proxying the effects of pharmacological IL-6 

signaling inhibition,20 we found presence of the allele linked to downregulated IL-6 signaling to 

be associated with lower risk of both ischemic stroke (OR: 0.88, 95%CI: 0.79-0.99, p=0.033) 

and coronary artery disease (OR: 0.75, 95%CI: 0.67-0.85, p=2x10-7).  

To disentangle the effect of downregulated IL-6 signaling from the effect of CRP, we next 

performed MR analyses to explore associations between SNPs associated with CRP, and risk of 

ischemic stroke and coronary artery disease. These analyses showed no associations between 

genetically determined CRP levels and risk of either ischemic stroke or coronary artery disease 

independent of whether we used all variants reaching genome-wide significance (p<5x10-8) for 

association with CRP (187 SNPs), or whether we restricted the analyses to significant SNPs at 

the CRP locus (24 SNPs) (Figure S3). We further performed 10,000 permutations of MR 

analyses randomly selecting 7 out of the 187 SNPs associated with CRP. The effects of the 7 

SNPs selected as instruments for downregulated IL-6 signaling on ischemic stroke and coronary 

artery disease were located at the 4th and 1st lowest percentiles of the respective distributions, 
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corresponding to p-values of 0.04 and 0.01, respectively (Figure 3C and Figure S4), thus 

indicating that the effects of IL-6 signaling are independent of the effects of CRP itself.   

 

Genetically downregulated IL-6 signaling and ischemic stroke subtypes 

Focusing on etiological stroke subtypes (Figure 4), we found genetic downregulation of IL-6 

signaling to be associated with a lower risk of large artery stroke (OR: 0.76, 95%CI: 0.62-0.93, 

p=8x10-3) and small vessel stroke (OR: 0.71, 95%CI: 0.59-0.86, p=3x10-4), but not 

cardioembolic stroke (OR: 0.95, 95%CI: 0.74-1.22, p=0.667). The results were stable in all MR 

sensitivity analyses, including when restricting the analyses to the instruments within the IL6R 

gene (Figure S5). We further found no associations between genetically determined CRP levels, 

as determined by SNPs throughout the genome or SNPs at the CRP locus, and any of the 

ischemic stroke subtypes (Figure S6). Similarly, in permutations of analyses including 7 

randomly allocated SNPs throughout the genome, the effects of the SNPs proxying the 

downregulated IL-6 signaling on large artery and small vessel stroke, were at the 3rd and 0.1th 

percentiles (corresponding to p-values of 0.03 and 0.001), respectively, thus supporting that the 

observed effects were again independent of CRP (Figure S7).  

 

Genetically downregulated IL-6 signaling and other cardiovascular outcomes 

In a last step, we expanded the analyses to other cardiovascular outcomes (Figure 5). Genetic 

predisposition to downregulated IL-6 signaling was associated with lower risks of myocardial 

infarction (OR: 0.88, 95%CI: 0.81-0.96, p=3x10-3) and aortic aneurysm (OR: 0.51, 95%CI: 0.37-

0.68, p=1x10-5). We further found suggestive associations (p<0.05) with atrial fibrillation (OR: 

0.83, 95%CI: 0.71-0.96, p=0.013) and carotid plaque (OR: 0.87, 95%CI: 0.77-0.99, p=0.041). In 

contrast, we found no significant associations with peripheral artery disease (OR: 0.91, 95%CI: 
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0.74-1.11, p=0.349), heart failure (OR: 0.90, 95%CI: 0.79-1.04, p=0.156), venous 

thromboembolism (OR: 0.98, 95%CI: 0.81-1.15, p=0.809), deep vein thrombosis (OR: 1.15, 

95%CI: 0.94-1.40, p=0.183), and pulmonary embolism (OR: 0.92, 95%CI: 0.78-1.10, p=0.373). 

 

DISCUSSION 

Leveraging large-scale genetic data from multiple sources we identified variants serving as 

proxies for a genetic predisposition to downregulated IL-6 signaling and validated them using 

clinical trial data on pharmacological IL-6R inhibition. The identified proxies showed significant 

associations with a lower risk of both ischemic stroke and coronary artery disease. Among 

ischemic stroke subtypes, genetic predisposition to downregulated IL-6 signaling was associated 

with lower risks of large artery and small vessel stroke, but not cardioembolic stroke. Proxies for 

IL-6 signaling inhibition further showed significant associations with myocardial infarction and 

aortic aneurysm, and suggestive associations with atrial fibrillation and carotid plaque.    

The MR association between genetically downregulated IL-6 signaling and lower risk of large 

artery stroke extends previous clinical,17, 18, 21 genetic,19, 20 and experimental54, 55 data 

demonstrating a key role of IL-6 signaling in atherosclerosis. By binding to IL-6R, IL-6 

promotes downstream effects that include induction of macrophage recruitment56 and arterial 

smooth muscle cell proliferation,55, 57 and have been linked with plaque initiation,58 plaque 

destabilization,54 microvascular flow dysfunction,59 and adverse outcomes in the setting of acute 

ischemia.60 Moreover, pharmacological inhibition of IL-6R has been shown to attenuate 

atherosclerotic lesions in an experimental model of atherosclerosis.61 Our finding of an effect of 

genetic predisposition to downregulated IL-6 signaling on multiple atherosclerotic phenotypes 

(large artery stroke, coronary artery disease, myocardial infarction, aortic aneurysm, atrial 
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fibrillation, carotid plaque) provides further support that IL-6 signaling is critically implicated in 

atherogenesis and atheroprogression and might represent a valid therapeutic target. 

Notably, we found genetically downregulated IL-6 signaling to be further associated with small 

vessel stroke. There is only limited evidence regarding a role of inflammation in general and of 

IL-6 signaling in particular in cerebral small vessel disease.62 In a small prospective study of 123 

patients with manifestations of cerebral small vessel disease, IL-6 circulating levels were 

associated with a higher risk of incident lacunes, a marker of small vessel disease on brain 

magnetic resonance imaging.63 However, cross-sectional analyses from larger population-based 

studies showed inconsistent findings for lacunes, silent brain infarcts and other manifestations of 

small vessel disease.64-69 While the specific mechanisms underlying our MR results remain 

unknown, our findings suggest that inhibition of IL-6 signaling aside from being a candidate 

treatment for atherosclerosis might also lower the risk of small vessel stroke. 

Our results strongly support the candidacy of IL-6 signaling as a target for vascular prevention 

over and beyond previous data. The CANTOS trial targeted IL-1β rather than IL-6R and thus 

provided only indirect evidence for a benefit of interfering with IL-6 signaling.11, 21 Interestingly, 

the study further showed that part of the residual vascular risk after IL-1β inhibition could be 

explained by IL-6 levels, thus providing evidence that direct IL-6 signaling inhibition might 

represent a more effective strategy.22 Also, CANTOS was based on a population of individuals 

with coronary artery disease and explored a combined vascular endpoint rather than offering 

information on individual cardiovascular outcomes. With respect to stroke, there was a 7% 

reduction in incident stroke events in the IL-1β arm, which however did not reach statistical 

significance, possibly because of insufficient power.8 Our MR results provide evidence for 

directionally consistent effects of IL-6 signaling in multiple cardiovascular outcomes. Thus, our 

findings offer a solid basis for future clinical trials exploring the benefit of pharmacological IL-

6R inhibition for the range of phenotypes examined here. 
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Interestingly, we found a particularly strong effect of genetically downregulated IL-6 signaling 

on aortic aneurysm. A role of IL-6 signaling in the pathogenesis of aortic aneurysm has been 

previously demonstrated by genetic studies.38, 70, 71 IL-6 signaling might contribute to the 

formation of aortic aneurysms through mechanisms aside from atherosclerosis, thus explaining 

the large effect. For instance, IL-6 signaling is a key pathway in the pathogenesis of large vessel 

vasculitides,72 which are strongly associated with the formation of aortic aneurysms.16, 73, 74 

Our analysis provides no evidence for an association of genetically downregulated IL-6 signaling 

with cardioembolic stroke. In conjunction with the lack of significant MR associations with 

thrombotic phenotypes (venous thromboembolism, deep vein thrombosis, pulmonary embolism), 

our results do not support a role of IL-6 signaling in promoting coagulation and thrombosis. Yet, 

in accord with previous observational studies,75-77 we found IL-6 signaling to show a suggestive 

association with atrial fibrillation, the primary cause of cardioembolism and a common 

complication of coronary artery disease.78, 79 Given the relatively small magnitude of this 

association, any effect of IL-6 signaling on risk of cardioembolic stroke through atrial fibrillation 

would be expected to be small. 

Our study has several strengths. Utilizing the most recent genetic data on CRP levels, ischemic 

stroke, and other cardiovascular phenotypes, we were sufficiently powered to show significant 

associations between genetically downregulated IL-6 signaling and multiple outcomes of 

interest. Using CRP levels, as a proxy for downstream IL-6 signaling enabled us to scale the 

derived association estimates to the respective effects of tocilizumab, as recorded in previous 

clinical trials, thus providing clinically meaningful estimates that might be comparable to those 

obtained from future trials. We further validated the effects of the selected proxies on upstream 

regulators (IL-6 and soluble IL-6R) and downstream effectors (fibrinogen) of IL-6 signaling, 

which were consistent with the effects observed with pharmacological inhibition of IL-6R. 

Finally, we could disentangle the effect of IL-6 signaling from the direct effect of CRP by 
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determining the effects of CRP levels on risk of the examined outcomes and performing 

permutations for the effects of randomly selected CRP-decreasing variants. 

Our study also has limitations. First, to proxy IL-6 signaling we used CRP levels, which are a 

downstream effect of the classical membrane-bound IL-6R-mediated signaling in hepatocytes.80 

However, IL-6 also acts on other tissues not expressing the membrane-bound IL-6R, by binding 

to its soluble form, which is known as trans-signaling.80 Thus, our results may be interpreted as 

an effect of downstream regulation of classical IL-6 signaling but not IL-6 trans-signaling. 

Second, by design, our MR study assessed the effects of lifetime downregulated IL-6 signaling, 

which might differ from a shorter pharmacological inhibition. Third, there might be unknown 

pleiotropic effects of the genetic proxies used as instruments in the current study that might bias 

the associations. Of note, however, the results were remarkably consistent in sensitivity MR 

methods that are more robust to the inclusion of pleiotropic variants. Finally, our results were 

mainly based on individuals of European origin, and might thus not apply to other ethnic groups. 

In conclusion, this study provides evidence for a causal effect of IL-6 signaling on ischemic 

stroke, particularly large artery and small vessel stroke, as well as a range of cardiovascular 

phenotypes. IL-6R blockade might represent a valid therapeutic target for lowering 

cardiovascular risk and should thus be further investigated in clinical trials. 
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Table 1. Data sources that were used in the analyses for the current study.  

Phenotype Source N (Total or 

Cases/Controls 

Imputation reference panel Ancestry Adjustments 

CRP levels CHARGE Inflammation 

Working Group31 

204,402 HapMap European   age, sex, population structure 

IL-6 levels YFS/FINRISK studies40 8,293 1000 Genomes Phase 1 Finnish age, sex, BMI, population structure 

sIL-6R levels INTERVAL study41 3,301 1000 Genomes Phase 3 European   age, sex, duration between blood draw and 

processing, population structure 

Fibrinogen levels CHARGE Inflammation 

Working Group43 

120,246 1000 Genomes Phase 1 European age, sex, population structure 

Ischemic stroke MEGASTROKE 

Consortium32 

34,217/406,630 1000 Genomes Phase 1 European   age, sex, population structure 

Large artery stroke MEGASTROKE 

Consortium32 

4,373/406,111 1000 Genomes Phase 1 European   age, sex, population structure 

Cardioembolic stroke MEGASTROKE 

Consortium32 

7,193/406,111 1000 Genomes Phase 1 European   age, sex, population structure 

Small vessel stroke MEGASTROKE 

Consortium32 

5,386/406,111 1000 Genomes Phase 1 European   age, sex, population structure 

Coronary artery disease CARDIoGRAMplusC4D 

Consortium44 

60,801/123,504 HapMap European and Asian age, sex, population structure 

Myocardial infarction CARDIoGRAMplusC4D 

Consortium44 

43,676/123,504 HapMap European and Asian age, sex, population structure 

Aortic aneurysm UK Biobank81 1,817/314,325 HRC + UK10K White British age, sex, population structure, genotyping 

platform array 

Carotid plaque CHARGE Consortium82 21,540/26894 1000 Genomes Phase 1 European   age, sex, population structure 

Peripheral artery disease UK Biobank81 3,992/313,725 HRC + UK10K White British age, sex, population structure, genotyping 

platform array 

Heart failure UK Biobank81 8,970/312,436 HRC + UK10K White British age, sex, population structure, genotyping 

platform array 

Atrial fibrillation AFGen Consortium83 18,398/111,433 1000 Genomes Phase 1 European and Asian age, sex, population structure 

Venous thromboembolism INVENT Consortium84 7,507/52,632 1000 Genomes Phase 1 European   age, sex, population structure 

Deep vein thrombosis UK Biobank81 4,135/302,337 HRC + UK10K White British age, sex, population structure, genotyping 

platform array 

Pulmonary embolism UK Biobank81 5,400/302,186 HRC + UK10K White British age, sex, population structure, genotyping 

platform array 
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Table 2. Single nucleotide polymorphisms (SNP) used in the current analyses for proxying the effects of IL-6 signaling. The betas, 

standard errors, and p-values refer to associations of these SNPs with CRP levels. 

SNP 
Effect 

allele 

Non-effect 

allele 
Chromosome MAF 

Position 

(GRCh37/hg19) 
Beta † Standard 

Error 
P-value R2 ‡ F § 

rs73026617 t c 1 0.097 154,369,981 0.0474 0.0068 3.16E-12 3.94E-04 80.5 

rs12083537* a g 1 0.193 154,381,103 0.0643 0.0053 7.14E-34 1.29E-03 263.6 

rs4556348* t c 1 0.148 154,394,296 0.0541 0.0067 6.77E-16 7.38E-04 151.0 

rs2228145* a c 1 0.360 154,426,970 0.0899 0.0042 1.21E-101 3.72E-03 764.1 

rs11264224 a c 1 0.193 154,568,086 0.0465 0.0057 3.41E-16 6.74E-04 137.8 

rs12059682 t c 1 0.196 154,579,585 -0.0441 0.0049 2.26E-19 6.13E-04 125.4 

rs34693607 c g 1 0.184 154,661,369 0.0368 0.0057 1.07E-10 4.07E-04 83.2 

* Variants located within the IL6R gene. 

† Beta coefficients correspond to 1-unit changes in the natural-log-transformed CRP (mg/L) per copy increment in effect allele. 
‡ 𝑅2 =  2 × 𝑀𝐴𝐹 × (1 − 𝑀𝐴𝐹) × 𝑏𝑒𝑡𝑎2, where MAF is the minimum allele frequency and beta is the effect estimate of the SNP on CRP levels.36 

§ F = 
𝑅2×(𝑁−2)

1−𝑅2   where R2 is the variance of CRP explained by the specific SNP (as explained above) and N the number of individuals in the GWAS analysis.37 
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Figure 1. Conceptual framework and design of the current Mendelian Randomization 

approach. (A) Shown is a simplified scheme of IL-6 signaling, which is induced by binding of 

IL-6 to the soluble or the membrane-bound form of its receptor (IL-6R). IL-6 signaling results in 

increased C-reactive protein (CRP) and Fibrinogen (Fg) levels and is associated with a higher 

risk of cardiovascular disease. (B) Pharmacological inhibition of IL-6R leads to increases in the 

levels of upstream regulators (IL-6 and sIL-6R), and decreases in the levels of downstream 

effectors (CRP and Fg) of the IL-6 signaling pathway, but its effects on cardiovascular disease 

remain unknown. (C) In the current MR approach, we selected genetic variants within the IL6R 

locus, which significantly associated with lower CRP levels, as instruments (proxies) for a 

downregulated IL-6 signaling, and explored their effects on ischemic stroke, coronary artery 

disease and other cardiovascular disease phenotypes.  

 

 

*  IL-6 signaling was determined by the effects of the instruments on CRP levels. The instruments were further validated by 

exploring their effects on other upstream regulators (IL-6, sIL-6-R) and downstream effectors (Fg) of IL-6 signaling. 

sIL-6R, soluble IL-6 receptor.
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Figure 2. Effects of pharmacological inhibition of IL-6R and of genetic downregulation of 

IL-6 signaling on circulating levels of IL-6, soluble IL-6R (sIL-6R), and fibrinogen (Fg). 

(A) Effects of pharmacological inhibition of IL-6R on IL-6, sIL-6R, and Fg levels by 

administration of tocilizumab (8 mg/kg), as compared to placebo in a meta-analysis of 4 

randomized clinical trials (RCT). Effects represent the standardized mean differences (SMD) in 

IL-6, sIL-6R, and Fg levels between 8 and 24 weeks after administration of tocilizumab (8 

mg/kg), as compared to placebo. (B) Effects of genetic downregulation of IL-6 signaling on IL-

6, sIL-6R, and Fg levels as determined by Mendelian Randomization (MR) analyses. Effects 

represent SMDs in IL-6, sIL-6R, and Fg levels. 

 

* The SMDs for RCTs are derived from a meta-analysis of 4 studies.20 

** The SMDs for the MR analyses are scaled to the CRP-decreasing effects of tocilizumab (8 mg/kg). 
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Figure 3. Mendelian Randomization associations of genetically downregulated IL-6 

signaling with ischemic stroke. (A) Genetically downregulated IL-6 signaling in association 

with ischemic stroke and coronary artery disease as derived from IVW MR analyses either 

using the full set of genetic instruments (7 SNPs), or the restricted set of instruments (3 SNPs 

located within the IL6R gene). (B) SNP-specific effects regarding the associations of 

genetically downregulated IL-6 signaling with ischemic stroke and results derived from the 

IVW MR analysis. (C) Distributions of the effects of 7 randomly selected CRP-decreasing 

SNPs on risk of ischemic stroke and the position of the IL-6 signaling downregulating effect (7 

SNPs included in our analyses).  

 

* Odds Ratios for genetically downregulated IL-6 signaling are scaled to the CRP-decreasing effects of tocilizumab (8 

mg/kg).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted September 27, 2019. .https://doi.org/10.1101/19007682doi: medRxiv preprint 

https://doi.org/10.1101/19007682
http://creativecommons.org/licenses/by/4.0/


32 

 

Figure 4. Mendelian Randomization associations of genetically downregulated IL-6 

signaling with ischemic stroke etiological subtypes. The effects represent Odds Ratios (OR) 

derived from inverse-variance-weighted MR analyses. 

 

 

* Odds Ratios for genetically downregulated IL-6 signaling are scaled to the CRP-decreasing effects of tocilizumab (8 

mg/kg). 
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Figure 5. Mendelian Randomization associations of genetically downregulated IL-6 

signaling with other cardiovascular outcomes. The effects represent Odds Ratios (OR) 

derived from inverse-variance-weighted MR analyses. 

 

* Odds Ratios for genetically downregulated IL-6 signaling are scaled to the CRP-decreasing effects of tocilizumab (8 

mg/kg). 
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