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Abstract

The fourth outbreak of the Coronaviruses, known as the 2019-nCoV, has occurred

in Wuhan city of Hubei province in China in December 2019. We propose a time-

varying sparse vector autoregressive (VAR) model to retrospectively analyze and

visualize the dyamic transmission routes of this outbreak in mainland China over

January 31 – February 19, 2020. Our results demonstrate that the influential inter-

province routes from Hubei have become unidentifiable since February 4, whereas

the self-transmission in each province was accelerating over February 4–15. From

February 16, all routes became less detectable, and no influential transmissions could

be identified on February 18 and 19. Such evidence supports the effectiveness of

government interventions, including the travel restrictions in Hubei. Implications of

our results suggest that in addition to the origin of the outbreak, virus preventions

are of crucial importance in provinces with the largest migrant workers percentages

(e.g., Jiangxi, Henan and Anhui) to controlling the spread of 2019-nCoV.
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1 Introduction

Coronaviruses are single-stranded, enveloped and positive-sense RNA viruses, which are

spherical in shape and have petal-like spines [1]. Firstly discovered and identified in 1965 [2],

coronaviruses have not caused large-scale outbreaks until the 2003 SARS epidemic in China,

followed by 2012 MERS in Saudi Arabia and 2015 MERS in South Korea [3]. Although the

exact origin remains debatable [4], the fourth outbreak has taken place in Hubei province

of China in December 2019 and rapidly spread out nationally [5–10]. On January 10, 2020,

the WHO officially named this new coronavirus as the 2019 novel coronavirus, or 2019-

nCoV, and released a comprehensive interim guidance on dealing with this new virus for

all countries [11]. As of February 19, there are 75,101 confirmed cases (including 2,121

death report) in China, among which over 80% are from Hubei and over 50% are from

Wuhan, the capital city of Hubei [12].

To combat against the rapid spread of the 2019-nCoV, since mid-January 2020, the

central government of China and all local governments have implemented intensive preven-

tions. Examples include tracing close contacts and quarantining infected cases, promoting

social consensus on self-protection like wearing face mask in public area, among others

[13]. With the unexpectedly rapidly growing number of confirmed cases, more extreme

and unprecedented measures have taken places. On 23 January, the Chinese authorities in-

troduced travel restrictions on five cities (Wuhan, Huanggang, Ezhou, Chibi and Zhijiang)

of Hubei, shutting down the movement of more than 40 million people [14]. Among exist-

ing research, most argues that those interventions have effectively halted the spread of the

2019-nCoV [14–24].

During this anti-epidemic war, statistic and mathematical modeling plays a non-negligible

role. Among the emerging large volume of studies, the classical susceptible exposed infec-

tious recovered (SEIR) model wth its various extensions is the most popular method [25–

38]. SEIR family models are effective in exploring the epidemic characteristics of the out-

break, forecasting the inflection point and ending time, and deciding the measures to curb

the spreading. Despite this, they are less appropriate in identifying transmission routes of

the 2019-nCoV outbreak, which is also not thoroughly investigated in existing literature.

In this paper, we fill in this gap and perform a retrospective analysis using the publicly
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available data [12]. Rather than employing the SEIR, we develop a time-varying coefficient

sparse vector autoregressive (VAR) model. Using the least absolute shrinkage and selec-

tion operator (lasso) [39, 40] and the local constant kernel smoothing estimator [41], our

model is capable of estimating the dynamic high-dimensional Granger causality coefficient

matrices. This enables the detection and visualization of time-varying inter-province and

self-transmission routes of the 2019-nCov on the daily basis. The resulting “road-map”

can help policy-markers and public-health officers retrospectively evaluate both the effec-

tiveness and unexpected outcomes of their interventions. Such an evaluation is critical to

winning the current battle against 2019-nCoV in China, providing useful experience for

other countries facing the emerging threat of this new coronavirus, and saving lives when

a new epidemic occurs in the future.

2 Methods

2.1 Model

Throughout this study, we are interested in the growth rate yi,t such that:

yi,t+1 = ln(xi,t+1)− ln(xi,t), (1)

where xi,t is the accumulated confirmed cases in province i on day t (i = 1, . . . , N and t =

1, . . . , T ). T and N define the number of days and number of provinces under consideration,

respectively. We then define yt = (y1,t, . . . , yN,t)
′, an N×1 vector of the growth rate on day

t. To investigate a dynamic direct transmission of the growth rate among provinces, we

propose a time-varying coefficient sparse VAR model, namely the tvSVAR model, which

assumes that Granger causality coefficients are functions of time, such that:

yt+1 = αt +Btyt + εt, (2)

where αt is an N -dimensional intercept vector at time t. Bt is an N×N Granger causality

matrix at time t with a dynamic sparse structure, for which entries can be exactly zero

and the locations of zeros can vary with time. εt is an N × 1 vector of error terms. The
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sparsity of Bt is assumed because N could be even larger than T in our case, which leads

to very unstable estimations and problematic interpretations of Bt.

One important benefit of using the proposed tvSVAR to model the transmissions is that

the Granger causality matrix, Bt, can provide both the direction and strength of the route

on day t. For example, the ijth entry in Bt measures the strength of the transmission from

province i to province j on day t. The ith diagonal of Bt represents the self-transmission

in province i that captures the relationship between the growth rate in the current and

previous days. More critically, the sparse structure eases the interpretation of Bt because

many weak transmissions may be of a random nature. The corresponding coefficients,

therefore, can be treated as noises and are shrunk to zeros exactly. Moreover, a time-

varying design of Bt allows us to investigate changes in the identified transmissions over

time.

To capture both dynamic and sparse structure of the Granger causality coefficients, we

solve the following optimization problem:

(α̂t, B̂t) = arg min
αt,Bt

{
T−1∑
s=1

(ys+1 −αt −Btys)
T Ws (ys+1 −αt −Btys) + λ

N∑
i,j

wi,j,t|βi,j,t|

}
(3)

where Ws = diag (Kb1(τs − τ), . . . , KbN (τs − τ)) is the matrix of kernel weights calculated

based on the bandwidth bi, i = 1, . . . , N , and Kbi(τs − τ) = K( τs−τ
bi

)/bi with τs defined

as a scaled time s
T−1 . We use the Epanechnikov kernel K(x) = 0.75(1 − x2)+ and a

unified bandwidth for each i (bi ≡ b) to avoid a large number of tuning parameters. The

coefficients βi,j,t denotes the ijth entry of the Granger causality matrix Bt, and λ is the

tuning parameter that aims to shrink insignificant βi,j,t to zero and thus controls the sparsity

of Bt. Another essential feature of our proposed model is that the adaptive weights wi,j,t

are employed to penalize βi,j,t differently in the lasso (L1) penalty [39, 40]. The choice

of weights wi,j,t takes account of the prior knowledge about the transmissions and can be

specified by the users. In this study, we consider wi,j,t as the reciprocal of the accumulated

confirmed in province i on day t− 1. That is, the growth rate of a province with a smaller

accumulated confirmed cases is less likely to influence the growth rates of others, and thus,
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more likely to be shrunk to zero. The final sparsity structure of Bt is still data-driven.

The estimators as in (3) can also be viewed as a penalized version of local constant

kernel smoothing estimator [41]. We utilize a modified version of the fast iterative soft

thresholding algorithm (FISTA) [42] to solve the optimization problem (3).

Given a bandwidth b and a penalty parameter λ, we can find the estimator (α̂t, B̂t) for

each day t and observe the dynamic patterns of the transmission over time t for each pair of

provinces. The bandwidth and penalty parameter are chosen to optimize the cross-validated

forecasting accuracy, as measured by the one-step-ahead root mean squared forecast error

(RMSFE), such that

RMSFE(b, λ) =

√√√√ 1

N(T1 − T0 − 1)

N∑
i=1

T1−1∑
t=T0

(
ŷ
(b,λ)
i,t+1 − yi,t+1

)2
, (4)

where [T0, T1] is the evaluation period, which is given by the last third of the data in our

study, ŷ
(b,λ)
i,t+1 denotes the one-step-ahead forecast for province i based on the data up to day

t, and yi,t+1 defines the observed growth rate at day t+ 1 for province i.

2.2 Code availability

The R code that supports the findings of this study is available from the author on request.

3 Data and Results

3.1 Data

The data studied in this paper include confirmed 2019-nCoV cases which occurred in main-

land China from the National Health Commission of the People’s Republic of China [12].

The data-coverage ranges from January 29, 2020 to February 19, 2020, during which no

missing data were recorded at province-level. The accumulated cases and the associated

growth rates, grouped by the total national number, cases in Hubei province and cases in all

other provinces, are plotted in Figure 1 (a) and (b), respectively. The total national (Hubei

province) accumulated confirmed cases increased rapidly from 7,736 (4,586) on January 31
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to 75,101 (62,457) on February 19. Note that on February 12, confirmed cases in Hubei

included those confirmed by both laboratory and clinical diagnosis, leading to a one-time

hump of the accumulated number. Compared to those of Huber, confirmed cases of other

provinces took up a smaller proportion of the total national number, ranging from 40.7% on

January 29 to 16.8% on February 19. This suggests that the growth rate of other provinces

should be lower than that of Hubei, which is consistent with Figure 1 (b). Throughout our

investigation period, except for the one-time hump on February 12, growth rates of Hubei

and the rest steadily declined, from 33% and 25% to 5% and 1%, respectively.

3.2 Estimation results: Transmission routes

By taking the difference of the logged accumulated cases and applying one lag, our esti-

mated transmission routes are available from January 31 to February 19 (two observations

are lost). To avoid potential noises caused by small numbers, we only include data of

provinces, which had at least 150 accumulated confirmed cases as of February 19. Alto-

gether, our modeled sample contains 20 province-level confirmed cases. A non-zero estimate

of βi,j,t, the ijth entry of Bt in (2), indicates that on the tth day, the growth rate of province

j is Granger caused by that of province i. In other words, there is a transmission route

from province i to province j. Among the 20-day results, we noticed that the estimated

transmission routes on days 1–5 changed considerably on daily basis. From the sixth day

onwards, however, those estimated routes were more steady. Hence, we plot the estimates

on days 1–5 and those on the every fifth day thereafter, on Figure 2. Be noted that esti-

mates smaller than 0.2 (none-influential) are not presented to avoid inevitable estimation

noises and for a better illustration.

In Figure 2, we use color of light orange (small) to dark red (large) indicating the accu-

mulated confirmed cases in each province, up to time t. Estimated transmission routes are

colored in blue. Self-transmissions are denoted by dots, and a larger size of dot suggests

a larger estimated βi,i,t. Inter-province transmission is represented by arrows, with the

transparency indicating the magnitude of estimated βi,j,t. On the first day (January 31),

there were influential inter-province transmissions from Hubei to Jiangxi, Heilongjiang,

Zhejiang, Henan, Shandong, Jiangsu and Shaanxi, sorted by the magnitudes of strength
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(big to small). There were a few additional detected such transmissions on the second day,

including those from Hubei to Guangxi, from Zhejiang to Fujian, and from Guangdong to

Yunnan, Hunan and Fujian. The number of such identified inter-province routes, however,

reduced rapidly over the next three days. On the fifth day (February 4), no influential trans-

mission routes were found from Hubei to directly affect other provinces, and there were only

three influential routes identified nationally, including Zhejiang–Shaanxi, Zhejiang–Jiangxi

and Jiangxi–Shanghai. The number of those detected inter-province routes declined again

in the next few days, and on day 13, only Henan–Heilongjiang was found influential. On

days 19 and 20 (February 18 and 19), there were no influential inter-province transmis-

sions identified. The above findings suggest that the number of influential inter-province

transmissions overall dropped quickly in the first five days and then reduced steadily for

the rest fifteen days. This is consistent with the observations of Figure 3 (a), where the

time-varying estimates of the Granger causality of Hubei on other provinces are plotted.

On each day, we report the mean, standard deviation (Std. Dev.), the 25% quantile (Q1)

and 75% quantile (Q3) of those estimates in Table 1, which also leads to consistent findings.

As for the self-transmission, we firstly examine Figure 2 (b). It can bee seen that there

were quite a few detected influential self-transmissions on the first two days. However,

this number dropped quickly over days 3–5, and only self-transmissions of Heilongjiang,

Guangdong and Zhejiang were found influential on day 5. Since then, the number of

influential self-transmissions increased quickly with growing magnitudes (influence). On the

sixteenth day (February 15), 16 out of the 20 examined provinces had an estimated βi,i,20 of

at least 0.2. Those large self-transmissions, however, disappeared rapidly again in the next

three days. On February 18 and 19, there were no influential self-transmissions identified.

This is consistent with our findings on Figure 3 (b), where time-varying estimated βi,i,t are

plotted for each province. We report daily descriptive statistics of those estimates in Table

1, which also results in consistent conclusions.

4 Discussions

Since 23 January 2020, many cities on mainland China started to introduce travel re-

strictions, including five cities (Wuhan, Huanggang, Ezhou, Chibi and Zhijiang) of Hubei
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province [14]. According to [43], the average incubation period of 2019-nCoV is up to 10

days. Thus, our estimated dynamic transmission routes supports the significant effective-

ness of the interventions taken by the Chinese authorities [14–24]. This is evidenced by

Figure 2 (a)–(e), where the number of influential inter-province transmissions from Hubei

to other provinces reduced very quickly. Compared to multiple influential routes originating

in Hubei detected on the first two days (January 31 and February 1), by February 4 (around

10 days after the travel restrictions), there were already no such transmissions identified.

On the other hand, from February 5 to 16, Table 1 suggests that the averaged magnitudes

of self-transmission on each day were strengthening steadily. This may also be explained

by the interventions, which have effectively blocked inter-province transmissions, such that

the growth rate of each province could only be caused by its internal transmissions.

We now focus on the inter-province transmission routes. Since influential routes from

Hubei were no longer detected since day 5, we calculate the average βi,j,t of the 19 provinces

affected by Hubei over the first four days (January 31 – February 3). The top five desti-

nations are presented in Panel A of Table 2. Apart from its geographic neighbors Jiangxi

and Henan, Hubei has lead to influential routes to Heilongjiang, Zhejiang and Shandong

directly. This may be explained by the substantial floating population working and living

in Hubei from those provinces. Excluding routes originating in Hubei, the Panel B of Table

2 suggests that the top destinations of transmission routes have not changed much over the

first four days and the rest sixteen days. Despite minor differences in ranking, Shaanxi,

Heilongjiang, Jiangxi, Anhui, Henan and Jiangsu appear to be the destinations suffered

most from inter-province transmissions from origins other than Hubei. Similarly, the top

five sources (excluding Hubei) of those transmissions are basically identical over the days

1–4 and days 5–20, as shown in Panel C of Table 2. This is consistent with the fact that

travel restrictions in Hubei should not affect the connections among other provinces. In

all cases, Jiangxi, Henan, Guangdong, Zhejiang and Anhui are the most influential origins

other than Hubei.

It is worth noting that Jiangxi, Henan and Anhui belong to both the top origins and

destinations of the inter-province transmissions, excluding Hubei. Since the impact of

Hubei is not considered, this cannot be explained by the two influential transmission routes
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of Hubei–Jiangxi and Hubei–Henan listed in Panel A of Table 2. To see this, over days

5–20, the transmissions out of Hubei are no longer significant and thus should not affect

routes from Jiangxi and Henan to another province. In contrast, one explanation is the

large migrant workers from Jiangxi, Henan and Anhui to other provinces (excluding Hubei).

According to the Report on China’s migrant population development of 2017 [44], Jiangxi

(7.25%), Henan (6.30%) and Anhui (6.27%) are among the top five provinces in mainland

China, ranked by the percentages of migrant workers in 2017.

5 Conclusions

Coronaviruses have lead to three major outbreaks ever since the SARS occurred in 2003.

Although the exact origin is still debatable, the current shock, namely 2019-nCoV, has

taken place in Wuhan, the capital city of Hubei province in mainland China. As the

fourth large-scale outbreak of coronaviruses, 2019-nCoV is spreading quickly to all provinces

in China and has recently become a world-wide epidemic. As a significant complement to

existing research, this study employs a tvSVAR model and retrospectively investigates and

visualizes the transmission routes in mainland China.

Demonstrated in Figure 2, our baseline results review both the dynamic inter-province

and self-transmission routes. Since February 4, the spread out of Hubei was largely reduced,

leading to no identifiable routes to other provinces. Simultaneously, the self-transmissions

started to accelerate and peaked on around February 15 for most provinces. Given an

average incubation period of 10 days, those results support the argued effectiveness of

the travel restrictions to control the spread of 2019-nCoV, which took place in multiple

cities of Hubei on January 23. On February 18–19, there existed no influential inter-

province or self-transmission routes. Thus, the growth rates of confirmed cases are of a

more random nature in all provinces thereafter, implying that the spread of 2019-nCoV has

been under control. For the detected inter-province transmissions, our findings demonstrate

that Jiangxi, Heilongjiang, Zhejiang, Henan and Shandong are the top 5 provinces affected

mostly via routes directly from Hubei. When the influence of Hubei is excluded, Jiangxi,

Henan and Anhui are among both the top origins and destinations of transmission routes.

Our results have major practical implications for public health decision- and policy-
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makers. For one thing, the implemented timely ad-hoc public health interventions are

proven effective, including contact tracing, quarantine and travel restrictions. For another,

apart from the origin of the virus, as provinces with largest migrant workers percentages,

virus preventions are also of crucial importance in Jiangxi, Henan and Anhui to controlling

the epidemics like the outbreak of 2019-nCoV in the future. With limited resources, taking

ad-hoc interventions in such provinces may most effectively help stop the spread of a new

virus, from an economic perspective.
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Table 1: Summary of daily estimated transmission routes

From Hubei to others Self-transmissions

Day Mean Std. Dev. Q1 Q3 Mean Std. Dev. Q1 Q3

1 0.1602 0.1366 0.0802 0.2306 0.1430 0.1651 0.0154 0.2451
2 0.1906 0.1593 0.1019 0.2770 0.1684 0.2081 0.0160 0.2847
3 0.1405 0.0961 0.0825 0.1961 0.1273 0.1508 0.0357 0.1864
4 0.1469 0.0924 0.0781 0.1938 0.1119 0.1143 0.0487 0.1837
5 0.0467 0.0548 0.0042 0.0662 0.1124 0.1008 0.0437 0.1706
6 0.0483 0.0539 0.0071 0.0695 0.1177 0.0967 0.0881 0.1687
7 0.0496 0.0509 0.0130 0.0725 0.1242 0.0982 0.0969 0.1751
8 0.0518 0.0507 0.0236 0.0766 0.1328 0.1013 0.1103 0.1873
9 0.0523 0.0514 0.0179 0.0788 0.1417 0.1064 0.1165 0.1933

10 0.0516 0.0515 0.0086 0.0794 0.1528 0.1147 0.1276 0.2152
11 0.0507 0.0508 0.0066 0.0770 0.1546 0.1129 0.1311 0.2172
12 0.0490 0.0490 0.0035 0.0698 0.1844 0.0807 0.1280 0.2304
13 0.0543 0.0457 0.0231 0.0756 0.2164 0.0936 0.1557 0.2950
14 0.0518 0.0442 0.0162 0.0697 0.2465 0.0946 0.1623 0.3387
15 0.0468 0.0444 0.0110 0.0636 0.2789 0.1245 0.1742 0.3763
16 0.0388 0.0439 -0.0010 0.0556 0.3646 0.1614 0.2151 0.4746
17 0.0447 0.0408 0.0053 0.0600 0.3297 0.1477 0.2241 0.4420
18 0.0431 0.0360 0.0123 0.0646 0.1919 0.0997 0.1294 0.2467
19 0.0032 0.0017 0.0022 0.0041 0.0021 0.0016 0.0012 0.0027
20 0.0028 0.0016 0.0017 0.0036 0.0016 0.0015 0.0009 0.0018
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Table 2: Top five provinces of the inter-province transmissions

Days High – Low

Panel A: top destinations (affected by Hubei)
1–4 Jiangxi Heilongjiang Zhejiang Henan Shandong

Panel B: top destinations (affected by provinces excluding Hubei)
All Shaanxi Heilongjiang Jiangxi Anhui Henan
1-4 Shaanxi Jiangxi Heilongjiang Henan Jiangsu

5-20 Heilongjiang Shaanxi Jiangxi Anhui Henan

Panel C: top origins (excluding Hubei)
All Jiangxi Henan Guangdong Zhejiang Anhui
1-4 Jiangxi Guangdong Zhejiang Henan Anhui

5-20 Henan Jiangxi Guangdong Anhui Zhejiang
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Figure 1: Accumulated confirmed cases and growth rate: 31/1/2020–19/2/2020

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2020. .https://doi.org/10.1101/2020.03.01.20029645doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.01.20029645
http://creativecommons.org/licenses/by-nc-nd/4.0/


Anhui

Beijing

Chongqing

Fujian

Gansu

Guangdong
Guangxi

Guizhou

Hainan

HebeiHebei

Heilongjiang

Henan

Hubei

Hunan

Inner Mongolia

Jiangsu

Jiangxi

Jilin

Liaoning

Ningxia

Qinghai Shaanxi
Shandong

Shanghai

Shanxi

Sichuan

Taiwan

Tianjin

Tibet

Xinjiang

Yunnan

Zhejiang

Acc Confirmed

NA

0−10

10−100

100−500

500−1000

1000−10000

10000+

0.2

0.3

0.4

0.5

0.6

(a) January 31 (Day 1)

Anhui

Beijing

Chongqing

Fujian

Gansu

Guangdong
Guangxi

Guizhou

Hainan

HebeiHebei

Heilongjiang

Henan

Hubei

Hunan

Inner Mongolia

Jiangsu

Jiangxi

Jilin

Liaoning

Ningxia

Qinghai Shaanxi
Shandong

Shanghai

Shanxi

Sichuan

Taiwan

Tianjin

Tibet

Xinjiang

Yunnan

Zhejiang

Acc Confirmed

NA

0−10

10−100

100−500

500−1000

1000−10000

10000+

0.2

0.3

0.4

0.5

0.6

(b) February 1 (Day 2)

Anhui

Beijing

Chongqing

Fujian

Gansu

Guangdong
Guangxi

Guizhou

Hainan

HebeiHebei

Heilongjiang

Henan

Hubei

Hunan

Inner Mongolia

Jiangsu

Jiangxi

Jilin

Liaoning

Ningxia

Qinghai Shaanxi
Shandong

Shanghai

Shanxi

Sichuan

Taiwan

Tianjin

Tibet

Xinjiang

Yunnan

Zhejiang

Acc Confirmed

NA

0−10

10−100

100−500

500−1000

1000−10000

10000+

0.2

0.3

0.4

0.5

0.6

(c) February 2 (Day 3)

Anhui

Beijing

Chongqing

Fujian

Gansu

Guangdong
Guangxi

Guizhou

Hainan

HebeiHebei

Heilongjiang

Henan

Hubei

Hunan

Inner Mongolia

Jiangsu

Jiangxi

Jilin

Liaoning

Ningxia

Qinghai Shaanxi
Shandong

Shanghai

Shanxi

Sichuan

Taiwan

Tianjin

Tibet

Xinjiang

Yunnan

Zhejiang

Acc Confirmed

NA

0−10

10−100

100−500

500−1000

1000−10000

10000+

0.2

0.3

0.4

0.5

0.6

(d) February 3 (Day 4)

Anhui

Beijing

Chongqing

Fujian

Gansu

Guangdong
Guangxi

Guizhou

Hainan

HebeiHebei

Heilongjiang

Henan

Hubei

Hunan

Inner Mongolia

Jiangsu

Jiangxi

Jilin

Liaoning

Ningxia

Qinghai Shaanxi
Shandong

Shanghai

Shanxi

Sichuan

Taiwan

Tianjin

Tibet

Xinjiang

Yunnan

Zhejiang

Acc Confirmed

NA

0−10

10−100

100−500

500−1000

1000−10000

10000+

0.2

0.3

0.4

0.5

0.6

(e) February 4 (Day 5)

Anhui

Beijing

Chongqing

Fujian

Gansu

Guangdong
Guangxi

Guizhou

Hainan

HebeiHebei

Heilongjiang

Henan

Hubei

Hunan

Inner Mongolia

Jiangsu

Jiangxi

Jilin

Liaoning

Ningxia

Qinghai Shaanxi
Shandong

Shanghai

Shanxi

Sichuan

Taiwan

Tianjin

Tibet

Xinjiang

Yunnan

Zhejiang

Acc Confirmed

NA

0−10

10−100

100−500

500−1000

1000−10000

10000+

0.2

0.3

0.4

0.5

0.6

(f) February 8 (Day 9)

Anhui

Beijing

Chongqing

Fujian

Gansu

Guangdong
Guangxi

Guizhou

Hainan

HebeiHebei

Heilongjiang

Henan

Hubei

Hunan

Inner Mongolia

Jiangsu

Jiangxi

Jilin

Liaoning

Ningxia

Qinghai Shaanxi
Shandong

Shanghai

Shanxi

Sichuan

Taiwan

Tianjin

Tibet

Xinjiang

Yunnan

Zhejiang

Acc Confirmed

NA

0−10

10−100

100−500

500−1000

1000−10000

10000+

0.2

0.3

0.4

0.5

0.6

(g) February 12 (Day 13)

Anhui

Beijing

Chongqing

Fujian

Gansu

Guangdong
Guangxi

Guizhou

Hainan

HebeiHebei

Heilongjiang

Henan

Hubei

Hunan

Inner Mongolia

Jiangsu

Jiangxi

Jilin

Liaoning

Ningxia

Qinghai Shaanxi
Shandong

Shanghai

Shanxi

Sichuan

Taiwan

Tianjin

Tibet

Xinjiang

Yunnan

Zhejiang

Acc Confirmed

NA

0−10

10−100

100−500

500−1000

1000−10000

10000+

0.2

0.3

0.4

0.5

0.6

(h) February 16 (Day 17)

Anhui

Beijing

Chongqing

Fujian

Gansu

Guangdong
Guangxi

Guizhou

Hainan

HebeiHebei

Heilongjiang

Henan

Hubei

Hunan

Inner Mongolia

Jiangsu

Jiangxi

Jilin

Liaoning

Ningxia

Qinghai Shaanxi
Shandong

Shanghai

Shanxi

Sichuan

Taiwan

Tianjin

Tibet

Xinjiang

Yunnan

Zhejiang

Acc Confirmed

NA

0−10

10−100

100−500

500−1000

1000−10000

10000+

(i) February 19 (Day 20)

Figure 2: Estimated routes of transmission among provinces of China: 31/1/2020–19/2/2020
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Figure 3: Estimated time-varying coefficients: 31/1/2020–19/2/2020
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