1 Case fatality risk of novel coronavirus diseases 2019 in China

2	Xiaowei Deng, MSc ^{1#} , Juan Yang, PhD ^{1#} , Wei Wang, MSc ^{1#} , Xiling Wang, PhD ^{1#} ,
3	Jiaxin Zhou, BSc ¹ , Zhiyuan Chen, BSc ¹ , Jing Li, BSc ¹ , Yinzi Chen, BSc ¹ , Han Yan,

- 4 BSc¹, Juanjuan Zhang, PhD¹, Yongli Zhang, MSc², Yan Wang, MSc¹, Qi Qiu, MSc¹,
- 5 Hui Gong, BSc¹, Xianglin Wei, BSc¹, Lili Wang¹, Kaiyuan Sun, PhD³, Peng Wu, PhD⁴,
- 6 Marco Ajelli, PhD⁵, Benjamin J. Cowling, PhD⁴, Cecile Viboud, PhD³, Hongjie Yu,
- 7 PhD¹
- 8 #These authors contributed equally to this work.
- 9 Corresponding author to Prof. Hongjie Yu, <u>yhj@fudan.edu.cn</u>
- 10 **Affiliations**:
- 11 1. School of Public Health, Fudan University, Key Laboratory of Public Health
- 12 Safety, Ministry of Education, Shanghai, China
- 13 2. Savaid Medical School, University of Chinese Academy of Sciences, Beijing,
- 14 China
- 15 3. Division of International Epidemiology and Population Studies, Fogarty
- 16 International Center, National Institutes of Health, Bethesda, MD, USA
- 17 4. WHO Collaborating Centre for Infectious Disease Epidemiology and Control,
- 18 School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong,
- 19 Hong Kong Special Administrative Region, China
- 20 5. Bruno Kessler Foundation, Trento, Italy

21 ABSTRACT

22	Objective The outbreak of novel coronavirus disease 2019 (COVID-19) imposed
23	a substantial health burden in mainland China and remains a global epidemic
24	threat. Our objectives are to assess the case fatality risk (CFR) among COVID-19
25	patients detected in mainland China, stratified by clinical category and age group.
26	Methods We collected individual information on laboratory-confirmed COVID-19
27	cases from publicly available official sources from December 29, 2019 to
28	February 23, 2020. We explored the risk factors associated with mortality. We
29	used methods accounting for right-censoring and survival analyses to estimate
30	the CFR among detected cases.
31	Results Of 12,863 cases reported outside Hubei, we obtained individual records
32	for 9,651 cases, including 62 deaths and 1,449 discharged cases. The deceased
33	were significantly older than discharged cases (median age: 77 vs 39 years,
34	p<0.001). 58% (36/62) were male. Older age (OR 1.18 per year; 95%CI: 1.14 to
35	1.22), being male (OR 2.02; 95%CI: 1.02 to 4.03), and being treated in less
36	developed economic regions (e.g., West and Northeast vs. East, OR 3.93; 95%CI:
37	1.74 to $8.85)$ were mortality risk factors. The estimated CFR was 0.89 - $1.24%$
38	among all cases. The fatality risk among critical patients was 2-fold higher than
39	that among severe and critical patients, and 24-fold higher than that among
40	moderate severe and critical natients

41 **Conclusions** Our estimates of CFR based on laboratory-confirmed cases

42	ascertained outside of Hubei suggest that COVID-19 is not as severe as severe
43	acute respiratory syndrome and Middle East respiratory syndrome, but more
44	similar to the mortality risk of 2009 H1N1 influenza pandemic in hospitalized
45	patients. The fatality risk of COVID-19 is higher in males and increases with age.
46	Our study improves the severity assessment of the ongoing epidemic and can
47	inform the COVID-19 outbreak response in China and beyond.
48	
10	
49	
50	
51	
52	Introduction
53	As of March 3, 2020, a total of 80,270 cases of novel coronavirus disease 2019
53 54	As of March 3, 2020, a total of 80,270 cases of novel coronavirus disease 2019 (COVID-19) have been reported in mainland China, including 2,981 deaths. The
53 54 55	As of March 3, 2020, a total of 80,270 cases of novel coronavirus disease 2019 (COVID-19) have been reported in mainland China, including 2,981 deaths. The outbreak is caused by a novel coronavirus of presumed zoonotic origin, the
53 54 55 56	As of March 3, 2020, a total of 80,270 cases of novel coronavirus disease 2019 (COVID-19) have been reported in mainland China, including 2,981 deaths. The outbreak is caused by a novel coronavirus of presumed zoonotic origin, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ¹ . COVID-19 cases
53 54 55 56 57	As of March 3, 2020, a total of 80,270 cases of novel coronavirus disease 2019 (COVID-19) have been reported in mainland China, including 2,981 deaths. The outbreak is caused by a novel coronavirus of presumed zoonotic origin, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ¹ . COVID-19 cases have now been identified in 72 countries, some of which have reported onward
53 54 55 56 57 58	As of March 3, 2020, a total of 80,270 cases of novel coronavirus disease 2019 (COVID-19) have been reported in mainland China, including 2,981 deaths. The outbreak is caused by a novel coronavirus of presumed zoonotic origin, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ¹ . COVID-19 cases have now been identified in 72 countries, some of which have reported onward local transmission and deaths ² . The unprecedented scale of the epidemic has
53 54 55 56 57 58 59	As of March 3, 2020, a total of 80,270 cases of novel coronavirus disease 2019 (COVID-19) have been reported in mainland China, including 2,981 deaths. The outbreak is caused by a novel coronavirus of presumed zoonotic origin, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ¹ . COVID-19 cases have now been identified in 72 countries, some of which have reported onward local transmission and deaths ² . The unprecedented scale of the epidemic has prompted an urgent need for clinical severity assessment, of which the case
53 54 55 56 57 58 59 60	As of March 3, 2020, a total of 80,270 cases of novel coronavirus disease 2019 (COVID-19) have been reported in mainland China, including 2,981 deaths. The outbreak is caused by a novel coronavirus of presumed zoonotic origin, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ¹ . COVID-19 cases have now been identified in 72 countries, some of which have reported onward local transmission and deaths ² . The unprecedented scale of the epidemic has prompted an urgent need for clinical severity assessment, of which the case

62	highly variable. Wu et al. estimated that the fatality risk among hospitalized cases
63	was 14% during the early phase of outbreak in Wuhan ³ . Dorigatti et al. estimated
64	that the CFR among laboratory-confirmed cases was 18% in Hubei province and
65	ranged from 1.2-5.6% outside mainland China ⁴ . A recent report of the World
66	Health Organization (WHO)-China Joint Mission on Coronavirus Disease 2019
67	estimated the case fatality risk as 3.8% by dividing the number of deaths at the
68	time of analysis by the number of laboratory-confirmed cases at the time of
69	analysis ⁵ . They also reported a higher case fatality risk in Hubei than that in other
70	provinces (5.8% vs. 0.7%) ⁵ . However, those estimates would be a lower bound on
71	the CFR for the laboratory-confirmed cases because many cases were still in the
72	hospital and had not reached a final outcome of either death or discharge after
73	recovery ⁶ .
74	In the present study, we aimed to assess the CFR among laboratory-confirmed
75	COVID-19 cases detected in mainland China, stratified by different clinical
76	categories (e.g. mild-, moderate-, severe- and critical-patients) and by age group.
77	We also explored the risk factors associated with fatal outcomes.
78	

79 Methods

80 **Case definitions and surveillance**

81 The National Health Commission of China (NHC) and the Chinese Center for

82 Disease Control and Prevention (China CDC) have launched a new surveillance

83	system to record information on COVID-19 cases since the start of the outbreak
84	of atypical pneumonia cases in Wuhan in late December 2019. A description of
85	the surveillance system is provided elsewhere ⁷ . As the epidemic evolves, a total
86	of six versions of case definitions for suspected- and laboratory-confirmed-cases
87	have been issued by NHC ⁷⁻⁹ . Details are provided in the Appendix table S1.
88	Four clinical categories of laboratory-confirmed COVID-19 patients have been
89	identified by NHC, including mild-, moderate-, severe-, and critical-patients ⁷⁻⁹ .
90	Mild patients, introduced in the fifth and sixth versions of COVID-19 case
91	definition, refer to patients with mild symptoms and no radiographic evidence of
92	pneumonia. Moderate patients, introduced in the fourth version of the case
93	definition, refers to patients with fever, respiratory symptoms, and radiographic
94	evidence of pneumonia. Severe patients, introduced in the second version, refers
95	to patients with any breathing problems, finger oxygen saturation, and low
96	Pa02/Fi02 (Pa02 denotes partial pressure of oxygen in arterial blood; Fi02
97	denotes fraction of inspired oxygen), etc. Critical patients, a definition used from
98	the very beginning of the outbreak, refer to patients having any respiratory
99	failure, shock, and any other organ failure that requires ICU admission.
100	Patients were discharged when they met all the following criteria: 1) normal
101	body temperature for more than 3 days, 2) significantly improved respiratory
102	symptoms, 3) significant inflammation absorption in lung radiographic findings,
103	and 4) negative nucleic acid detection by real-time RT-PCR using respiratory

104 specimens on two consecutive days, with a sampling interval ≥ 1 day⁹.

105

106 Data collection

107	Daily aggregated data (hereafter called aggregated dataset) on the cumulative
108	number of cases were extracted from the websites of national, provincial, and
109	municipal Health Commissions. Individual records on laboratory-confirmed
110	COVID-19 cases (hereafter called individual dataset) were collected from two
111	official publicly available sources from December 29, 2019 through to February
112	23, 2020, including: 1) the websites of national, provincial, and municipal Health
113	Commission; 2) the websites of national and local government affiliated medias.
114	Individual information was extracted and entered into a structured database
115	comprising demographic characteristics, dates of symptom onset, first healthcare
116	consultation, hospital admission, official announcement (reporting date), as well
117	as outcome information (e.g. death/discharge and corresponding dates). Each
118	individual record was extracted and entered by three coauthors and was
119	cross-checked to ensure data accuracy. Conflicting information was resolved
120	based on the Health Commission data. Details on the collection of individual data
121	and assessment of completeness of variables used in the study are provided in
122	Appendix Tables S2-3.

123

124 Statistical analysis

125	We restricted analyses of demographic characteristics, risk factors associated
126	with fatal outcome, and key time to event intervals to the provinces outside
127	Hubei, where the majority of individual records were obtained (97.6%,
128	9,651/9,886) as of February 23, 2020. We implemented a multivariate logistic
129	regression model to explore the risk factors associated with death. We included
130	age, sex, economic region ¹⁰ , time interval from symptom onset to first medical
131	consultation, first hospital admission, and laboratory diagnosis. We categorized
132	China into three economic regions (East, Central, West and Northeast) according
133	to gross domestic product per capita in 2018 (see Appendix Figure S1 for map) 10 .
134	We estimated key time-to-event distributions including symptom onset to first
135	healthcare consultation, hospital admission, laboratory diagnosis, and death or
136	discharge, and from hospital admission to death or discharge. We fitted three
137	parametric distributions (Weibull, gamma, and lognormal) to time-to-event data
138	and selected the best fit based on the minimum Akaike information criterion.
139	We used three methods to estimate CFR among COVID-19 cases. Firstly, we
140	calculated a crude CFR based on the cumulative number of deaths divided by the
141	cumulative number of laboratory-confirmed cases, ignoring the time-lag between
142	symptoms onset and death and resulting right-censoring of outcomes ⁵ .
143	In a second approach, we adjusted for delays between hospitalization and death
144	to obtain more accurate estimates of CFR, using the method described by Garske
145	et al. for pandemic influenza A/H1N1 in 2009 11 . For above two methods, we used

the aggregated dataset as of February 23, and binomial distributions were usedto estimate the 95% CIs.

148	Thirdly, to allow for incomplete information about outcomes, we used survival
149	analyses to allow inclusion of all cases admitted to hospital in the individual
150	dataset, incorporating data for patients who were still in hospital at the time of
151	analysis. In our individual dataset, the outcome was unavailable for some
152	patients because the information was not communicated through public
153	channels, although these patients may have been discharged or died at the time
154	of this writing (hereafter denoted as missing outcome). This is different from the
155	issue of right-censoring for patients still hospitalized whose illnesses have yet to
156	be resolved. The cases who were still hospitalized and those with missing
157	outcome were treated as unresolved in our analysis. A multiple imputation was
158	used to generate outcomes for these patients.
159	For each date <i>t</i> , we calculated the number of discharged/deceased patients that
160	required imputation by subtracting the number of discharged/deceased patients
161	in our individual dataset from that in the aggregated dataset (Table S4 in
162	Appendix). All these patients with missing data for outcomes before date t were
163	considered for imputation on date <i>t</i> . They were randomly selected as discharge
164	or death according to probability calculated using the density of interval from
165	hospital admission to discharge/death. This imputation procedure was repeated
166	100 times to generate 100 imputed datasets for further estimation of CFR.

167 We employed a dual-outcome (discharge or death) time to event framework to

168 estimate CFR based on the fraction $F1/(F1+F2)^{12}$. F1 and F2 stand for the

169 admission to death distribution and the admission to discharge distribution,

170 respectively

$$\hat{F}_j(t) = \sum_{t_i \le t} \frac{d_{ij}}{n_i} \hat{S}(t_i)$$

171Where, $t_1 < \cdots < t_k$ denotes the distinct observed event times for outcomes172(discharge or death), with d_{ij} representing the number of outcome j that occur173at time t_i . \hat{S} is the Kaplan-Meier estimator of overall survival function174(combined event of discharge or death)¹². Then we implemented a 1,000 times175bootstraps for estimation of 95%CIs, and used Rubin's formula to pool all176estimates across 100 imputed datasets¹³.

177 For the survival analysis, we restricted analyses to the provinces outside Hubei,

178 considering the completeness of individual records obtained. When estimating

179 CFR, we excluded cases hospitalized beyond 17 days on each date in the baseline

180 analysis. The choice of 17 days was based on the 90th percentile of the

181 distribution of the time from hospitalization to outcome (discharge/death)

182 among COVID-19 cases in the provinces other than Hubei as of February 23. As a

183 sensitivity analysis, we also considered the 80th and 50th percentiles of this

184 distribution, corresponding to 14 days and 10 days, respectively. As mentioned

above, patients were discharged only after testing negative by nucleic acid

186 detection tests on two consecutive days⁹. Hence, we assumed that these patients

187	had biologically recovered three days prior to the reported date of discharge,
188	accounting for one additional day for delay of laboratory confirmation and
189	official reporting. Accordingly, for the discharged patients, their time from
190	hospitalization to discharge was cut down by three days when estimating the
191	90^{th} , 80^{th} and 50^{th} percentiles of the distribution of the time from hospitalization
192	to outcome.
193	All deaths occurred among critical cases, as reported by China CDC ⁵ . Separately
194	for mainland China, Hubei Province, and the provinces outside Hubei, we further
195	estimated CFRs among severe and critical patients by dividing the above derived
196	CFR by proportions of severe and critical patients among all reported COVID-19
197	cases. We used the average of daily proportions among COVID-19 cases who were
198	still in hospitals on each day other than the clinical severity on admission, which
199	were obtained from the aggregated dataset and showed very stable (Table S2,
200	and Figure S2-3 in Appendix). Only Guangdong Province officially reported
201	aggregated data on mild-, moderate-, severe- and critical patients. And thus, for
202	the provinces outside Hubei, we additionally estimated the CFR by these clinical
203	categories using the corresponding proportions in Guangdong Province.
204	Statistical analyses were performed with R (version 3.6.0).
205	

206 Ethics

207 The study was approved by the Institutional review board from School of Public

200 Incarding Lucan Oniversity (IND / 2020 02 0002). An uata were concelled inc	-0802). All data were collected from
---	--------------------------------------

- 209 publicly available sources and did not contain any personal information.
- 210
- 211 Results
- As of February 23, 2020, a total of 77,150 laboratory-confirmed cases with 2,592
- 213 deaths, 24,711 discharged and 49,847 patients who were still hospitalized were
- reported in mainland China (see Table S2 for details of each province). Of these,
- 215 provinces outside Hubei accounted for 12,863 (16.7%, 12,863/77,150)
- 216 laboratory-confirmed cases including 97 deaths (3.7%, 97/2,592), 7,973 (32.3%,
- 217 7,973/24,711) discharged cases and 4,793 (9.6%, 4,793/49,847) patients who
- 218 were still hospitalized. We collected individual information from publicly
- available official sources on 9,651 laboratory-confirmed cases detected outside
- Hubei by February 23, accounting for 75.0% (9,651/12,863) of total cases
- reported, 63.9% (62/97) of deceased patients, 18.2% (1,449/7,973) of recovered
- patients. Of 9,651 cases, unresolved patients accounted for 84.3% (8,140/9,651)
- (Table 1). See Figure S4 for the epidemic curve of cases with available individualinformation.
- 225 The median age of the cases outside Hubei was 45 years (range, four days-97
- 226 years), and 51% (4,956/9,651) were male. Those who died were significantly
- older than discharged cases (median age: 77 vs 39 years, p<0.001). 77% (48/62)
- of deaths occurred in the older adults aged 65 years or above, and 58% (36/62)

229	were male. (Table 1) Multivariate logistic analysis revealed that increasing age,
230	being male, and living in less developed economic regions (e.g. Central region or
231	West and Northeast region) were risk factors for mortality (Table 2). The
232	univariate logistic analysis is shown in Appendix Table S5.
233	The intervals from symptom onset to first healthcare consultation, from
234	symptom onset to hospitalization, and from symptom onset to laboratory
235	confirmation were consistently longer for deceased patients than for those who
236	recovered. Overall, the time interval from symptom onset to death was estimated
237	to be 12.9 days (95%CI: 2.2 to 40.2), and from symptom onset to discharge was
238	16.7 days (95%CI: 8.6 to 28.9). (Table 3)
239	Based on the total patients reported to the surveillance system, the CFR
240	estimated by Garske's method ¹¹ and survival analyses were all higher than the
241	crude CFR (Table 4 and Appendix Table S6). The CFR estimated by Garske's
242	method 11 was 4.52% (95%CI: 4.47% to 4.67%) in mainland China, with highest
243	estimate in Wuhan (6.19%, 95%CI: 6.12% to 6.41%), and lowest in the provinces
244	outside Hubei (0.89% , 95% CI: 0.83% to 1.06%). The CFR estimated by survival
245	analyses was 1.24% (95% CI: 1.24% to 1.24%) among all cases, and 11.21%
246	(95%CI: 11.21% to 11.21%) among severe and critical patients outside Hubei.
247	There was no difference in both overall CFR and that among severe and critical
248	patients outside Hubei estimated by survival analyses or Garske's method
249	(p>0.05) (Table 4). In sensitivity analyses, we excluded all cases hospitalized for

250	longer than 14 and 10 days, and the estimates were all consistent with those of
251	the baseline analysis, in which we excluded cases with hospitalizations longer
252	than 17 days (p>0.05) (Appendix, Figure S5-6).
253	In the provinces other than Hubei, the CFR increased with age, with highest
254	estimates among patients aged \geq 70 years (Figure 1 panel B). The fatality risk
255	among critical patients was 23.8-33.3%, which was 2-fold higher than that
256	among severe and critical patients, and 24-fold higher than that among moderate,
257	severe and critical patients (Figure 1 panel B). The CFR among all cases
258	estimated by survival analyses declined rapidly from 8% on January 25 to around
259	1% on January 28, and remained at $1.2 ext{-} 1.5\%$ afterwards. Patterns were similar
260	for estimates using Garske's method (Figure 2).
261	

Discussion 262

- 263 We have shown that the fatality risk among detected cases was 0.89-1.24% in the
- 264 provinces outside Hubei in mainland China and increased with clinical severity.
- 265 Further, the CFR was estimated at 8.02-11.21% among severe and critical
- 266 patients. Estimates accounting for right-censoring of unresolved cases were
- 267 higher than crude estimates. Male patients, older age, and less developed regions
- 268 were factors associated with a higher CFR. These estimates could represent the
- 269 most accurate estimates of CFR in China so far.
- 270 Our study is strengthened by accounting for unknown outcomes among patients

271	who were still in hospital at time of data cutoff. We used Garske's method
272	developed for pandemic influenza A/H1N1 in 2009 ¹¹ , as well as survival analyses,
273	both of which consider censoring. Compared to the crude CFR, Garske's method
274	improved estimates by adjusting for the cumulative density of intervals from
275	hospital admission to death/discharge. Survival analysis was a useful tool for
276	comparison as it relied on a very large individual dataset comprising a total of
277	9,651 reported cases. Availability of individual data enabled us to explore
278	mortality risk factors and estimate CFR by age group. Estimates have not been
279	reported previously based on such a large sample size and a competing risk
280	model of survival analysis with 90^{th} quantile truncation. There was no difference
281	in CFR estimates by the two methods, which lends support to our estimates.
282	Our study has some limitations. First, in the individual dataset, the clinical profile
283	of patients was not available. Hence, we could not provide direct estimates of
284	fatality risk stratified by clinical categories using survival analysis. Instead, we
285	divided the estimated CFR among all cases by the proportions of different clinical
286	categories obtained from the aggregated dataset. This is a reasonable approach
287	method because all deaths occurred among critical cases ⁵ .
288	Second, the analyzed individual records were retrieved from publicly available
289	official sources, ensuring accuracy and reliability of information. However, we
290	were only able to collect few individual records in Hubei because they did not
291	release complete individual information. And thus, we were unable to estimate

292	CFR in Hubei using survival analyses. Moreover, assessment of clinical severity in
293	Hubei, especially in the epicenter of the outbreak in Wuhan, is challenging
294	because disease severity may be increased by bottlenecks in local healthcare
295	capacity, as COVID-19 cases surged. In addition, case surveillance and clinical
296	management were biased towards severe cases in Hubei, especially in the early
297	phase of the epidemic. Our estimates of the CFR in Hubei and Wuhan using
298	Garske's method ¹¹ should be viewed cautiously as the sensitivity of surveillance
299	of both deaths and cases remains unclear.
300	Our study only addresses CFR among detected cases. The level of ascertainment
301	of mild cases remains unclear. More estimates that include fatality risk among
302	syndromic patients and asymptomatically infected individuals can only be
303	available through enhanced routine surveillance, such as increased testing of
304	patients with influenza-like-illnesses, and by analysis of future
305	sero-epidemiological studies.
306	Our CFR estimates of 0.89-1.24% among detected COVID-19 patients outside
307	Hubei province are higher than the crude CFRs reported by WHO and China CDC,
308	which is 0.4 - $0.7\%^{5,14}$. It is expected that the crude CFR obtained by dividing the
309	cumulative number of reported deaths by the cumulative number of reported
310	cases is an underestimate due to the inevitable delay between symptom onset
311	and death. Our findings reveal that older individuals and male patients
312	experience higher fatality risk, which is consistent with the WHO report ¹⁴ .

313	Additionally, WHO reported that patients with underlying conditions had much
314	higher fatality rates ¹⁴ . Our study was unable to address the relative risk of fatal
315	outcome among patients with underlying diseases compared to healthy people,
316	because limited information on underlying conditions was available from
317	publicly available data sources.
318	A clinical study conducted in Wuhan showed that 4.3% of hospitalized patients
319	died ¹⁵ . Another study relying on patients from 552 hospitals across 30 provinces,
320	found that 1.4% of patients died 16 , in which less study participants (28%) were
321	from Wuhan. The estimates of these clinical studies would be the lower bounds
322	for the CFR since separately 62% and 94% of patients were still in hospitals. The
323	fatality risk from these clinical studies is higher than our CFR estimates, probably
324	due to shortage of health services in Wuhan, e.g., advanced health care facilities
325	for critically ill patients as extracorporeal membrane oxygenation.
326	Our CFR estimates outside Hubei province indicate that the severity of
327	SARS-CoV-2 is lower than that of other diseases caused by zoonotic
328	coronaviruses, including Middle East respiratory syndrome (MERS), which had
329	an estimated CFR of 34.4% globally 17 , and severe acute respiratory syndrome
330	(SARS) with an estimated CFR of 10.9% across the world and 7% in mainland
331	China ¹⁸ . In contrast, the CFR of SARS-CoV is in the same order of magnitude as
332	that of pandemic 2009 influenza A(H1N1) virus hospitalizations, which has an
333	estimated CFR of 1.4% among hospitalized patients in Asia ¹⁹ . In the long run,

334	depending on how much of the severity pyramid of SARS-CoV2 is captured in our
335	data, the absolute severity of SARS-CoV2 may prove to be similar, to somewhat
336	more severe, than the 2009 influenza pandemic, albeit with a different age profile.
337	Comparison of clinical data from China and other countries will prove useful to
338	settle this question.
339	Outside Hubei province, close contacts of laboratory-confirmed cases were kept
340	in quarantine for 14 days, and local hospitals tested patients with respiratory
341	symptoms (e.g., fever and cough) and epidemiological links to Hubei province or
342	other cases. This strategy would have enabled detection of many mild cases.
343	However, a small number of mild cases were captured. In our aggregated dataset
344	for Guangdong province for instance, only 8% of reported cases were mild, while
345	the majority (83%) of reported cases had moderate disease severity with
346	presence of pneumonia. And thus, our CFR estimates could approximately
347	represent the fatality risk among laboratory-confirmed COVID-19 cases with
348	chest x-ray confirmed pneumonia. Even though clinical information for these
349	patients was not available from publicly available sources, we believe that our
350	CFR estimates could be viewed as the fatality risk among hospitalized COVID-19
351	cases. Chest x-ray confirmed pneumonia is a threshold for hospital admissions in
352	in China. This may vary among countries due to different clinical practices and
353	health service capacity.

354 Clinical studies have reported a higher proportion of severe patients among older

355	age group (29% vs. 14%) ¹⁶ . No specialized treatment for COVID-19 patients has
356	been identified, and the mainstay clinical management has been supportive care.
357	For non-critically ill patients, close follow-up is likely to be sufficient to manage
358	the disease. But critically ill patients were more likely to develop ARDS and
359	require ICU admission ²⁰ . That could explain our findings that severe patients had
360	a higher fatality risk. The high observed CFRs of COVID-19 in older adults is
361	consistent with the age profile of MERS, SARS, pandemic H1N1 2009, and
362	seasonal influenza. ¹⁹
363	Compared to the Eastern region, cases detected in the less developed Central
364	region had a 2.45-fold higher risk of death, and those in West and Northeast
365	region had a 2.93-fold higher risk. It is important to note that those variations in
366	CFR do not reflect underlying differences in clinical disease severity. CFR will
367	vary regionally depending on the sensitivity of surveillance systems to detect
368	cases at different levels of the severity pyramid and clinical care offered to severe
369	and critical patients. More attention should be paid to less developed settings
370	with limited health services like Iran, which reports a larger ratio of deaths to
371	cases than other countries ² .
372	Notably, the definition of suspected cases eligible for laboratory testing used in
373	China shifted from a narrow clinical criteria based on three symptoms early in
374	the outbreak (fever; radiographic findings of pneumonia; normal or reduced
375	white blood cell count, or reduced lymphocyte count at early onset of symptoms),

376	to a broader	criteria i	ncluding a	ny two o	of three sy	ymptoms b	V	January	727.	Thi	S
						/ I	~ .				

- 377 would bias our sample towards more clinically severe cases before January 27. In
- addition to improvement in therapeutic capacity, the shift in surveillance
- definition could partially explain the declining trend of CFR from 8% to around 1%
- 380 at the end of January, which remained stable afterwards. Accordingly, our CFR
- 381 estimate for February could provide a true picture of the severity of
- 382 laboratory-confirmed cases of COVID-19.
- 383 In conclusion, our estimates of CFR among laboratory-confirmed cases suggest
- that COVID-19 is not as severe as SARS and MERS, but similar to that of pandemic
- 385 2009 H1N1 among hospitalized patients. The fatality risk of COVID-19 cases is
- 386 higher in male, and increases with age, particularly in adults aged 70 years and
- 387 above. Our findings can inform the severity assessment and response to the
- 388 on-going COVID-19 outbreak, and assist preparations for a global epidemic of
- 389 COVID-19.

390

391 Contributors

- 392 H.Y. conceived, designed and supervised the study. W.W., J.L., Y.C., H.Y., Y.Z., Q.Q.,
- 393 H.G., Xiang.W., L.W. and K.S. participated in data collection. X.D., J.Y., X.W., JX.Z., Z.C,
- 394 J.Z., and Y.W. analyzed the data, and prepared the figures. J.Y. prepared the first
- 395 draft of the manuscript. X.D., P.W., M.A., B.C., C.V., and H.Y. commented on the data
- 396 and its interpretation, revised the content critically. All authors contributed to

- 397 review and revision and approved the final manuscript as submitted and agree to
- 398 be accountable for all aspects of the work.
- 399
- 400 **Disclaimer**: The findings and conclusions in this study are those of the authors
- 401 and do not necessarily represent the official position of the National Institutes of
- 402 Health or U.S. Department of Health and Human Services.
- 403

404 Acknowledgments

- 405 We thank Xin Chen, Jiaxian Chen, and Sihong Zhao, from School of Public Health,
- 406 Fudan University, and Yuheng Feng from School of Basic Medical, Sciences, Fudan
- 407 University for providing assistance with data collection.

Reference

1. National Health Commission of the People's Republic of China. Update on COVID-19 as of 24:00 on March 3, 2020.

http://www.nhc.gov.cn/xcs/yqtb/202003/7a5f57b3f1b94954b1fc25f81dacc874.shtml (accessed March 4 2020).

2. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 343 2020.

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200303-sitre p-43-covid-19.pdf?sfvrsn=2c21c09c_2 (accessed March 4 2020).

3. Wu P, Hao X, Lau EHY, et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. *Euro Surveill* 2020.

4. WHO Collaborating Centre for Infectious Disease Modelling and Imperial College London. Dorigatti I, Okell L, Cori A, Imai N, Baguelin M, Bhatia S, et al. Report 4: Severity of 2019-novel coronavirus (nCoV).

https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavi rus/. (accessed Feb 25 2020).

5. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020. China CDC Weekly 2020; 2(8):113-22.

6. Lipsitch M, Donnelly CA, Fraser C, et al. Potential Biases in Estimating Absolute and Relative Case-Fatality Risks during Outbreaks. *PLoS Negl Trop Dis* 2015; **9**(7): e0003846.

Prevention CCfDCa. Epidemic update and risk assessment of 2019 Novel Coronavirus.
2020. <u>http://www.chinacdc.cn/yyrdgz/202001/P020200128523354919292.pdf</u> (accessed Jan 31 2020).

8. National Health Commission of China. The diagnosis and treatment scheme of novel coronavirus diseases 2019 (Trial version 5th).

http://www.gov.cn/zhengce/zhengceku/2020-02/05/content_5474791.htm. (accessed Feb 25 2020).

9. National Health Commission of China. The diagnosis and treatment scheme of novel coronavirus diseases 2019 (Trial version 6th).

http://www.gov.cn/zhengce/zhengceku/2020-02/19/content_5480948.htm. (accessed Feb 25 2020).

10. National Bureau of Statistics of China. China Statistical Yearbook 2019.

http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm. (accessed Feb 25 2020)

11. Garske T, Legrand J, Donnelly CA, et al. Assessing the severity of the novel influenza A/H1N1 pandemic. *BMJ* 2009; **339**: b2840.

12. Jewell NP, Lei X, Ghani AC, et al. Non-parametric estimation of the case fatality ratio with competing risks data: an application to Severe Acute Respiratory Syndrome (SARS). Stat Med 2007; 26: 1982–98.

13. Rubin DB. Multiple imputation for nonresponse in surveys. New York, NY: J Wiley and Sons, 1987.

14. World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19).

> https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid -19-final-report.pdf. (accessed on Feb 29 2020).

> 15. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. *JAMA* 2020: 10.1001/jama.2020.1585.

16. Guan W-J, Ni Z-Y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *The New England journal of medicine* 2020: 10.1056/NEJMoa2002032.

17. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV)The Kingdom of Saudi Arabia.

https://www.who.int/csr/don/18-december-2019-mers-saudi-arabia/en/. (accessed on Feb 29 2020).

18. World Health Organization.Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003.

https://www.who.int/csr/sars/country/table2003 09 23/en/. (accessed on Feb 29 2020).

19. Wong JY, Kelly H, Cheung C-MM, et al. Hospitalization Fatality Risk of Influenza A(H1N1)pdm09: A Systematic Review and Meta-Analysis. *Am J Epidemiol* 2015; **182**(4): 294-301.

20. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med* 2020: S2213-600(20)30079-5.

Charactoristic	Died	Discharged	Unresolved a	All cases	
	n=62	n=1,449	n=8,140	n=9,651	
Median age (year, range)	77 (25–94)	39 (0.15–95)	46 (0.01–97)	45 (0.01–97)	
Age group (year) (n, %) ^b					
0-6	0 (0)	30 (2)	107 (1)	137 (1)	
7-17	0 (0)	54 (4)	211 (3)	265 (3)	
18-24	0 (0)	110 (8)	391 (5)	501 (5)	
25-49	2 (3)	815 (56)	3,746 (46)	4,563 (47)	
50-64	10 (16)	283 (20)	2,141 (26)	2,434 (25)	
≥65	48 (77)	103 (7)	1,028 (13)	1,179 (12)	
Missing	2 (3)	54 (4)	516 (6)	572 (6)	
Sex (n, %)					
Male	36 (58)	742 (51)	4,178 (51)	4,956 (51)	
Female	26 (42)	669 (46)	3,795 (47)	4,490 (47)	
Missing	0 (0)	38 (3)	167 (2)	205 (2)	
Region (n, %) ^c					
East	24 (39)	751 (52)	3,259 (40)	4,034 (42)	
Central	15 (24)	364 (25)	3,160 (39)	3,539 (37)	
West and Northeast	23 (37)	334 (23)	1,721 (21)	2,078 (22)	

Table 1. Demographical characteristics of COVID-19 cases outside Hubei province in mainland China, as of February 23, 2020

^a Including these cases who may had outcomes (i.e., death/discharge), but their information unavailable from public data sources. ^b Significant difference was observed among patients who died and the discharged (p<0.001). ^c Significant difference was observed among patients who died and the discharged (p<0.05). East: Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan provinces; Central: Shanxi, Anhui, Jiangxi, Henan, and Hunan provinces; West: Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang; Northeast: Heilongjiang, Jilin and Liaoning.

Variables	OR (95%CI)	Z-value	P-value
Age, per year increase	1.18 (1.14-1.22)	10.2	< 0.001
Sex			
Female	ref	/	/
Male	2.02 (1.02-4.03)	2.00	0.045
Unknown	0 (0-Inf)	-0.01	0.990
Economic regions ^a			
East	ref	/	/
Central	3.45 (1.32-9.03)	2.53	0.012
West and Northeast	3.93 (1.74-8.85)	3.30	< 0.001
Time from symptom onset to first healthcare			
consultation			
≤2 days	ref	/	/
>2 days	1.11 (0.33-3.71)	0.17	0.863
Unknown	0.40 (0.14-1.14)	-1.72	0.086
Time from symptom onset to hospital admission			
≤3 days	ref	/	/
>3 days	0.65 (0.20-2.11)	-0.72	0.471
Unknown	0.55 (0.18-1.69)	-1.04	0.298
Time from symptom onset to laboratory			
confirmation			
<=6 days	ref	/	/
>6 days	1.41 (0.42-4.74)	0.56	0.575
Unknown	1 41 (0 44 4 55)	0.58	0.561

Table 2. Risk factors associated with fatal outcome among COVID-19 patients

^a East: Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan provinces; Central: Shanxi, Anhui, Jiangxi, Henan, and Hunan provinces; West: Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang; Northeast: Heilongjiang, Jilin and Liaoning. /not applicable.

Key time to event interval	Died n=62	Discharged n=1,449	Unresolved ^a n=8,140	
Time from symptom onset to first	n-27	n-402	n-2020	
healthcare consultation (days)	11=27	11=495	11=2,030	
Estimates from empirical data	3.0 (0.5, 11.1)	1.0 (0.5, 11.0)	2.0 (0.5, 11.0)	
Estimates by fitting	2.0 (0.2, 18.2)	1.6 (0.2, 13.2)	1.6 (0.2, 12.5)	
Time from symptom onset to hospital admission (days)	n=36	n=572	n=2,148	
Estimates from empirical data	4.0 (0.5, 13.2)	3.0 (0.5, 12.0)	3.0 (0.5, 12.0)	
Estimates by fitting	3.4 (0.1, 17.0)	3.1 (0.2, 13.1)	2.2 (0.3, 18.0)	
Time from symptom onset to laboratory	n=35	n=654	n=4,955	
confirmation (days)			,	
Estimates from empirical data	6.0 (0.5, 16.0)	5.0 (0.7, 15.0)	5.0 (0.5, 16.0)	
Estimates by fitting	5.6 (0.6, 17.2)	5.1 (0.6, 15.3)	5.2 (0.6, 15.8)	
Time from symptom onset to death/discharge (days)	n=41	n=769	/	
Estimates from empirical data	13.0 (3.0, 39.0)	17.0 (8.0, 29.0)	/	
Estimates by fitting	12.9 (2.2, 40.2)	16.7 (8.6, 28.9)	/	
Time from hospital admission to	m 40	m 000	1	
death/discharge (days)	n=49	n=980	/	
Estimates from empirical data	8.0 (0.6, 35.4)	13.0 (6.0, 24.5)	/	
Estimates by fitting	8.0 (0.8, 30.2)	13.1 (6.0, 24.2)	/	

Table 3. Key time to event intervals of COVID-19 patients outside Hubei province in mainland China, as of February 23, 2020 (mean, 95%CI)

a Including these cases who may had outcomes (i.e., death/discharge), but their information unavailable from publicly

data sources; / not applicable.

			Fatality 1	risk among all repo	orted cases	Fatality risk am	ong severe and cri	tical patients	
	Numb	er of cases		(%, 95%CI)		(%, 95%CI) ^b			
	Death	Total cases reported	Crude	Estimated using Garske's method ¹¹	Estimated by survival analyses	Crude	Estimated using Garske's method ¹¹	Estimated by survival analyses	
Mainland China	2,592	77,150	3.36 (3.23, 3.49)	4.52 (4.47, 4.67)	/	17.97 (17.30, 18.66)	24.18 (23.91, 24.96)	/	
Hubei province	2,495	64,287	3.88 (3.73, 4.03)	5.37 (5.31, 5.55)	/	18.57 (17.86, 19.30)	25.71 (25.42, 26.54)	/	
Wuhan	1,987	46,607	4.26 (4.08, 4.45)	6.19 (6.12, 6.41)	/	18.54 (17.75, 19.35)	26.93 (26.61, 27.88)	/	
Outside Wuhan	508	17,680	2.87 (2.63, 3.13)	3.54 (3.44, 3.81)	/	23.36 (21.4, 25.45)	28.75 (28.00, 30.99)	/	
Outside Hubei province	97	12,863	0.75	0.89 (0.83, 1.06)	1.24 (1.24, 1.24)	6.79 (5.57, 8.28)	8.02 (7.48, 9.55)	11.21 (11.21, 11.21)	

Table 4. Fatality risk of COVID-19 among all reported cases, and among severe and critical cases ^a

^a crude fatality risk was calculated as the cumulative number of deaths divided by the cumulative number of laboratory-confirmed cases. /not estimated using survival analyses due to limited individual data.

^b estimated using the proportion of severe and critical patients among reported cases in corresponding areas.

Figure 1. Case-fatality risk (mean) outside Hubei province in mainland China. A: by age group; B: by clinical categories (All patients includes mild, moderate, severe and critical patients). 95%CI was narrow and thus not presented here.

Figure 2. Case-fatality risk over time outside Hubei province in mainland China (%) (mean, 95%CI).