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The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 
Receptor Binding Domain undergoes conformational change upon 
heparin binding. 
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Abstract 

Many pathogens take advantage of the dependence of the host on the interaction of 
hundreds of extracellular proteins with the glycosaminoglycans heparan sulphate to 
regulate homeostasis and use heparan sulphate as a means to adhere and gain access 
to cells. Moreover, mucosal epithelia such as that of the respiratory tract are protected 
by a layer of mucin polysaccharides, which are usually sulphated. Consequently, the 
polydisperse, natural products of heparan sulphate and the allied polysaccharide, 
heparin have been found to be involved and prevent infection by a range of viruses 
including S-associated coronavirus strain HSR1. Here we use surface plasmon 
resonance and circular dichroism to measure the interaction between the SARS-CoV- 
2 Spike S1 protein receptor binding domain (SARS-CoV-2 S1 RBD) and heparin. The 
data demonstrate an interaction between the recombinant surface receptor binding 
domain and the polysaccharide. This has implications for the rapid development of a 
first-line therapeutic by repurposing heparin and for next-generation, tailor-made, 
GAG-based antivirals. 
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Introduction 
 
Heparin, the second most widely used drug by weight globally, is formulated as a 
polydisperse, heterogenous natural product. Unfractionated heparin, low molecular 
weight heparins and heparinoids are clinically approved as anticoagulants / thrombotic 
with excellent safety, stability, bioavailability and pharmacokinetic profiles. Crucially, 
heparin and its derivatives, some of which lacking significant anticoagulant activity1, are 
an under-exploited antiviral drug class, despite possessing broad-spectrum activity 
against a multitude of distinct viruses, including coronaviridae and SARS- associated 
coronavirus strain HSR12, in addition to flaviviruses3,4, herpes5, influenza6 and HIV7,8. 
 
Traditional drug development processes are slow and ineffective against emerging 
public health threats such as the current SARS-CoV-2 coronavirus outbreak which 
makes the repurposing of existing drugs a timely and attractive alternative. Heparin, a 
well-tolerated anticoagulant pharmaceutical, has been used safely in medicine for over 80 
years and alongside its anticoagulant activities, its ability to prevent viral infection, 
including coronaviridae, has been described1. Furthermore, the closely related 
glycosaminoglycan (GAG) member, heparan sulphate (HS), is known to bind CoV 
surface proteins and to be used by coronavirus for its attachment to target cells9. 
 
Currently, there are no commercially available medicinal products designed to treat 
and/or prevent infections associated with the new SARS-CoV-2 coronavirus outbreak. 
Here, we describe preliminary tests for the ability of the SARS-CoV-2 S1 RBD to bind 
heparin, an important prerequisite for the underpinning research related to the 
development of SARS-CoV-2 heparin-based therapeutic. 
 
 
Methods & Materials 
 
2.1 Recombinant expression of SARS-CoV-2 S1 RBD 
 
Residues 330−583 of the SARS-CoV-2 Spike Protein (GenBank: MN908947) were 
cloned upstream of a N-terminal 6 x HisTag in the pRSETA expression vector and 
transformed into SHuffle® T7 Express Competent E. coli (NEB, UK). Protein expression 
was carried out in MagicMedia™ E. coli Expression Media (Invitrogen, UK) at 30°C for 
24 hrs, 250 rpm. The bacterial pellet was suspended in 5 mL lysis buffer (BugBuster 
Protein Extraction Reagent, Merck Millipore, UK; containing DNAse) and incubated at 
room temperature for 30 mins. Protein was purified from inclusion bodies using IMAC 
chromatography under denaturing conditions. On-column protein refolding was 
performed by applying a gradient with decreasing concentrations of the denaturing agent 
(6 - 0 M Urea). After extensive washing, protein was eluted using 20 mM NaH2PO4, pH 
8.0, 300 mM NaCl, 500 mM imidazole. Fractions were pooled and buffer-exchanged to 
phosphate-buffered saline (PBS; 140 mM NaCl, 5 mM NaH2PO4, 5 mM Na2HPO4, pH 
7.4; Lonza, UK) using a Sephadex G-25 column (GE Healthcare, UK). Recombinant 
protein was stored at -20°C until required. 
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2.2 Secondary structure determination of SARS-CoV-2 S1 RBD by circular 
dichroism spectroscopy 
 
The circular dichroism (CD) spectrum of the SARS-CoV-2 S1 RBD in PBS was recorded 
using a J-1500 Jasco CD spectrometer (Jasco, UK), Spectral Manager II software 
(JASCO, UK) and a 0.2 mm pathlength, quartz cuvette (Hellma, USA) scanning at 100 
nm.min-1 with 1 nm resolution throughout the range 190 - 260 nm. All spectra obtained 
were the mean of five independent scans, following instrument calibration with 
camphorsulphonic acid. SARS-CoV-2 S1 RBD was buffer-exchanged (prior to spectral 
analysis) using a 5 kDa Vivaspin centrifugal filter (Sartorius, Germany) at 12,000 g, thrice 
and CD spectra were collected using 21 μl of a 0.6 mg.ml-1 solution in PBS, pH 7.4. 
Spectra of heparin (porcine mucosal heparin), its derivative and oligosaccharides were 
collected in the same buffer at approximately comparable concentrations, since these 
are disperse materials. Collected data were analysed with Spectral Manager II software 
prior to processing with GraphPad Prism 7, using second order polynomial smoothing 
through 21 neighbours. Secondary structural prediction was calculated using the 
BeStSel analysis server10.To ensure that the CD spectral change of SARS-CoV-2 S1 
RBD in the presence of porcine mucosal heparin did not arise from the addition of the 
heparin alone, which is known to possess a CD spectrum at high concentrations11,12 a 
difference spectrum was analysed. The theoretical, CD spectrum that resulted from the 
arithmetic addition of the CD spectrum of the SARS-CoV-2 S1 RBD and that of the 
heparin differed from the observed experimental CD spectrum of SARS-CoV-2 S1 RBD 
mixed with heparin. This demonstrates that the change in the CD spectrum arose from 
a conformational change following binding to porcine mucosal heparin.  
 
2.3 Surface Plasmon Resonance determination of SARS-CoV-2 S1 RBD binding to 
unfractionated heparin. 
 
Human FGF2 was produced as described by Duchesne et al.13. Porcine mucosal 
heparin was biotinylated at the reducing end using hydroxylamine biotin (ThermoFisher, 
UK) as described by Thakar et al. 14. Heparin (20 µl of 50 mg mL-1) was reacted with 20 
µl hydroxylamine-biotin in 40 µl 300 mM aniline (Sigma-Aldrich, UK) and 40 µl 200 mM 
acetate pH 6 for 48 h at 37 °C. Free biotin was removed by gel-filtration chromatography 
on Sephadex G25 (GE LifeSciences, UK). 
 
A P4SPR, multi-channel Surface Plasmon Resonance (SPR) instrument (Affinté 
Instruments; Montréal, Canada) was employed with a gold sensor chip that was plasma 
cleaned prior to derivatization. A self-assembled monolayer of mPEG thiol and biotin 
mPEG was formed by incubating the chip in a 1 mM solution of these reagents at a 99:1 
molar ratio in ethanol for 24 hrs15. The chip was rinsed with ethanol and placed in the 
instrument. PBS (1X) was used as the running buffer for the three sensing and a fourth 
background channel at 500 µl.min-1, using an Ismatec pump. Twenty micrograms of 
streptavidin (Sigma, UK; 1 ml in PBS) were injected over the four sensor channels. 
Subsequently, biotin-heparin (1 ml) was injected over the three sensing channels. 
 
Binding experiments used PBS with 0.02% Tween 20 (v/v) as the running buffer. The 
ligand was injected over the three sensing channels, diluted to the concentration 
indicated (see figures) at 500 µl.min-1. Sensor surfaces with bound FGF2 were 
regenerated by a wash with 2 M NaCl (Fisher Scientific, UK). However, this was found 
to be ineffectual for SARS-CoV-2 S1 RBD. Partial regeneration of the surface was 
achieved with 20 mM HCl (VWR, UK) and only 0.25 % (w/v) SDS (VWR, UK) was found 
to remove the bound protein. After regeneration with 0.25 % (w/v/) SDS, fluidics and 
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surfaces were washed with 20 mM HCl to ensure all traces of the detergent were 
removed. Background binding to the underlying streptavidin bound to the mPEG/biotin 
mPEG self-assembled monolayer was determined by injection over the control channel. 
Responses are reported as the change in plasmon resonance wavelength, in nm and 
for the three control channels represent their average response. 
 
 
Results 
 
3.1 Surface Plasmon Resonance binding studies. 
 
FGF2, a well characterised heparin-binding protein was used to test the successful 
functionalization of the three sensing channels with biotin-heparin. Injection of 1 mL 100 
nM FGF2 over the sensing channels elicited a significant response (Fig. 1A, injection 
between the red arrows). However, 100 nM FGF2 elicited no response in the control 
channel, functionalized solely with streptavidin (not shown). The bound FGF2 was 
removed by a wash with 2 M NaCl, as done previously for the IASys optical biosensor16. 
 
When 65 nM SARS-CoV-2 S1 RBD was injected over the three sensing channels, there 
was an initial decrease in signal, followed by an increase, indicative of binding (Fig. 1B 
between red arrows). The initial decrease was due to a slightly lower refractive index of 
the SARS-CoV-2 S1 RBD protein solution compared to the PBS of the running buffer, 
which caused a negative bulk shift. This is demonstrated by the injection of 65 nM 
solution over the control channel, functionalized with just streptavidin, where there was a 
decrease in response, followed by a return to baseline when the channel was returned 
to running buffer (Fig. 1C, between red arrows). These data demonstrate that the SARS-
CoV-2 S1 RBD protein binds specifically to heparin immobilised through its reducing-end 
and fails to bind to the underlying streptavidin / ethyleneglycol surface. 
 
3.2 Secondary structure determination of SARS-CoV-2 S1 RBD protein by circular 
dichroism spectroscopy 
 
Circular dichroism (CD) spectroscopy detects changes in protein secondary structure 
that occur in solution using UV radiation. Upon binding, conformational changes are 
detected and quantified using spectral deconvolution17. Indeed, SARS-CoV-2 S1 RBD 
underwent conformational change in the presence of heparin (Figure 2). Combined, helix 
content increased by 1.5% and global beta-sheet content decreased by 2.1%. The 
observed changes further demonstrate that the SARS-CoV-2 S1 RBD interacts with 
heparin in aqueous solution of physiological significance, whereby the major changes 
induced by heparin are those associated with antiparallel and helix content. 
 
Basic amino acids are known to dictate the binding between proteins and heparin. With 
that in mind, primary sequence analysis of the expressed protein domain and analysis 
of the modelled SARS-CoV-2 S1 RBD structure (Figure 3) shows that there are several 
potential heparin binding sites and, more importantly, that theses patches of basic amino 
acids are exposed on the protein surface. 
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Figure 1. Interaction of FGF2 and 100 nM SARS-CoV-2 S1 RBD with immobilised 
heparin. Reducing end biotinylated heparin (-) was immobilised on a streptavidin 
functionalised P4SPR sensor surface (no biotin-heparin (-) control). PBS running buffer 
flow rate was 500 µl.min-1. The data for the three sensing channels are reported as an 
average response (-). The start of protein injections are indicated by blue arrows and the 
return of the surface to running buffer (PBST) by red arrows. (A) Injection of 100 nM FGF2. 
(B) Injection of 100 nM SARS-CoV-2 S1 RBD protein.
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Figure 2. The structural change of the SARS-CoV-2 S1 RBD observed in the presence 
of heparin by circular dichroism (CD) spectroscopy. (A) CD spectra of spike 1 RBD 
alone (black) or with heparin (red) in phosphate buffered saline pH 7.4. Theoretical sum of 
spike 1 RBD alone and heparin (control) if no interaction was observed (dotted red). (B) Δ 
secondary structure (%) of (A). A 1.5% increase in helix and 2.1% decrease in antiparallel 
secondary structural features were calculated (BestSel) for the observed spectrum 
compared to that of the theoretical, summative spectrum of the SARS- CoV-2 S1 RBD in 
the presence of heparin. 

 
 
 
 
 
 

 

Figure 3. SARS-CoV-2 S1 RBD protein model. Basic amino acids that are solvent 
accessible on the surface are indicated (dark blue); these can be observed to form a 
continuous patch. 
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Discussion and Conclusion 
 
The rapid spread of SARS-CoV-2 represents a significant challenge to global health 
authorities and, as there are no currently approved drugs to treat, prevent and/or 
mitigate its effects, repurposing existing drugs is both a timely and appealing strategy. 
Heparin, a well-tolerated anticoagulant drug, has been used successfully for over 80 
years with limited and manageable side effects. Furthermore, heparin belongs to a 
unique class of pharmaceuticals that has effective antidotes available, which makes 
its use safer. 

 
Studying SARS-CoV-2 Spike protein structure and behaviour in solution is a vital step 
for the development of effective therapeutics against SARS-CoV-2. Here, the ability of 
the SARS-CoV-2 S1 RBD to bind pharmaceutical heparin has been studied using 
spectroscopic techniques in concert with molecular modelling. The data show that 
SARS-CoV-2 S1 RBD binds to heparin and that upon binding, a significant structural 
change is induced. Moreover, moieties of basic amino acid residues, known to 
constitute heparin binding domains, are solvent accessible on the SARS-CoV-2 S1 
RBD surface and form a continuous patch that is suitable for heparin binding. 

 
Glycosaminoglycans are ubiquitously present on almost all mammalian cells and this 
class of carbohydrates are central to the strategy employed by coronaviridae to attach 
to host cells. Heparin has previously been shown to inhibit SARS-associated 
coronavirus strain HSR1 cell invasion 2,18 and this, in concert with the data presented 
within this study, supports the utilisation of glycosaminoglycan-derived 
pharmaceuticals against SARS-associated coronavirus. Furthermore, this study 
strongly supports the repurposing of heparin and its derivatives as antiviral agents, 
providing a rapid countermeasure against the current SARS-CoV-2 outbreak. 

 
It is noteworthy that even pharmaceutical-grade heparin preparations remain a 
polydisperse mixture of natural products, containing both anticoagulant and non- 
anticoagulant saccharide structures. The latter may prove to be an invaluable resource 
for next-generation, biologically active, antiviral agents that display negligible 
anticoagulant potential, whilst the former remains tractable to facile, chemical (and 
enzymatic) engineering strategies to ablate their anticoagulation activities. 

 
The subfractionation of existing heparin preparations against anticoagulant activities 
(with proven low-toxicity profiles, good bioavailability and industrial-scale 
manufacturing) for off-label pathologies, provides an attractive strategy for quickly and 
effectively responding to COVID-19 and for the development of next generation 
heparin-based therapeutics. 

 
Such drugs will be amenable to routine parenteral administration through currently 
established routes and additionally, direct to the respiratory tract via nasal 
administration, using nebulised heparin, which would be unlikely to gain significant 
access to the circulation. Thus, the anticoagulant activity of heparin, which can in any 
event be engineered out, would not pose a problem. Importantly, such a route of 
administration would not only be suitable for prophylaxis, but also for patients under 
mechanical ventilation 19. 
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