1	Nanopore target sequencing for accurate and comprehensive detection of SARS-CoV-2 and
2	other respiratory viruses
3	Ming Wang ^{#1} , Aisi Fu ^{#2} , Ben Hu ^{#2} , Yongqing Tong ^{#1} , Ran Liu ^{#2} , Jiashuang Gu ³ , Jianghao Liu ³ ,
4	Wen Jiang ³ , Gaigai Shen ² , Wanxu Zhao ² , Dong Men ⁴ , Zixin Deng ^{1,5,6} , Lilei Yu ⁷ , Yan Li ^{*1} ,
5	Tiangang Liu ^{*2,6}
6	
7	¹ Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060,
8	China
9	² Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and
10	Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
11	³ Wuhan Dgensee Clinical Laboratory Co., Ltd., Wuhan, 430075, China
12	⁴ Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, P.R. China
13	⁵ State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of
14	Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai
15	Jiao Tong University, Shanghai, 200030, China
16	⁶ Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology,
17	Wuhan, 430075, China
18	⁷ Department of Internal Medicine, Renmin Hospital of Wuhan University. Wuhan, 430060, China
19	# These authors contributed equally to this work.
20	Corresponding author:
21	Tiangang Liu, (liutg@whu.edu.cn); Yan Li, (yanlitf1120@163.com)
22	
23	1

24 Abstract

25	The ongoing novel coronavirus pneumonia COVID-19 outbreak in Wuhan, China, has engendered
26	numerous cases of infection and death. COVID-19 diagnosis relies upon nucleic acid detection;
27	however, current recommended methods exhibit high false-negative rates, low sensitivity, and
28	cannot identify other respiratory virus infections, thereby resulting patient misdiagnosis and
29	impeding epidemic containment. Combining the advantages of target amplification and long-read,
30	real-time nanopore sequencing, we developed nanopore target sequencing (NTS) to detect SARS-
31	CoV-2 and other respiratory viruses simultaneously within 6–10 h. Parallel testing with approved
32	qPCR kits of SARS-CoV-2 and NTS using 61 nucleic acid samples from suspected COVID-19
33	cases confirmed that NTS identified more infected patients as positive, and could also monitor for
34	mutated nucleic acid sequence or other respiratory virus infection in the test sample. NTS is thus
35	suitable for contemporary COVID-19 diagnosis; moreover, this platform can be further extended
36	for diagnosing other viruses or pathogens.
37	

38 Introduction

39	An ongoing novel coronavirus pneumonia (COVID-19) outbreak originating in Wuhan, China in
40	December 2019 has subsequently spread across China and worldwide, resulting in numerous cases
41	of infection and death ¹ . Usually, COVID-19 has an incubation period of 2–7 days ² with no obvious
42	symptoms, during which time the virus can spread from infected to uninfected individuals.
43	Therefore, early accurate diagnosis and isolation of patients is key to controlling the epidemic.
44	Nucleic acid detection is the golden standard for COVID-19 diagnosis. Real-time reverse
45	transcription-polymerase chain reaction (qPCR) is the most recommend testing method for
46	detecting the causative virus, SARS-CoV-2 ³ . qPCR is specific, rapid, and economic, but cannot
47	precisely analyze amplified gene fragment nucleic acid sequences; thus, positive infection is
48	confirmed by monitoring one or two sites (depending on manufacturer guidelines). However, qPCR
49	exhibits high false-negative rates and low sensitivity in clinical application ⁴ , with only 30–50%
50	positive detection ratio. False-negatives facilitate epidemic spread through delayed patient isolation
51	and treatment, and patients mistakenly considered uninfected or cured following misdiagnosed
52	treatment results. Another recommend detection method, sequencing, is widely applied for
53	pathogen identification and monitoring virus evolution ^{5, 6} including SARS-CoV-2 ⁷ , but requires
54	expensive equipment, operator expertise, and > 24 h turnaround time, rendering it unsuitable for the
55	current crisis.
56	Several intelligent methods for RNA virus detection have developed including combining
57	toehold switch sensors ⁸ , which can bind to and sense virtually any RNA sequence, with paper-based
58	cell-free protein synthesis for Ebola and Zika virus detection ^{9, 10} , and the SHERLOCK method

⁵⁹ based on CRISPR/Cas13a for Zika or Dengue virus detection¹¹. A rapid SHERLOCK method with

60 visual results can detect SARS-CoV- 2^{12} and toehold switch biosensors could theoretically be

61	developed for rapid and high-throughput SARS-CoV-2 detection. However, the requirement of
62	specific RNA regions as targets may negatively affect detection rates because target region
63	mutation may limit target availability.
64	Moreover, pneumonia and fever may be caused by other respiratory viruses ¹³ . Cross-infection
65	during the diagnosis process both spreads SARS-CoV-2 and subjects COVID-19 patients to other
66	respiratory viruses. In severe cases, comprehensive analysis of infecting viruses is necessary.
67	Therefore, a rapid, accurate, and comprehensive detection method is needed to inform clinical
68	treatment and control cross-infection to reduce mortality.
69	Currently, COVID-19 infection and death rates in Hubei province are the highest in China.
70	Being located at the center of this epidemic, we developed a nanopore target sequencing (NTS)
71	method combining the advantages of target amplification and long-read, real-time nanopore
72	sequencing for detecting SARS-CoV-2 with higher sensitivity than standard qPCR, simultaneously
73	with other common respiratory viruses and mutated nucleic acid sequence within 6–10 h.
74	
75	Results
76	NTS design for SARS-CoV-2 detection. NTS is based upon amplification of 11 virulence-related
77	and specific gene fragments (orflab) of SARS-CoV-2 using a primer panel developed in-house,
78	followed by sequencing the amplified fragments on a nanopore platform. To enhance sensitivity, we
79	focused on virulence-related genes as targets without limitation to the sites currently recommended
80	by Chinese or American Centers for Disease Control (CDC) in qPCR methods (Fig. 1). Because
81	this method can precisely determine nucleic acid sequences, positive infection can be confirmed by
82	analyzing output sequence identity, coverage, and read number.

83	To realize detection of pivotal SARS-CoV-2 virulence genes, we focused on the virulence
84	region (genome bp 21,563–29,674; NC_045512.2), encoding S (1273 amino acids; AA), ORF3a
85	(275 AA), E (75 AA), M (222 AA), ORF6 (61 AA), ORF7a (121 AA), ORF8 (121 AA), N (419
86	AA), and ORF10 (38 AA) proteins. We also considered the RNA-dependent RNA polymerase
87	(RdRP) region in orflab (Fig. 1). For the virulence regions, 11 fragments of 600–950 bp were
88	designed as targets, fully covering the 9,115 bp region (Fig.1), amplified by 22 specific primers
89	designed considering primer-primer interaction and annealing temperature, and potential non-
90	specific binding to human and common bacterium and fungi genomes. To improve the sensitivity
91	orflab region amplification, we designed two pairs of nested primers to amplify 300-500 bp
92	regions to avoid amplification failures owing to site mutation. Finally, the 26 primers were
93	combined to develop the SARS-CoV-2 primer panel (Supplementary Table 1).
94	For sequencing, we chose a nanopore platform that could sequence long nucleic acid fragments
95	and simultaneously analyze the data-output in real-time. This allowed confirmation of SARS-CoV-
96	2 infection within a few minutes after sequencing by mapping the sequence reads to the SARS-
97	CoV-2 genome and analysis of output sequence identity, coverage, and read number. Moreover, the
98	accurate nucleic acid sequence generated using our pipeline could indicate whether the virulence-
99	related genes were mutated during virus spreading, thereby rapidly providing information for
100	subsequent epidemiological analysis. Additionally, as the MinION nanopore sequencer is portable,
101	NTS is also suitable for front-line clinics.
102	

103 NTS results interpretation and limit of detection (LoD). To test the SARS-CoV-2 detection
104 efficiency by NTS, we used standard plasmids harboring COVID-19 virus *S* and *N* genes to
105 simulate SARS-CoV-2. Standard plasmids were individually spiked into background cDNA

106	samples (cDNA reverse-transcribed from an uninfected respiratory flora throat swab) at 10, 100,
107	500, 1000, and 3000 copies/mL. NTS for all test samples was performed on one MinION sequencer
108	chip. Sequence data were evaluated at regular intervals using our in-house bioinformatics pipeline.
109	By mapping output reads on the SARS-CoV-2 genome, all reads with high identity were calculated
110	for each plasmid concentration. For 10 min and 1 h sequencing data, reads mapped to SARS-CoV-2
111	significantly differed from those of negative controls in all replicates at concentrations ranging from
112	3000 to 500 (Fig. 2a), and 3000 and 10 (Fig. 2b) copies/mL, respectively. This result confirmed that
113	high-copy samples could rapidly yield sufficient valid sequencing data for diagnosis, and by
114	extending the sequencing time, valid sequencing data could also be obtained from low-copy
115	samples. Notably, as more sequencing data could be achieved with additional sequencing time
116	(Supplementary Fig. 1) and clinical samples may exhibit higher complexity, thus, 10 min (for quick
117	detection) and 4 h (for final evaluation) sequencing times were used in subsequent evaluation of
118	NTS in clinical samples.
119	Evaluation of the target distribution of these valid data revealed that in higher copies samples
120	(1000 and 3000 copies/mL), all targeted regions could be detected (Fig. 2c, d). However, in lower
121	viral concentration samples (from 10 to 500 copies/mL), some targeted regions were lost (i.e., no
122	reads mapped; Fig. 2c, d), indicating that for low-quality or low-abundance samples, comprehensive
123	fragment amplification is difficult. Therefore, for accurate results, NTS cannot label a sample as
124	positive for infection by monitoring only one or two sites, as is customary for qPCR; rather, the
125	results from all target regions should be considered.
126	Accordingly, we determined a scoring rule by referring to previous judgment rules ¹⁴⁻¹⁶ . Firstly,
127	we counted the number of output reads with high identity to the SARS-CoV-2 genome, indicative

128 of high credibility for identification as SARS-CoV-2. By calculating the ratio of the counted valid

129	read numbers of the test sample to those of the negative control (with "0" in the negative control
130	calculated as "1"), we defined that a ratio of ≥ 10 indicates a positive result for that fragment,
131	scoring 1; \geq 3 to 10 fold is inconclusive, scoring 0.4; and <3 is negative, scoring 0. Scores were
132	summed to obtain the NTS score. We considered that a sample in which at least 50% fragments (6
133	fragments) are inconclusive or 2 fragments are positive (comparable to qPCR results) could be
134	defined as a positive infected sample (e.g., NTS score >2.4); 3-6 inconclusive fragments or 1
135	positive fragment indicated a highly suspect (inconclusive) sample (e.g., NTS score of 1.2–2.4); and
136	< 3 inconclusive or no positive fragments could be defined as negative sample (NTS score <1.2).
137	To determine the NTS LoD, we used the defined rules to evaluate each replicate in the
138	simulated test. As the standard plasmids contain only 6 designed fragments (half of 12 designed
139	fragments for SARS-CoV-2), we defined the scoring as NTS score >1.2 indicates positive
140	detection, $0.6-1.2$ is inconclusive, and < 0.6 reflects negative detection. We calculated the score of
141	the lowest concentration (10 copies) at different times according to this scoring method and judged
142	the positive detection rate. The results (Supplementary table 2) showed that 3/4 of the 10 copies of
143	the standard plasmids can be judged positive from 1 h. This result is consistent with the significant
144	comparation (Fig. 2b), that the data for 10 copies standard plasmids is also significantly different
145	from the negative control from 1h. This result shows that our scoring system is reliable for
146	evaluating NTS test results, and the LoD (3/4 replicates positive) was determined as 10 copies/mL
147	with 1h sequencing data (1,372 to 43,967 reads per sample in a run with 24 samples).
148	
149	SARS-CoV-2 detection using qPCR vs NTS. We performed clinical sample testing at the first-

150 line hospital in Wuhan as soon as NTS method was established (Fig. 3). To verify NTS sensitivity,

151 we evaluated 45 nasopharyngeal swab samples from outpatients with suspected COVID-19 early in

152	the epidemic. On February 6 and 7, 2020, we parallel tested these 45 samples in two batches using
153	NTS (two chips) and qPCR (kit 2; Fig. 1). The 4 h sequencing output data (Fig. 4a) revealed that all
154	19 samples defined as positive by qPCR were recognized SARS-CoV-2-infected by NTS,
155	indicating good inter-test concordance. Among 15 qPCR-inconclusive samples, 11 were recognized
156	as SARS-CoV-2-infected, 3 as negative, and 1 inconclusive by NTS. Among 11 qPCR-negative
157	samples, 4 were recognized SARS-CoV-2-infected, 4 as inconclusive, and 3 as negative by NTS.
158	Overall, NTS identified a total of 34 positive samples in 45 suspected samples, 15 more than qPCR.
159	Evaluation of output data after 10 min sequencing (Supplementary Fig. 2) revealed that 21 of 45
160	suspected samples were recognized as SARS-CoV-2-infected by NTS. For these samples, the 10
161	min and 4 h results were comparable, indicating that NTS could rapidly detect many positive
162	samples.
163	However, as the tested 45 samples were from early outpatients without detailed records, suitable
164	clinical data, such as chest computed tomographic scans, were not available to support the results.
165	Therefore, we next evaluated samples retained from hospitalized patients with confirmed COVID-
166	19 subjected to qPCR testing (kit 1, Fig. 1) on February 11 and 12, 2020. We randomly selected 16
167	samples for NTS testing on February 20, 2020. 4 h sequencing (Fig. 4b) identified all 16 positive
168	samples, whereas only 9 samples were positive by qPCR. At the time of this writing, among these 7
169	samples that qPCR negative or inconclusive, electronic records indicated that subsequent qPCR
170	testing of 4 of these 7 patients revealed two (R04 and R09) as positive whereas two (R06 and R07)
171	remained inconclusive. This result confirmed that NTS could identify more positive cases than
172	qPCR. Three positive samples were identified by 10 min sequencing (Supplementary Fig. 2),
173	indicating that NTS could rapidly detect positive samples with high concentration of virus.

174	Evaluation of the positive target distribution for each sample (Fig. 4) showed that samples
175	positive by both NTS and qPCR appeared to have higher nucleic acid quality or abundance, because
176	NTS yielded more positive fragments. For qPCR-inconclusive samples, NTS yielded few, scattered
177	positive target fragments, suggesting that low sample nucleic acid quality or abundance rendered it
178	difficult to draw clear conclusions by qPCR based on evaluation of only two sites. Moreover,
179	contamination of individual viral fragments did not affect NTS results. For example, although the
180	negative control of the first chip in Fig. 4 appears to have been contaminated with a fragment
181	containing the N gene, we could exclude the contamination using a high threshold, and/or base the
182	final conclusions on the 11 remaining sites. However, negative control contamination in qPCR
183	would invalidate the results of the whole experimental batch.
184	
185	SARS-CoV-2 mutation analysis. Mutation screening of 19 samples from outpatients indicated as
186	infection-positive by both NTS and qPCR identified single nucleotide mutations at seven sites in
187	four samples (Table 1), three of which (S_519 of C1, N_822 of C2, and S_2472 of E3) harbored
188	silent mutations. One variant (ORF8_251: T \rightarrow C), encoding an AA change from Leu to Ser, was
189	identified in the three samples. The ORF8_184 mutation in sample E3 also reflected a Val to Leu
190	missense mutation. Comparison with the 67 complete SARS-CoV-2 genomes reported in the
191	GISAID database prior to February 8, 2020 revealed that ORF8_251 contained C in 20, T in 48, and
192	Y in 1 genome, indicating its diversity in different strains. Additionally, single genomes contained
193	C or S at ORF8_184 whereas the remaining 67 had G, indicating that despite some inter-strain
194	diversity, $G \rightarrow C$ transversion was rare. The remaining silent variants were not identified in the
195	GISAID database, suggesting that the virus may harbor mutations as yet uncharacterized by existing
196	genome-wide sequencing methods.

198	NTS panel for respiratory virus identification. The inability of current clinically utilized SARS-
199	CoV-2 qPCR kits to identify the species of co-infecting viruses combined with the high false-
200	negative rate of qPCR compromises early patient triage, resulting in wasted urgent medical
201	resources and enhancing potential cross-contamination during the diagnosis process.
202	Distinguishing different types of respiratory viral infections has attracted worldwide attention.
203	To extend the scope of NTS-based virus detection, we designed a respiratory virus primer panel
204	for amplification of 10 respiratory viruses including bocavirus, rhinovirus, human
205	metapneumovirus, respiratory syncytial virus, coronavirus, adenovirus, parainfluenza virus,
206	influenza A virus, influenza B virus, and influenza C virus. We collected target gene candidates
207	utilized for virus identification in the literature, then collected all complete and partial target gene
208	sequences for these viruses available at GenBank (through November 1, 2019). Though multiple
209	nucleic acid sequence alignment of each gene, the conserved regions were chosen as candidate
210	regions for amplification. Using similar constraints as for SARS-CoV-2 target region selection, we
211	chose 20 target amplification regions (300-800 bp) for these 10 respiratory viruses (Supplementary
212	Table 3) capable of accurately distinguishing virus in addition to identifying virus species. We
213	designed 59 primers including some nested primers for amplification of these regions, comprising
214	the respiratory virus primer panel (Supplementary Table 4).
215	To verify the performance of this panel in NTS, we selected five virus-positive samples
216	(influenza A virus, influenza B virus, parainfluenza, respiratory syncytial virus, and rhinovirus), the
217	viruses in the clinical throat swabs were previously confirmed using a China Food and Drug
218	Administration (cFDA) approved kit (Health Gene Technologies, China) based on multiplex PCR
219	and capillary electrophoresis analysis. The five samples were mixed to create a mock virus 10

220	community and used to test the NTS virus detection capacity. NTS 10 min sequencing data
221	(Supplementary Table 5) successfully detected four of five viruses (influenza A virus, influenza B
222	virus, respiratory syncytial virus, and rhinovirus); the remaining one virus with lower load could be
223	detected with 2 h sequencing data, confirming the suitability of NTS with the respiratory virus
224	primer panel for identification of other respiratory viruses.
225	To verify the ability of NTS to detect SARS-CoV-2 and 10 kinds of respiratory viruses in a
226	single assay, 13 of the 45 suspected COVID-19 outpatient samples were subjected to simultaneous
227	detection analysis. Five replications of the plasmid containing the SARS-CoV-2 S and N genes
228	served as the positive control and Tris-EDTA (TE) buffer was used as the negative control (in
229	duplicate). For each sample, cDNA samples were separately amplified using the respiratory virus
230	and the SARS-CoV-2 primer panels, then all amplified fragments were pooled. After the addition of
231	barcodes, amplified fragments from all 20 samples (13 cases, 7 controls) were subjected nanopore
232	sequencing on one chip. Analysis of the results (Table 2) revealed that E11 was co-infected by
233	influenza A virus H3N2 and SARS-CoV-2.
234	
235	
236	Discussion
237	Herein, we developed an NTS method able to simultaneously detect SARS-CoV-2 and 10
238	additional types of respiratory viruses within 6–10 h, at LoD of 10 copies/mL with at least 1 h
239	sequencing data. The detection region of SARS-CoV-2 was composed of 12 fragments covering
240	nearly 10 kb of the genome, resulting in markedly higher sensitivity and accuracy than those of
241	qPCR kits currently in clinical use. Notably, 22 of 61 suspected COVID-19 samples that were
242	negative or inconclusive by qPCR testing were identified as positive by NTS. Moreover, NTS

243 enabled the detection of virus mutations; in particular, we detected a nucleotide mutation in SARS-244 CoV-2 that was undetected in the genomic data in the current GISAID database. Although this was 245 a silent mutation, its presence suggests that the virus may have undergone mutation during the spreading process. Additionally, NTS was verified as capable of detecting all five pre-added 246 247 respiratory viruses in a single detection. This method also detected a co-infected case (SARS-CoV-248 2 and human influenza A virus H3N2) using a clinical specimen, illustrating the ability of NTS to 249 detect and distinguish respiratory viruses. Together, our findings indicate that NTS is highly 250 suitable for the detection and variation monitoring of current COVID-19 epidemics, directly from 251clinical samples with same-day turnaround of results. 252At the time of this writing, the COVID-19 epidemic remains very severe. Accurate, rapid, and 253comprehensive nucleic acid detection methods are needed to allow patients with suspected infection to be isolated and treated as soon as possible, and to accurately confirm whether the patient is cured, 254 255to prevent continued epidemic spread caused by misdiagnosis. The LoD of NTS was shown to be as 256 low as 10 copies/mL, rendering it 100-fold more sensitive than qPCR (e.g., some kits describe LoDs of 1000 copies/mL) and thus likely to decrease the high false-negative rate plaguing current 257 258 detection methods. In addition, the detection of co-infection may allow the prevention of disease 259 progression from mild to severe or might be useful to inform clinical treatment. Overall, NTS 260 combines sensitivity, broad detection range, same-day rapid turnaround time, variation monitoring, 261 and low cost (compared with whole-genome sequencing), making it the most suitable method for 262 the detection of suspected viral infections that cannot be effectively diagnosed by other methods. 263 Moreover, the MinION, the smallest Oxford Nanopore sequencer, is smaller than a cellphone; when 264 equipped with a laptop computer for data processing, it thus allows rapid performance of NTS in

various environments with low equipment cost. For data analysis, cloud analysis may also be
 introduced for high-throughput detection^{17, 18}.

267 Several limitations of the current NTS method should be noted. Because the designed amplified fragments are 300–950 bp in length, which constitute suitable lengths for detection by a nanopore 268 platform as nucleic acid fragments < 200 bp cannot be readily detected^{19, 20}, thereby, the sensitivity 269 270 of NTS for detecting target COVID-19 fragments in highly degraded nucleic acids may be 271hampered. Additionally, although the turnaround time of NTS is longer than that of qPCR or other possible nucleic acid detection methods (e.g., SHERLOCK¹²), 6–10 h is considered acceptable for 272 273 clinical use; moreover, NTS is already the fastest strategy based on sequencing methods to date and 274can detect variations directly from clinical samples. Whereas the detection throughput of NTS is not 275high at present, the NTS method can be integrated into widely used automated or semi-automated platforms to improve the detection throughput in the future²¹⁻²³. In addition, because PCR is 276 277 included in NTS, processes involving opening the lid of the PCR tubes may cause mutual contamination between samples^{24, 25}. However, this situation also is inevitable in current nucleic 278 acid detection methods (e.g., qPCR) or other nucleic acid detection schemes (e.g., SHERLOCK^{11, 12} 279 280 or toehold switch biosensor^{9, 10}) that also involve PCR. The introduction of integration systems or sealed devices such as microfluidics may avoid this situation^{26, 27}. At present, our processes of 281 282 sequencing data analysis and interpretation of results are not mature; nevertheless, as the number of 283 test samples increases, additional test results will be collected and the process continuously 284 optimized to obtain more accurate results.

Notably, the comparison of NTS and qPCR results indicated a high false-negative rate in the latter. This result highlights the need for extreme vigilance, as patient misdiagnosis (including patients admitted and discharged) will lead to spread of the epidemic and greater public health

288	threat. Suspected or negative results reported by the current qPCR methods should be subjected to a
289	more accurate method for secondary confirmation; for this, we consider NTS as the most
290	recommended solution currently available. The situation of co-infection, which has been reported in
291	our previous study ¹³ , also warrants continued attention. Based on the current centralized treatment
292	strategy, the lack of screening for multiple viruses may lead to large-scale cross-contamination and
293	confound clinical diagnosis and treatment. Alternatively, NTS represents and effective strategy that
294	can rapid and accurate distinguish SARS-CoV-2 and multiple respiratory viruses at both the species
295	and subtype level, and could be applied as a spot check in centralized clinics. Finally, the NTS
296	method for respiratory virus detection might be extended to detect more viruses and other pathogens
297	through the design of additional primer panels.
298	
299	Methods
300	Primer panel design for SARS-CoV-2. The SARS-CoV-2 primer panel was designed to
300 301	Primer panel design for SARS-CoV-2 . The SARS-CoV-2 primer panel was designed to simultaneously detect virus virulence- and infection-related genes and variants thereof. The 21,563–
300 301 302	 Primer panel design for SARS-CoV-2. The SARS-CoV-2 primer panel was designed to simultaneously detect virus virulence- and infection-related genes and variants thereof. The 21,563– 29,674 bp genome region, containing the genes encoding S, ORF3a, E, M, ORF6, ORF7a, ORF8,
300 301 302 303	 Primer panel design for SARS-CoV-2. The SARS-CoV-2 primer panel was designed to simultaneously detect virus virulence- and infection-related genes and variants thereof. The 21,563– 29,674 bp genome region, containing the genes encoding S, ORF3a, E, M, ORF6, ORF7a, ORF8, N, and ORF10, was selected as a template to design a series of end-to-end primers. The region
300 301 302 303 304	 Primer panel design for SARS-CoV-2. The SARS-CoV-2 primer panel was designed to simultaneously detect virus virulence- and infection-related genes and variants thereof. The 21,563– 29,674 bp genome region, containing the genes encoding S, ORF3a, E, M, ORF6, ORF7a, ORF8, N, and ORF10, was selected as a template to design a series of end-to-end primers. The region encoding ORF1ab was selected as a template to design a nested primer for higher sensitivity
300 301 302 303 304 305	Primer panel design for SARS-CoV-2. The SARS-CoV-2 primer panel was designed to simultaneously detect virus virulence- and infection-related genes and variants thereof. The 21,563– 29,674 bp genome region, containing the genes encoding S, ORF3a, E, M, ORF6, ORF7a, ORF8, N, and ORF10, was selected as a template to design a series of end-to-end primers. The region encoding ORF1ab was selected as a template to design a nested primer for higher sensitivity detection of SARS-CoV-2. All primers were designed using online primer-blast
 300 301 302 303 304 305 306 	Primer panel design for SARS-CoV-2. The SARS-CoV-2 primer panel was designed to simultaneously detect virus virulence- and infection-related genes and variants thereof. The 21,563– 29,674 bp genome region, containing the genes encoding S, ORF3a, E, M, ORF6, ORF7a, ORF8, N, and ORF10, was selected as a template to design a series of end-to-end primers. The region encoding ORF1ab was selected as a template to design a nested primer for higher sensitivity detection of SARS-CoV-2. All primers were designed using online primer-blast (https://www.ncbi.nlm.nih.c/tools/primer-blast/) and the specificity of all primers was verified
 300 301 302 303 304 305 306 307 	Primer panel design for SARS-CoV-2. The SARS-CoV-2 primer panel was designed to simultaneously detect virus virulence- and infection-related genes and variants thereof. The 21,563– 29,674 bp genome region, containing the genes encoding S, ORF3a, E, M, ORF6, ORF7a, ORF8, N, and ORF10, was selected as a template to design a series of end-to-end primers. The region encoding ORF1ab was selected as a template to design a nested primer for higher sensitivity detection of SARS-CoV-2. All primers were designed using online primer-blast (https://www.ncbi.nlm.nih.c/tools/primer-blast/) and the specificity of all primers was verified against <i>Homo sapiens</i> , fungi, and bacteria. Finally, we downloaded and selected <i>N</i> , <i>S</i> , <i>rdrp</i> , and <i>E</i>
 300 301 302 303 304 305 306 307 308 	Primer panel design for SARS-CoV-2. The SARS-CoV-2 primer panel was designed to simultaneously detect virus virulence- and infection-related genes and variants thereof. The 21,563– 29,674 bp genome region, containing the genes encoding S, ORF3a, E, M, ORF6, ORF7a, ORF8, N, and ORF10, was selected as a template to design a series of end-to-end primers. The region encoding ORF1ab was selected as a template to design a nested primer for higher sensitivity detection of SARS-CoV-2. All primers were designed using online primer-blast (https://www.ncbi.nlm.nih.c/tools/primer-blast/) and the specificity of all primers was verified against <i>Homo sapiens</i> , fungi, and bacteria. Finally, we downloaded and selected <i>N</i> , <i>S</i> , <i>rdrp</i> , and <i>E</i> gene sequences of SARS-related viruses available at GenBank through January 1st, 2020 (accession)
 300 301 302 303 304 305 306 307 308 309 	Primer panel design for SARS-CoV-2. The SARS-CoV-2 primer panel was designed to simultaneously detect virus virulence- and infection-related genes and variants thereof. The 21,563– 29,674 bp genome region, containing the genes encoding S, ORF3a, E, M, ORF6, ORF7a, ORF8, N, and ORF10, was selected as a template to design a series of end-to-end primers. The region encoding ORF1ab was selected as a template to design a nested primer for higher sensitivity detection of SARS-CoV-2. All primers were designed using online primer-blast (https://www.ncbi.nlm.nih.c/tools/primer-blast/) and the specificity of all primers was verified against <i>Homo sapiens</i> , fungi, and bacteria. Finally, we downloaded and selected <i>N</i> , <i>S</i> , <i>rdrp</i> , and <i>E</i> gene sequences of SARS-related viruses available at GenBank through January 1st, 2020 (accession NC_045512). Multiple sequence alignment of SARS-CoV-2 against SARS-related viruses was

in-silico evaluation of specificity of the designed primers to SARS-CoV-2. All the specific primers
 were collected to form the SARS-CoV-2 primer panel.

313

Primers panel design for 10 kinds of respiratory virus detection. The target genes for each virus 314 315 were selected based on previous literature retrieval and all complete and partial gene sequences 316 available in GenBank through November 1, 2019 were downloaded. The list for each target gene 317 was manually checked and artificial sequences (e.g., lab-derived, synthetic) along with sequence 318 duplicates was removed, resulting in a final list. Multiple sequence alignment was performed using 319 Clustal W (version 1.83) for each gene individually and the variation rate of each base was 320 calculated using an in-house pipeline. The final primers for each virus were manually selected following the previous metrics²⁸ for multiplex PCR design with an expected amplicon length range 321 322 from 300 to 800 bp.

323

LoD of the NTS test. Individual NTS libraries were prepared from a virus-negative nasopharyngeal swab spiked with plasmids containing synthetic *S* and *N* genes of COVID-19 at concentrations of 0, 10, 100, 500, 1,000, and 3,000 copies/mL, with four replicates at each concentration. The NTS libraries were prepared as described above and sequenced using MinION for 10 min, 30 min, 1 h, 2 h, and 4 h. The sequencing data were processed as described for virus identification. The LoD was determined when the concentration of reads mapped to COVID-19 was significantly higher than that for the negative control in 3/4 replicates.

331

NTS detection method. The targeted genes were amplified using the SARS-CoV-2 or 10
 respiratory virus primer panel in a 20 µL reaction system with 5 µL total nucleic acid, 5 µL primer

334	(10 μ M), and 10 μ L 2× Phusion U Multiplex PCR Master Mix (Thermo Fisher, USA) ^{29, 30} .
335	Amplification was performed in a C1000 Thermocycler (Bio-Rad, USA) using the following
336	procedure: 1 cycle at 94 °C for 3 min and 30 cycles at 95 °C for 10 s, 55 °C for 50 s, and 68 °C for
337	5s, followed by a final elongation step at 68 °C for 5 min. The product of the first-step was purified
338	with 0.8× AMpure beads (Beckman Coulter, USA) and eluted in 10 μ L Tris- EDTA (TE) buffer.
339	Then, 5 μL eluate was used for second-step PCR with 5 μL barcoded primer (10 $\mu M)$ and 10 μL 2×
340	Phusion U Multiplex PCR Master Mix. The barcode sequence was from the Nanopore PCR barcode
341	kit (EXP-PBC096; UK) and all primer oligos and full-length S and N gene fragments were
342	synthesized by Genscript (China). The products of second-step PCR from the different samples
343	were pooled with equal masses. TE buffer was assayed in each batch as a negative control.
344	Sequencing libraries were constructed using the 1D Ligation Kit (SQK-LSK109; Oxford Nanopore,
345	UK) and sequenced using Oxford Nanopore MinION or GridION.
346	
347	Nanopore sequencing data processing. Basecalling and quality assessment for MinION
348	sequencing data were performed using high accuracy mode in Guppy (v. 3.1.5) software; for
349	GridION, the process was conducted using MinKNOW (v. 3.6.5) integrated in the instrument.
350	Sequencing reads with low quality and undesired length were discarded. Then, $Porechop^{31}$ (v. 0.2.4)
351	was used for adaptor trimming and barcode demultiplexing for retained reads.
352	
353	Mapping tool and mapping database. BLASTn ³² (v. 2.9.0+) was used to map the reads of each
354	sample against the virus genome reference database. All virus genomic sequences were downloaded
355	from NCBI Refseq FTP and the SARS-CoV-2 genome sequence was added to the BLAST database

subsequently. The taxonomy of each read was assigned according to the taxonomic information ofthe mapped subject sequence.

358

Sequence correction and candidate mutation calling. Sequence correction was performed using 359 medaka³³ (v. 0.10.5), which is a tool to create a consensus sequence of nanopore sequencing data. 360 361 For each target sequencing region, 30 consensus sequences were generated using medaka's default 362 settings through the medaka consensus program. Subsequently, the consensus sequences were 363 aligned to the reference sequence of target sequencing regions using the multiple sequence alignment tool ClustalW³⁴ (version 1.83). The variants within certainty regions (except sequence 364 homopolymeric regions and primer binding sites)³⁵ and with appropriate coverage (covered by at 365 366 least 90% consensus sequences and at least 50% uncorrected reads) were accepted as candidate nucleotide mutations. 367

368

369 Interpretation of NTS results. The sequenced data were obtained at regular intervals after sequencing, then filtered to obtain valid reads. For determining whether the target was positive, 370 371 interpretation was performed using the previous rule with modification¹⁴⁻¹⁶. In brief, if the read matches the design fragment, the read will be counted. The mapping score was determined as 1, 0.4, 372 373 or 0 when the ratio of count number in the sample to the negative control of each target was > 10, 374 between 3-10, or < 3. The total mapping score of each target was summed and samples with > 2.4375 total mapping score were defined as positive for SARS-CoV-2 infection; 1.2 to 2.4 total mapping 376 score indicated an inconclusive result, and < 1.2 total mapping score was considered to indicate 377 negative for infection. For determination of the other 10 kinds of common respiratory virus, a

378 sample was considered positive for the virus if positive for at least one designed site, otherwise it379 was negative.

380

381	Total nucleic acid extraction from clinical specimens. Clinical throat swab specimens were
382	collected in 10 mL of Viral Transport Medium (Becton Dickinson, USA) from 45 suspected
383	COVID-19 outpatients, and 16 hospitalized patients with COVID-19 at Renming Hospital of
384	Wuhan University in Wuhan during February 2020. All throat swabs were sent to a clinical
385	laboratory and processed immediately. Swabs were vortexed in 1 mL of TE buffer and centrifuged
386	at 20,000 × g for 10 min. The supernatant was removed and 200 μ L of the specimen was retained
387	for total nucleic acid extraction. Total nucleic acid was extracted from 200 μ L of pre-treated
388	samples using the Sansure SUPRall DNA Extraction Kit (Changsha, China) following the
389	manufacturer's instructions. Extracted total nucleic acid was stored at 70 °C until qPCR or NTS
390	testing.

391

392 qPCR for confirmation of SARS-Cov-2 infection. The total isolated nucleic acid was used for 393 qPCR assay following the manufacturer's instructions. Briefly, qPCR was carried out in a 25 μL 394 reaction system using a novel coronavirus qPCR kit (kit 1, Huirui, China) with 5 µL total nucleic 395 acid, or 20 µL reaction system using the 2019-nCoV qPCR kit (kit 2, BioGerm, China) with 5 µL 396 total nucleic acid. For kit 1, amplification was performed using a Quantstudio Dx Real-time PCR 397 system (Thermo Fisher, USA) with the following procedure: 1 cycle at 50 °C for 15 min and 95 °C 398 for 5 min, and 35 cycles at 95 °C for 10 s, 55 °C for 40 s. The FAM and ROX fluorescence 399 channels were used to detect *Orf1ab* and *N* gene, respectively. Successful amplification of both 400 genes and Ct value \leq 35 was recognized as positive for SARS-CoV-2 infection; Ct value between

401	35.2 to 39.2 was recognized as inconclusive, and one of the genes being undetected or $Ct \ge 39.2$
402	was recognized as negative. For kit 2, amplification was performed in a CFX96 Thermocycler (Bio-
403	Rad) using the following procedure: 1 cycle at 50 °C for 10 min and 95 °C for 5 min, and 35 cycles
404	at 95 °C for 10 s, 55 °C for 40 s. The FAM, HEX, and CY5 fluorescence channels were used to
405	detect Orflab, E, and N genes, respectively. This kit only utilized the results of the Orflab and N
406	gene to reach a conclusion. Successful amplification of both genes and Ct value ≤35 was recognized
407	as positive for SARS-CoV-2 infection; only one site with Ct value \leq 35 or both genes between Ct 35
408	to 38 was taken as inconclusive, and no successful amplification or $Ct \ge 38$ was recognized as
409	negative for infection.
410	
411	Clinical records of patients. The clinical records of patients were kept in Renmin Hospital of
412	Wuhan University. Clinical, laboratory, and radiological characteristics and treatment and outcome
413	data were obtained using data collection forms from electronic medical records. The data were
414	reviewed by a trained team of physicians. The study and use of all records were approved by the
415	Ethics Committee of Hubei Provincial Renmin Hospital (WDRY2019-K056).
416	
417	Data availability
418	All data for support the study result are included in this published article (and its supplementary
419	information files). Other data generated during and/or analyzed during the current study are
420	available from the corresponding author on reasonable request.
421	
422 423 424	 References 1. Chinese CDC. Distribution of novel coronavirus pneumonia. http://2019ncov.chinacdc.cn/2019-nCoV/ 2. Guan, Wj. et al. Clinical characteristics of 2019 novel coronavirus infection in China. <i>N Engl J Med</i>, (2020).

425		doi: 10.1056/NEJMoa2002032.
426	3.	Corman, V.M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro surveill 25
427		(2020).
428	4.	Li Jin, et al. Analysis of false-negative results for 2019 novel coronavirus nucleic acid test and related
429		countermeasures. Chin J Lab Med 43 (2020).
430	5.	Wilson, M.R. et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med
431		370 , 2408-2417 (2014).
432	6.	Metsky, H.C. et al. Zika virus evolution and spread in the Americas. <i>Nature</i> 546, 411-415 (2017).
433	7.	Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. <i>Nature</i> (2020).
434	8.	Green, A.A., et al. Toehold switches: de-novo-designed regulators of gene expression. <i>Cell</i> 159 , 925-939 (2014).
435	9.	Pardee, K. et al. Paper-based synthetic gene networks. Cell 159, 940-954 (2014).
436	10.	Pardee, K. et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell
437		165 , 1255-1266 (2016).
438	11.	Gootenberg, J.S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356 , 438-442 (2017).
439	12.	Feng Z. et al. A protocol for detection of COVID-19 using CRISPR diagnostics.
440		https://www.broadinstitute.org/files/publications/special/COVID-19%20detection%20(updated).pdf
441	13.	Wang, M. et al. Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan. Preprint at
442		https://www.medrxiv.org/content/10.1101/2020.02.06.20020974v1
443	14.	Blauwkamp, T.A. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for
444		infectious disease. <i>Nat Microbiol</i> 4 , 663-674 (2019).
445	15.	Langelier, C. et al. Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular
446	-	Transplant Patients. Am J Respir Crit Care Med 197, 524-528 (2018).
447	16.	Metsky, H.C. et al. Capturing sequence diversity in metagenomes with comprehensive and scalable probe design.
448	-	Nat Biotechnol 37 , 160-168 (2019).
449	17.	Charalampous, T. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory
450		infection. <i>Nat Biotechnol</i> 37 , 783-792 (2019).
451	18.	Greninger, A.L. et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time
452		nanopore sequencing analysis. Genome Med 7, 99 (2015).
453	19.	Wei, S., Weiss, Z.R. & Williams, Z. Rapid Multiplex Small DNA Sequencing on the MinION Nanopore
454		Sequencing Platform. G3 (Bethesda) 8, 1649-1657 (2018).
455	20.	Wilson, B.D., Eisenstein, M. & Soh, H.T. High-Fidelity Nanopore Sequencing of Ultra-Short DNA Targets. Anal
456		<i>Chem</i> 91 , 6783-6789 (2019).
457	21.	Kong, N. et al. Automation of PacBio SMRTbell NGS library preparation for bacterial genome sequencing.
458		<i>Stand Genomic Sci</i> 12 , 27 (2017).
459	22.	Mardis, E. & McCombie, W.R. Automated Library Preparation for DNA Sequencing. Cold Spring Harb Protoc
460		2017 (2017).
461	23.	Quail, M.A., Gu, Y., Swerdlow, H. & Mayho, M. Evaluation and optimisation of preparative semi-automated
462		electrophoresis systems for Illumina library preparation. <i>Electrophoresis</i> 33 , 3521-3528 (2012).
463	24.	Eisenhofer, R. et al. Contamination in Low Microbial Biomass Microbiome Studies: Issues and
464		Recommendations. Trends Microbiol 27, 105-117 (2019).
465	25.	Martin, P., Laupland, K.B., Frost, E.H. & Valiquette, L. Laboratory diagnosis of Ebola virus disease. Intensive
466		Care Med 41, 895-898 (2015).
467	26.	Yager, P. et al. Microfluidic diagnostic technologies for global public health. <i>Nature</i> 442 , 412-418 (2006).
468	27.	Wang, S., Inci, F., De Libero, G., Singhal, A. & Demirci, U. Point-of-care assays for tuberculosis: role of
469		nanotechnology/microfluidics. <i>Biotechnol Adv</i> 31 , 438-449 (2013).

470	28.	Shen, Z. et al. MPprimer: a program for reliable multiplex PCR primer design. BMC Bioinformatics 11, 143
471		(2010).
472	29.	Calus, S.T., Ijaz, U.Z. & Pinto, A.J. NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial
473		communities on the nanopore sequencing platform. Gigascience 7 (2018).
474	30.	Gomez, C.A., Budvytiene, I., Zemek, A.J. & Banaei, N. Performance of Targeted Fungal Sequencing for Culture-
475		Independent Diagnosis of Invasive Fungal Disease. Clin Infect Dis 65, 2035-2041 (2017).
476	31.	R., W., Edn. 0.2.4 Porechop: a tool for finding and removing adapters from Oxford Nanopore reads. (2017).
477	32.	Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. Journal of
478		molecular biology 215 , 403-410 (1990).
479	33.	Research, O., Edn. 0.10.5 medaka: Sequence correction provided by ONT Research. (ONT Research, 2018).
480	34.	Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple
481		sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.
482		Nucleic acids research 22, 4673-4680 (1994).
483	35.	Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228-232 (2016).
484	36.	Specific primers and probes for detection 2019 novel coronavirus.
485		http://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html
486	37.	Information for Laboratories 2019-nCoV Requests for Diagnostic Panels and Virus.
487		https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html
488		
489		
400	Comr	noting Interests
490	Com	being interests
491	Wuha	n Dgensee Clinical Laboratory Co., Ltd have applied patent on this new strategy.
492		

494	Figure	Legends
		G • • • •

494	Figure Legends
495	Fig. 1 Amplification targets of the NTS and qPCR method. NTS detected 12 fragments
496	including ORF1ab and virulence factor-encoding regions. For qPCR, the Chinese CDC
497	recommends $Orflab$ and N sites as targets, ³⁶ the United States CDC recommends three target sites
498	in the N gene, ³⁷ and Corman et al (2020) recommend RNA-dependent RNA polymerase (RdRP) in
499	orflab and E sites as the targets. Kit 1 is a cFDA-approved kit with two target sites used in this
500	study; kit 2 is a cFDA-approved kit with three target sites used in this study.
501	
502	Fig. 2 Performance verification test of NTS for detecting SARS-CoV-2 using standard
503	synthetic S and N genes. Comparison of all SARS-CoV-2 reads detected by NTS in replicates with
504	different concentrations and negative controls using 10 min (a) or 1 h (b) sequencing data. Read
505	counts mapped to each target region of the SARS-CoV-2 genome in replicates with different
506	concentrations with 10 min (c) to 1 h (d) sequencing data. Two-tailed Student t-test (for normal
507	distribution samples) or Mann-Whitney U-test (for non-normal distribution samples): ns, not
508	significant, * $P < 0.05$; bars represent the means \pm SD.
509	
510	Fig. 3 NTS testing in a front-line hospital in Wuhan
511	
512	Fig. 4 Comparison of 61 nucleic acid sequences from clinical samples obtained using NTS (4
513	h) and qPCR. a, Comparison of 45 nucleic acid sequences from samples of patients with suspected
514	COVID-19 obtained using NTS and qPCR (kit 2). b , Comparison of 16 nucleic acid sequences from

- patients with confirmed disease obtained using NTS and qPCR (kit1). The numbers in the table on 515
- the left represent the number of mapped reads according to our rules. PC: positive control. The 516

- 517 plasmid harboring an *S* gene was used as a positive control in NTS testing; a positive sample in the
- 518 kit served as a positive control in qPCR testing. NC: negative control. TE buffer was used as a
- 519 negative control in NTS testing; H₂O in the kit served as a positive control in qPCR testing. Pos:
- 520 positive. Inc: inconclusive. Neg: Negative.

Figure 2

528 529

Figure 3

531

Figure 4 27

Sample	Site	Base change	Base change present	Amino acid change
	(Gene_position)		in the genome [*]	
C1	S_519	G→A	0	NC
C2	ORF8_251	T→C	20	Leu→Ser
C2	N_822	C→T	0	NC
E3	S_2472	C→T	0	NC
E3	ORF8_251	T→C	20	Leu→Ser
E3	ORF8_184	G→C	1	Val→Leu
E5	ORF8_251	T→C	20	Leu→Ser

532 **Table 1 | Variations of SARS-CoV-2 detected by NTS**

⁵³³ ^a The number indicates the count of genomes in which the base change appeared as reported in the

534 GISAID database prior to February 8, 2020. NC: no change.

Detionts ID	NTS result	NTS result
	(SARS-CoV-2)	(common respiratory viruses)
F11	Positive	ND
E11	Positive	human influenza A virus H3N2
A11	Positive	ND
B9	Positive	ND
C9	Positive	ND
D9	Positive	ND
D11	Positive	ND
C12	Positive	ND
E6	Positive	ND
B3	Positive	ND
E12	Negative	ND
G6	Inconclusive	ND
B1	Inconclusive	ND
Positive control	Positive	ND
Negative control	ND	ND
Negative control	ND	ND

536 **Table 2 | Results of NTS for detecting SARS-CoV-2 and common respiratory viruses**

537 ND: not detected