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Abstract 

The novel coronavirus 2019-nCoV has caused major outbreaks in many parts of the world. A better 

understanding of the pathophysiology of COVID-19 is urgently needed. Clinically, it is important to identify 

who may be susceptible to infection and identify treatments for the disease.  

 

There is good evidence that ACE2 is a receptor for 2019-nCoV, and studies also suggested that high 

expression of ACE2 may increase susceptibility to infection. Here we conducted a phenome-wide Mendelian 

randomization (MR) study to prioritize diseases/traits and blood proteins that may be causally linked to ACE2 

expression in the lung. Expression data was based on GTEx. We also explored drug candidates whose targets 

overlapped with the top-ranked proteins in MR analysis, as these drugs could potentially alter ACE2 

expression and may be clinically relevant. Notably, MR is much less vulnerable to confounding and reverse 

causality compared to observational studies. 

 

The most consistent finding was a tentative causal association between diabetes-related traits and increased 

ACE2 expression. Based on one of the largest GWAS on type II diabetes (T2DM) to date (N=898,130), we 

found that T2DM is causally linked to raised ACE2 expression (beta=0.1835, 95% CI 0.0853-0.2817; 

p=2.49E-4; GSMR method). Significant associations (at nominal level; p<0.05) was also observed across 

multiple datasets, with different analytic methods, and for both type I and II diabetes. Other diseases/traits 

having nominal significant associations with increased ACE2 included inflammatory bowel disease, (ER+) 

breast and lung cancers, asthma, smoking and elevated ALT, among others. We also uncovered a number of 

plasma/serum proteins potentially linked to altered ACE2 expression, and the top enriched pathways included 

cytokine-cytokine-receptor interaction, VEGF signaling, JAK-STAT signaling etc. We also explored drugs 

that target some of the top-ranked proteins in the MR analysis. 
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In conclusion, the current MR analysis reveals diseases/traits and blood proteins that may causally affect 

ACE2 expression, which in turn may influence susceptibility to the infection. The proteome-wide MR analysis 

may shed light on the molecular mechanisms underlying ACE2 expression, and may help guide drug 

repositioning in the future. Nevertheless, we stress that further studies are required to verify our findings due 

to various limitations and the exploratory nature of some analyses.  

 

 

Introduction 

A novel coronavirus named 2019-nCoV was detected from patients in Wuhan city, China 1,2 at the end of 

2019. The virus has since caused an outbreak of coronavirus disease 2019 (COVID-19) not only presenting in 

China but also spreading worldwide 3-5. A total of 87,137 of confirmed cases have been reported as at 

01-03-2020, according to the latest WHO situation report 

(https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200301-sitrep-41-covid-19.pdf?sfv

rsn=6768306d_2). Although most of patients were still concentrated in China, the total number of infected 

subjects in other countries has exceeded 7000, with confirmed cases in 58 countries. COVID-19 has already 

caused 2,977 deaths worldwide as at 01-03-2020. Considering the severity of COVID-19 outbreak all over the 

world, it is urgent to seek solutions to control the spread of the disease to susceptible groups, and to identify 

effective treatments. A better understanding of the pathophysiology of the disease is also urgently needed.   

 

There have been ongoing efforts to characterize the clinical features of the illness. Through integrating three 

recent reports of confirmed cases, we estimated that over one quarter of patients had a previous history of 

comorbidity conditions, including hypertension (12.9%), diabetes (5.4%), cardiovascular disease (4.1%), 

respiratory system diseases (2.4%) and malignancy (0.5%) (Supplementary Table 1) 4-6. Furthermore, various 

human organs such as lung, heart, kidney and bladder were reported to be vulnerable to the virus via analyzing 

the single-cell RNA sequencing datasets 7. Nevertheless, it is still unclear whether the above or other comorbid 

diseases would lead to increased susceptibility to COVID-19, and if so, what the underlying mechanisms may 

be. In addition, since most clinical studies on the disease were observational in nature, it may be difficult to 

discern causality as many known or unknown confounders may be present (e.g. age, sex, other diseases, 

medications received, smoking/drinking history etc.). These confounders may lead to spurious associations 

between the exposure (e.g. comorbid conditions) and the outcome (e.g. susceptibility to infection, severity of 

illness etc.).  

 

According to four lines of evidence, Wan et al. speculated that the host receptor of 2019-nCoV was 

angiotensin-converting enzyme 2 (ACE2) 8. ACE2 has been established a receptor for SARS-CoV 9,10, and the 

same protein might regulate 2019-nCoV’s capacity for cross-species and human-to-human transmissions 8. 

Besides, Zhou et al. also confirmed this finding in HELA cell lines 11. Subsequently, Wrapp et al. observed that 

the ACE2 protein could bind to the virus spike ecto-domain with around 15 nM affinity, which is up to 20-fold 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2020. .https://doi.org/10.1101/2020.03.04.20031237doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.04.20031237
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

higher than the binding affinity to the previous SARS-CoV spike glycoprotein 12. This provides strong evidence 

that ACE2 is a target of the novel coronavirus.  

 

A number of studies have looked into the relationship between ACE2 expression level and coronavirus 

infection. For example, Li et al. overexpressed ACE2 protein in 293T and Vero E6 cell lines. Over-expression 

of ACE2 lead to more efficient viral replication, but it was blocked by anti-ACE2 antibody in a dose-dependent 

manner 9. A further study also confirmed that susceptibility to SAR-CoV correlates with ACE2 expression on 

cell lines 13. In a subsequent work, Jia et al. showed that undifferentiated airway epithelial cells that express 

little ACE2 were poorly infected by SARS-CoV, while well-differential cells expressing higher ACE2 were 

readily infected 14. Taking the evidence together, expression level of the ACE2 protein is associated with 

susceptibility to SARS-CoV infection. 

 

Since ACE2 has been supported by multiple studies as a receptor for 2019-nCov, it is reasonable to 

speculate that higher ACE2 expression in relevant tissues (e.g. the lung) may lead to increased susceptibility to 

infection. As discussed above, studies have indeed supported this hypothesis for SARS-CoV. While further 

studies are required, revealing diseases/traits that are causally associated with altered ACE2 expression may 

shed light on why certain subjects are more susceptible to the infection and the underlying mechanisms 

(whether the increased susceptibility is mediated via ACE2). 

 

  In a related work, recently Cai 15 performed an analysis with TCGA datasets and showed that smoking is 

associated with elevated expression of ACE2 in the lung, which may be associated with greater susceptibility to 

infection or more severe illness. However, there are several limitations as detailed by the author. For example, 

the samples studied are derived from patients with lung cancer, which may not be fully reflective of the 

expression in normal lung tissues. Another potential limitation is that it is difficult to control for all confounders, 

as smoking may be related to other unhealthy life habits 16 and multiple comorbid diseases 17,18.  

 

 Here we conducted a phenome-wide Mendelian randomization (MR) study to explore diseases or traits that 

may be causally linked to increased ACE2 expression in the lung. We will employ MR for causal inference. MR 

makes use of genetic variants as “instruments” to represent the exposure of interest, and infers causal 

relationship between the exposure and the outcome19. MR is much less susceptible to confounding bias and 

reverse causality when compared to observational studies.  

 

The concept of MR is akin to randomized controlled trials (RCT). For example, consider a study on the 

causal effect of lipid on the risk of a certain disease. Subjects who have inherited lipid-lowering alleles at a locus 

(or a set of such alleles at multiple loci) will have lower lipid levels on average, which is analogous to receiving 

lipid-lowering drugs in an RCT20. The random allocation of alleles at conception is similar to random 

assignment of treatment in an RCT. As a result, the chance of spurious associations due to known or unknown 

confounders is reduced due to the ‘random assignment’ of treatment or risk factor. Another important point to 
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note is that MR can be conducted with summary statistics from genome-wide association studies (GWAS), 

which are now widely available and often of very large sample sizes.  

 

In this study, we wish to answer the following question: What conditions or traits may lead to increased 

ACE2 expression, which may in turn result in greater susceptibility to 2019-nCov infection? Since COVID-19 is 

a new disease and prior knowledge is lacking, we employed a phenome-wide approach in which a large variety 

of traits are studied for causal associations with ACE2 expression. This analysis may help to prioritize resources 

for better prevention of the infection in those susceptible subjects. 

 

In addition to diseases, we also studied serum/plasma proteins as exposure, as they may point to potential 

molecular mechanisms underlying ACE2 expression, and may serve as potential predictive or prognostic 

biomarkers. It has also been suggested that such proteome-wide studies may help to reveal drug repositioning 

candidates21, through the search for drugs that target the top-ranked proteins. For example, if a protein is found 

to casually increase the risk of a disease by MR, by the definition of causality, blocking the protein will lead to 

reduced disease risks. In our study, by finding plasma/serum proteins causally linked to ACE2 expression, we 

may find drugs that will alter ACE2 expression, which in turn may be useful for treatment.   

 

Methods 

GWAS data 

Exposure data  

To perform the phenome-study, we made use of the latest IEU GWAS database (https://gwas.mrcieu.ac.uk/), 

which contains up to 111,908,636,549 genetic associations from 31,773 GWAS summary datasets (as at 26th 

Feb 2020). The database was retrieved via the R package “TwoSampleMR” (ver 0.5.1). MR analysis was 

conducted with the same package. Due to the extremely huge number of traits in the database, we performed 

some pre-selection to the list of traits/diseases before full analysis. Briefly, we selected the following 

categories of traits: (1) Traits listed as priority 1 (high priority) and labelled as “Disease” or “Risk factor” (81 

and 71 items respectively); (2) traits labelled as “protein” as described above (3371 items); (3) (selected) traits 

from the UK Biobank, as it is one of the largest source of GWAS data worldwide (with sample size ~ 

500,000). We consider that a proportion of traits have presumably low prior probability of association with 

respiratory infections, and others are less directly clinically relevant. To reduce computational burden and for 

ease of interpretation, a proportion of UK Biobank (UKBB) traits were filtered. More specifically, we 

excluded GWAS data of diseases or traits related to the following: eye or hearing problems, orthopedic and 

trauma-related conditions (except autoimmune diseases), skin problems (except systemic or autoimmune 

diseases), perinatal and obstetric problems, operation history, medication history (as confounding by 

indication is common and may affect the validity of results22), diet/exercise habit (as accuracy of information 
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cannot be fully guaranteed and recall bias may be present), other socioeconomic features (such as type of 

jobs). A total of 425 UKBB traits were retained for final analysis.  

GWAS of UKBB were based on analysis results from the Neale Lab 

(https://sites.google.com/broadinstitute.org/ukbbgwasresults/) and from MRC-IEU. GWAS analysis was 

performed using linear models with adjustment for population stratification; details of the analytic approach is 

given in the following links: https://github.com/Nealelab/UK_Biobank_GWAS/tree/master/imputed-v2-gwas,  

http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas and 

https://doi.org/10.5523/bris.pnoat8cxo0u52p6ynfaekeigi. For binary outcomes, we converted the regression 

coefficients obtained from the linear model to those under a logistic model, based on methodology presented in 
23. The SE under a logistic model was derived by the delta method (see supplementary text of 23, equation 37).  

 

Outcome data  

Regarding the outcome, we are interested in the expression of ACE2. While ideally one should study the 

protein expression in the lung, such data is scarce and corresponding genotype data (required for MR) is not 

available. Here we focus on the gene expression of ACE2 in the lung (N = 515). ACE2 protein levels appear to 

be relatively well-correlated with mRNA levels across tissues, based on the Human Proteome Atlas 

(https://www.proteinatlas.org/ENSG00000130234-ACE2/tissue). We retrieved GWAS summary data from 

the GTEx database, one of the largest databases to date with both genotype and expression data for a large 

variety of tissues. For details of GTEx please refer to 24.  

 

Mendelian randomization (MR) analysis  

Here we performed two-sample MR in which the instrument-exposure and instrument-outcome associations 

were estimated in different samples. We conducted MR primarily with the ‘inverse-variance weighted’ 

(MR-IVW)25 and Egger regression (MR-Egger)26 approaches, which are among the most widely used MR 

methods. One of the concerns of MR is horizontal pleiotropy, in which the genetic instruments have effects on 

the outcome other than through effects on the exposure. Of note, MR-Egger gives valid estimates of causal 

effects in the presence of imbalanced or directional horizontal pleiotropy. In addition, significance of the 

MR-Egger intercept can be used to judge whether significant imbalanced pleiotropy is present. MR was 

performed on (approximately) independent SNPs with r2 threshold of 0.001, following default settings in 

TwoSampleMR. We only included SNPs passing genome-wide significance (p<5e-8) as instruments. For 

exposure with only one instrument, the Wald ratio method was used. For analysis with less than 3 genetic 

instruments, we employed MR-IVW since MR-Egger cannot be reliably performed. As will be detailed in the 

results section, for selected trait(s) with stronger evidence of association, we also performed further analysis 

by GSMR and MR-RAPS. GSMR (http://cnsgenomics.com/software/gsmr/) can take into account of 

(imbalanced) horizontal pleiotropy but is based on a different principle from MR-Egger. It excludes ‘outlier’ 

or heterogeneous genetic instruments that may contribute to pleiotropy, by the ‘HEIDI-outlier’ method 27. 
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GSMR also employed a slightly different formula from MR-IVW by modelling variance of both ˆ
XGβ  and

ˆ
YGβ , and accounts for correlated SNPs 27. MR-RAPS is another MR analysis methodology which can take 

into account multiple weak instruments by a robust procedure. Details of MR-RAPS were described in Zhao 

et al. 28.  

 

  We also performed analysis with plasma/serum proteins as exposure. Besides MR analysis on individual 

proteins, we also performed pathway analysis by ClueGO 29. Hypergeometric tests were conducted on the 

top-ranked proteins (with p<0.05). In addition, we searched for drugs with targets overlapping with the 

top-ranked proteins. Drug targets were defined based on the DrugBank database. Our aim is uncover drug 

candidates leading to alteration of ACE2 expression, which may be therapeutically relevant.  

 

Results 

MR analysis for diseases and clinically relevant traits 

MR results are presented in Tables 1 and 2 (full results shown in Tables S2 and S3). Traits were shown if any of 

the three methods (MR-IVW, MR-Egger, Wald ratio) showed nominally significant (p<0.05) results. For traits 

that do not show evidence for directional pleiotropy (p-value of Egger Intercept>0.05), we shall primarily report 

the results from MR-IVW, as generally the SE of causal estimates is larger with MR-Egger 30 (hence power is 

weaker). Results from MR-Egger will be presented if there is significant directional pleiotropy.  

 

Diabetes-related traits 

Remarkably, a number of top-ranked results were related to diabetes. We observed totally five 

diabetes-related traits that showed nominally significant MR results, and they were all positively associated 

with ACE2 expression. Three are related to diagnosis of diabetes (including both type I and II) in the UKBB. 

Another one (id: ieu-a-23) was based on a trans-ethnic meta-analysis in 2014 31, which had no overlap with the 

UKBB sample. The finding of a nominally significant result in this dataset can therefore be considered as an 

independent replication of the UKBB result.  

 

We also observed that starting insulin within one year of diagnosis, which was only assessed within diabetic 

subjects, was casually associated with increased ACE2 expression. Early use of insulin may indicate type I 

diabetes as the underlying diagnosis or more severe or late-stage disease for type II diabetic subjects 32.  

 

In view of the consistent causal associations with diabetes or related traits, we further searched for GWAS 

summary statistics that have not been included in the IEU GWAS database. We found another publicly available 

dataset from the DIAGRAM Consortium, based on a recent meta-analysis of type II diabetes by Mahajan et al. 33. 

For a more in-depth analysis, we also employed GSMR and MR-RAPS in addition to IVW and Egger. The full 

results are presented in Table 2. Reassuringly, with the exception of MR-Egger (which is relatively less 
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powerful 30), all other methods showed (nominally) significant results. GSMR reported the lowest p-value of 

2.49E-04 (beta = 0.1835, 95% CI: 0.0853 to 0.2817). While this study 33 has partial overlap with the trans-ethnic 

analysis in 2014 31, the consistent associations provide further support to a causal link between diabetes and 

expression of ACE2.  

 

Regarding the effect size of casual associations, since the exposures were binary, the regression coefficients 

(beta) from MR may be roughly interpreted as average change in the outcome (increase in normalized 

expression level) per 2.72-fold increase in the prevalence of the exposure 34. For type II diabetes, or 

self-reported diabetes from UKBB which presumably comprised mainly type II diabetes, the causal estimates 

ranged from ~0.1621 to 0.1835. These estimates were reasonably close despite different datasets being used. 

The causal estimate from type I diabetes was slightly lower and estimated to be ~0.1006.  

 

Other disease/traits  

As shown in Table 1, a number of other disease/traits also showed (nominally) significant results. Several 

neoplasms, such as breast and lung cancer, may be associated with increased ACE2 expression. We also 

observed that several autoimmune disorders, especially inflammatory bowel diseases may be casually 

associated with ACE2 expression. Interestingly, asthma and tobacco use also showed nominal significant 

associations with higher ACE2 expression. As for other traits, high alanine aminotransferase (ALT), 

commonly associated with liver diseases, may be related to elevated ACE2 expression. Other commonly 

measured blood measures that may lead to altered ACE2 expression also included red cell distribution width 

(often associated with iron-deficiency, folate or B12 deficiency anemia), basophil percentage (inverse 

relationship), calcium level, urate level, HDL-cholesterol and LDL cholesterol (inverse relationship).  

 

MR results with plasma/serum proteins as exposure 

Full results are shown in Table S2 and the enriched pathways are shown in Table 3 and Table S4. Since a large 

number of proteins are involved, we only highlight a few top pathways here. Some of top pathways include 

cytokine and cytokine receptor interaction, VEGFA-VEGF2 signaling pathway, JAS-STAT signaling pathway 

etc. Table 4 and S5 shows the list of drugs whose targets overlap with the top-ranked proteins. Note that the 

tables do not explicitly discern the direction of effects of the drugs. A few drugs target more than one protein. If 

they are ranked by the number of proteins targeted, the top drugs are fostamatinib, copper, zinc and zonisamide, 

which target >=3 proteins.  

 

 

Discussions  

Diseases/traits causally linked to ACE2 expression 

In this study we have employed Mendelian Randomization (MR) to uncover diseases/traits that may be 

causally linked to ACE2 expression levels in the lung, which in turn may influence susceptibility to the infection. 

We believe such analysis is of value as observational studies are more prone to confounding bias. Also, in 
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practice, it is very difficult to organize a comprehensive clinical study of many different risk factors/diseases, 

evaluate if they are risk factors for COVID-19. Such studies may also be limited by the lack of relevant clinical 

data for some patients.  

 

From our analysis, the most consistent finding was the casual link between diabetes (and related traits) with 

ACE2 expression, which was supported by multiple datasets and different analytic approaches. Other results 

were more tentative, but may be worthy of further studies. For example, several neoplasms (e.g. breast and lung 

cancers) and autoimmune diseases, elevated ALT, asthma and smoking all showed nominally significant and 

positive associations with ACE2 expression. If the findings are replicated and confirmed in further studies, there 

may be clinical implications.  

 

For example, identification of those at greater risk may help to guide the prioritization of resources to reduce 

infection risks in susceptible groups. Also, it is likely that vaccines may be developed in the near future; in the 

lack of resources, susceptible groups may be prioritized to receive vaccination to maximize cost-effectiveness. 

In a similar vein, if resources are limited, the more susceptible subjects may receive higher priority for 

diagnostic testing for the infection. As far as treatment is concerned, if certain conditions such as diabetes 

indeed increases susceptibility via ACE2, then drugs targeting at this gene/protein may be particularly useful 

for this patient subgroup. For example, human recombinant ACE2 has been proposed as a treatment and is 

under clinical trial for COVID-1935. It will be interesting to see if the drug may be more beneficial for DM 

patients. More generally speaking, if DM is causally linked to elevated ACE2 and potentially increased 

susceptibility to infection, then anti-diabetic drugs or improved glycemic control may reverse the process. 

Interestingly, a few studies have shown that metformin may reduce mortality from lower respiratory disease in 

diabetic patients{Ho, 2019 #59;Mendy, 2019 #60}. It will be intriguing to know if metformin (or other 

anti-diabetic medications) may be clinically beneficial in preventing or reducing the severity of disease in 

diabetic or non-diabetic subjects.  

 

Here we further discuss on a few disease/traits also supported by previous studies. First, as discussed in the 

introduction, a recent study 15 also suggested smoking was associated with higher ACE2 expression. Our 

analysis adds further support to the hypothesis, but we further showed that the relationship may be casual. As 

shown in Table S1, a number of COVID-19 cases (~5.4%) were also comorbid with diabetes mellitus (DM). 

Similarly, DM was also common in patients infected with MERS-CoV 36,37. Kulcsar et al. built a mouse model 

susceptible to MERS-CoV infection and induced type 2 DM using a high-fat diet. They found that, if affected by 

the virus, these diabetic mice suffered from a prolonged phase of disease and delayed recovery, which might be 

due to a dysregulated immune response 38. With regards to comorbidity with cancers, Liang et al. recently 

carried out a nationwide analysis of 1,590 patients with laboratory-confirmed COVID-19 and suggested that 

cancer patients might have a higher infection risk than those without 39. The study also reported higher risk of 

severe complications in such patients. 
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There are several limitations in our analysis of associated diseases/traits with ACE2 expression. A major 

limitation is that the sample size for GTEx is relatively modest, which limits the power of MR analysis. 

However, to our knowledge, GTEx is probably the largest database with both genotype and expression data for 

lung tissues.  

 

Another point we wish to emphasize is that we consider this work as largely an exploratory rather than 

confirmatory study. Our main purpose is to prioritize diseases, traits or proteins with potential causal links with 

ACE2 expression, and hence possibly increased susceptibility to 2019-nCov infection. Owing to relatively 

modest sample size of the outcome dataset of GTEx (N = 515), we expect the power to be modest. Also in view 

of the exploratory and hypothesis-generating nature of this study, we have not implemented stringent multiple 

testing procedures such as Bonferroni correction. On the other hand, we examined the consistency of the 

observed associations across different datasets, and considered those supported by more than one set of data as 

relatively more trustworthy or robust, similar to the approach adopted by Pendergrass et al. 40. However, we 

emphasize that our findings will require further replications and support by further clinical and experimental 

studies. 

 

  On the other hand, we also wish to highlight some results could be false negatives. The main reason for false 

negatives is the limited sample size of GTEx, and that for some exposure traits, the number of instruments 

available may be small. For example, in our analysis, we do not find evidence of hypertension or blood pressure, 

history of coronary heart disease and stroke to be casually linked to ACE2 expression, although patients with 

severe infections have been reported to be enriched for these comorbidities.  

 

On ACE2 expression and exploring drug candidates 

As discussed above, increased expression of ACE2 appears to be correlated with susceptibility to 

SARS-Cov and 201-nCoV infection. Nevertheless, the consequences of altered ACE2 expression may be rather 

complex. Kuba et al. reported that the Spike protein of the SARS-CoV down-modulated ACE2 expression 10, 

which may lead to heightened risks of acute lung injury. Another study 41 suggested ACE2 may protect against 

acute pulmonary failure by blocking the renin-angiotensin signaling pathway. However, whether the same may 

apply to 2019-nCov is still unknown. If this is the case, then one may hypothesize that for unaffected individuals 

or those without (or with minimal) lung involvement yet (as could be the case for some subjects at the early 

stage of disease), a lower level of ACE2 expression on lung cells may be beneficial in reducing susceptibility to 

more sustained infection by reducing viral entry. However, for patients with severe lung involvement or at risk 

of acute lung injury, higher level of ACE2 expression may prevent risk of acute lung failure. Therefore, it may 

be clinically relevant to identify both types of drugs, i.e. those leading to elevated ACE2 expression as well as 

those leading to reduced expression. Further studies are warranted to clarify the role of ACE2 and whether drugs 

targeting ACE2 may be therapeutically useful.  
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The drugs we highlighted in this study may help researchers to prioritize repositioning candidates for further 

studies, given the huge cost in developing a brand-new drug and that detailed investigations on every existing 

mediation will be impractical. We briefly discuss a few drugs highlighted by our analysis. Fostamatinib targets 

the largest number (seven) of proteins potentially linked to ACE2 expression. According to DrugBank, it serves 

as an inhibitor for all these proteins, and all were linked to elevated ACE2 expression in the present MR analysis 

except one. This drug has been approved for treating Immune Thrombocytopenic Purpura (ITP), and is a spleen 

tyrosine kinase inhibitor42. There has been trials on rheumatoid arthritis (RA)43 and IgA nephropathy as well42. 

Interestingly, recent studies by the company BenevolentAI44,45 employed a proprietary knowledge graph 

approach and found several repositioning candidates 46,47. Baricitinib, a JAK 1/2 inhibitor approved for RA, was 

suggested as a top candidate. The drug was proposed on its action on AAK1 which is a regulator of endocytosis, 

although how AAK1 was prioritized as target was not described in the study. Fostamatinib, which we 

prioritized in this study, also inhibits JAK1, JAK2 and AAK1 48 based on curations from DrugBank and was 

shown to be effective for RA 43. Of note, two other JAK-STAT signaling inhibitors were recommended by 

Stebbing et al.45, while in our analysis JAK-STAT signaling is among the top 10 pathways enriched for top 

proteins linked to ACE2 expression. Another candidate highlighted by Richardson et al.44, sunitinib, was also 

top-listed by our MR-based analysis. We have employed a rather different algorithm based on causal inference, 

when compared to the approach by BenevolentAI. The concordance between different studies provides 

additional support to the usefulness our MR-based approach, and the drugs with converging evidence by 

different approaches may be more likely to be true candidates. Zinc was also a top-listed candidate in our study, 

and it has been reported to reduce the risk of lower respiratory tract infections in some studies, e.g. 49, although 

further studies are required as the evidence is not firm.  

 

Despite some interesting findings, due to limited knowledge of how the drugs act on the targets and their 

directions of effect, as well as the pathophysiology of COVID-19, we consider our results as exploratory 

findings which require further investigations. We note that a number of drugs may act on more than one target, 

but the exact pharmacological action on each target is often unclear; the overall direction and magnitude of 

effect of each drug may not be easily determined and must be verified in further studies. We emphasize that the 

drugs highlighted in this work are meant to prioritize suitable candidates to speed up discovery for treatments, 

and are not supposed to be applied to clinical practice or trials yet. However, due to the potential huge cost and 

extreme urgency of developing new therapies, we believe that any drug repositioning/discovery attempt that 

may improve the success rate even by a small margin may still be much valuable.  

 

  Moreover, we should stress that this study does not address what factors may aggravate or ameliorate 

CoV-induced changes in ACE2 levels (i.e. the expression changes as a result of CoV infection). This involves 

complex interaction between the virus, the ACE2 receptor and other downstream pathways, and could not be 

predicted by the present analysis per se. Our findings from MR mainly reflect diseases/traits/proteins causally 

linked to ACE2 expression in uninfected subjects, as the outcome dataset (GTEx) is composed of such subjects.  
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Finally, on a methodological note, we have employed MR in a different manner in most present studies. 

Usually MR is used to identify causal risk factors with a disease as the outcome, for which GWAS data for the 

disease is available. Here we presented a new analytic approach; we made use of existing knowledge of a key 

receptor of an infectious agent to uncover risk factors as well as repositioning candidates. This analytic 

framework may also be applied to other diseases, especially when a target can be identified but genomic data 

for the disease is limited.  

 

Conclusions 

  Notwithstanding the limitations, we have identified several diseases and traits which may be causally 

related to ACE2 expression the lung, which in turn may mediate susceptibility to 2019-nCoV infection. In 

addition, our proteome-wide MR analysis revealed proteins that could lead to changes in ACE2 expression. 

Subsequent drug repositioning analysis highlighted several candidates that may warrant further investigations. 

We stress that most of the findings require replications and validation in further studies, especially the part on 

drug repositioning. Nevertheless, we believe this work is of value in view of the urgency to address the 

outbreak of 2019-nCoV.  
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Table 1   Overall MR analysis results achieving nominal significance (p<0.05), with diseases/traits as exposure and ACE2 lung expression as outcome  

id trait nsnps 
b_ 

IVW 

se_ 

IVW 

pval_ 

IVW 

b_ 

Egger 

se_ 

Egger 

pval_ 

Egger 

b_ 

Wald 

se_ 

Wald 

pval_ 

Wald 

Egger_ 

intercept 

pval_ 

intercept 

Diseases as exposure  
            

Diabetes-related  
            

ukb-b-10753 Diabetes diagnosed by doctor 58 0.1754 0.0723 0.0152  0.0024  0.1584  0.9879  - - - 0.0196  0.2251  

ukb-b-12948 Non-cancer illness code, self-reported: diabetes 49 0.1621 0.0766 0.0343  0.2030  0.1760  0.2548  - - - -0.0047  0.7974  

ukb-b-10694 Diagnoses - secondary ICD10: E10.9 Type I Diabetes 

mellitus without complications 

3 0.1006 0.0495 0.0423  0.1842  0.1468  0.4284  - - - -0.0523  0.6536  

ieu-a-23 Type 2 diabetes 25 0.2103 0.1034 0.0421  0.1600  0.4038  0.6957  - - - 0.0053  0.8986  

ukb-b-8388 Started insulin within one year diagnosis of diabetes 7 0.0763 0.0354 0.0310  0.0770  0.0751  0.3523  - - - -0.0005  0.9914  

              

Neoplasms              

ukb-b-8549 Diagnoses - main ICD10: D24 Benign neoplasm of 

breast 

1 - - - - - - 0.3768 0.1650  0.0223  - - 

ukb-d-D12 Diagnoses - main ICD10: D12 Benign neoplasm of 

colon, rectum, anus and anal canal 

12 -0.2861 0.1177 0.0150  -0.0575 0.4634  0.9038  - - - -0.0312  0.6210  

ukb-d-C3_RESP

IRATORY_INT

RATHORACIC 

Malignant neoplasm of respiratory system and 

intrathoracic organs 

3 0.5137 0.1976 0.0093  0.7114  0.7363  0.5109  - - - -0.0562  0.8213  

ukb-d-C34 Diagnoses - main ICD10: C34 Malignant neoplasm of 

bronchus and lung 

1 - - - - - - 0.3627 0.1661  0.0290  - - 

ieu-a-1134 ER+ Breast cancer (GWAS) 7 0.1759 0.0755 0.0198  0.5389  0.2953  0.1276  - - - -0.0944  0.2594  

ieu-a-1013 Glioma 3 0.2000 0.0958 0.0367  0.4379  0.7370  0.6587  - - - -0.0705  0.7997  

              

Autoimmue disorders             

ukb-b-18194 Non-cancer illness code, self-reported: ankylosing 

spondylitis 

3 0.0865 0.0358 0.0157  0.0171  1.2239  0.9911  - - - 0.0586  0.9639  
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ieu-a-32 Ulcerative colitis 29 0.0256 0.0596 0.6671  0.5855  0.1775  0.0027  - - - -0.1049  0.0027  

ieu-a-292 Inflammatory bowel disease 107 0.0034 0.0429 0.9376  0.2458  0.1034  0.0192  - - - -0.0309  0.0113  

ieu-a-30 Crohn's disease 41 0.0106 0.0390 0.7864  0.1961  0.0896  0.0346  - - - -0.0443  0.0268  

ieu-a-31 Inflammatory bowel disease 49 -0.0138 0.0499 0.7827  0.2866  0.1327  0.0360  - - - -0.0510  0.0191  

              

Other diseases              

ukb-b-17219 Diagnoses - secondary ICD10: J45.9 Asthma, 

unspecified 

19 0.2638 0.1253 0.0353  0.8765  0.4270  0.0558  - - - -0.0635  0.1517  

ukb-b-5115 Diagnoses - secondary ICD10: Z72.0 Tobacco use 3 0.9175 0.3818 0.0163  0.6241  2.7179  0.8563  - - - 0.0236  0.9303  

ukb-b-6514 Non-cancer illness code, self-reported: hiatus hernia 2 0.8635 0.3822 0.0239  - - - - - - - - 

ukb-b-8848 Diagnoses - main ICD10: K44.9 Diaphragmatic 

hernia without obstruction or gangrene 

1 - - - - - - 1.0439 0.4627  0.0241  - - 

ukb-b-1386 Diagnoses - main ICD10: K21.9 Gastro-oesophageal 

reflux disease without oesophagitis 

1 - - - - - - -0.8653 0.4214  0.0400  - - 

ukb-d-I9_DISV

EINLYMPH 

Diseases of veins, lymphatic vessels and lymph 

nodes, not elsewhere classified 

14 -0.2693 0.1194 0.0241  -0.1381 0.3021  0.6558  - - - -0.0165  0.6448  

ukb-d-M48 Diagnoses - main ICD10: M48 Other spondylopathies 1 - - - - - - 0.7776 0.3238  0.0163  - - 

ukb-d-N13 Diagnoses - main ICD10: N13 Obstructive and reflux 

uropathy 

1 - - - - - - 0.6746 0.3417  0.0483  - - 

 

Other risk factors or clinically relevant traits as exposure 

           

ukb-b-15272 Ever manic/hyper for 2 days 2 1.1349 0.3862 0.0033  - - - - - - - - 

ukb-d-30620_raw Alanine aminotransferase 91 0.0474 0.0177 0.0074  0.0806  0.0389  0.0413  - - - -0.0124  0.3411  

ukb-d-30070_irnt Red blood cell (erythrocyte) distribution width 225 0.2428 0.1047 0.0204  0.3487  0.1885  0.0657  - - - -0.0044  0.5001  

ukb-d-30220_irnt Basophill percentage 77 -0.5036 0.2281 0.0273  -0.5837 0.4200  0.1687  - - - 0.0026  0.8211  

ukb-d-30780_raw LDL direct 126 -0.2718 0.1676 0.1050  -0.7577 0.2667  0.0053  - - - 0.0195  0.0207  

ukb-d-30680_raw Calcium 152 0.2020 1.8845 0.9146  -10.38 4.0074  0.0105  - - - 0.0308  0.0034  

ukb-d-30830_raw SHBG 163 0.0044 0.0057 0.4428  0.0216  0.0105  0.0424  - - - -0.0164  0.0552  

ieu-a-793 Urate 4 0.0256 0.0116 0.0271  0.0263  0.0124  0.1671  - - - -0.0079  0.8839  
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ieu-a-1034 Height 4 0.6362 0.3202 0.0469  2.0601  7.3837  0.8064  - - - -0.1177  0.8648  

ieu-a-299 HDL cholesterol 84 0.0842 0.1291 0.5145  0.5630  0.2402  0.0215  - - - -0.0258  0.0204  

ieu-a-1089 Body mass index 1 - - - - - - 3.6262 1.2369  0.0034  - - 

Nsnps, number of SNPS. b, beta (causal estimate); se, standard error; pval, p-value. IVW, inverse-variance weighted approach.  

 
Table 2 Further MR analysis results for type II diabetes based on 2018 Mahajan et al.  

  beta se pval  
Egger 

Intercept 

Intercept  

pval 
n_pleio nsnps 

MR-IVW 0.1772  0.0595  2.91E-03 - - - 196 

MR-Egger -0.0390  0.1264  0.7578  0.0159  0.0545  - 196 

GSMR 0.1835  0.0501  2.49E-04 - - - 391 

MR-RAPS 0.0571  0.0268  3.28E-02 - - - 4748 

The exposure GWAS dataset on type II diabetes was based on Mahajan et al. (2018).Nature genetics, 50(11), 1505-1513. This study was not covered in IEU GWAS database.  

 
Table 3   Top 10 enriched pathways for significant proteins in MR analysis  

GOID GOTerm Ontology Source 
Term 

PVal 

Term Pval 

(Bonf 

corrected) 

Associated Genes 

KEGG:04060 Cytokine-cytokine receptor 

interaction 

KEGG_27.02.2019 1.82E-06 7.29E-05 [CCL25, CTF1, CX3CL1, CXCL12, IL15RA, 

IL22, IL34, IL37, LTA, LTBR, OSM, TNFSF4, 

TNFSF8] 

WP:3888 VEGFA-VEGFR2 Signaling Pathway WikiPathways_27.02.2019 7.79E-06 3.11E-04 [ACACB, BCL2L1, CFL1, EEA1, F3, IGFBP7, 

JAG1, KDR, PIK3CA, PTPN1, TXNIP] 

WP:254 Apoptosis WikiPathways_27.02.2019 1.07E-04 4.29E-03 [BCL2L1, BIRC5, DIABLO, IGF1, LTA, MCL1] 

WP:3614 Photodynamic therapy-induced HIF-1 

survival signaling 

WikiPathways_27.02.2019 2.99E-04 1.19E-02 [BCL2L1, BIRC5, HK1, MCL1] 

R-HSA:399954 Sema3A PAK dependent Axon 

repulsion 

REACTOME_Pathways_27.02.2019 3.40E-04 1.36E-02 [CFL1, PAK3, PLXNA1] 
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R-HSA:2173782 Binding and Uptake of Ligands by 

Scavenger Receptors 

REACTOME_Pathways_27.02.2019 4.89E-04 1.96E-02 [FTH1, HP, STAB1, STAB2] 

KEGG:04630 JAK-STAT signaling pathway KEGG_27.02.2019 5.61E-04 2.24E-02 [BCL2L1, CTF1, IL15RA, IL22, MCL1, OSM, 

PIK3CA] 

KEGG:04672 Intestinal immune network for IgA 

production 

KEGG_27.02.2019 8.84E-04 3.53E-02 [CCL25, CXCL12, IL15RA, LTBR] 

WP:3657 Hematopoietic Stem Cell Gene 

Regulation by GABP alpha/beta 

Complex 

WikiPathways_27.02.2019 9.00E-04 3.60E-02 [BCL2L1, FLT3, MCL1] 

WP:3872 Regulation of Apoptosis by 

Parathyroid Hormone-related Protein 

WikiPathways_27.02.2019 0.00090  0.03602  [BCL2L1, MCL1, PIK3CG] 

Pval, p-vlaue; Bonf, Bonferroni correction.  

 
Table 4   Drugs with targets overlapping with significant proteins from MR analysis (only FDA-approved drugs shown)  

Drug 

No. of 

proteins 

targeted 

Targets (that overlap with proteins significant in MR analysis) 

Fostamatinib 7 ZAP70 FLT3 HIPK3 KDR MST1R PAK3 PIK3CG 

Copper 6 CFL1 S100A2 PARK7 AHSG APOD CBX5 
 

Zinc 4 S100A2 AHSG C8A APLP2 
   

Zonisamide 3 CA4 CA9 CA10 
    

Benzthiazide 2 CA4 CA9 
     

Hyaluronic acid 2 LAYN STAB2 
    

Hydroflumethiazide 2 CA4 CA9 
     

Isosorbide 2 BCL2L1 MCL1 
     

Midostaurin 2 KDR FLT3 
     

Nintedanib 2 KDR FLT3 
     

Ponatinib 2 FLT3 KDR 
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Sodium carbonate 2 CA4 CA9 
     

Sorafenib 2 KDR FLT3 
     

Sunitinib 2 KDR FLT3           
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