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Abstract 

COVID-19 is a complex disease phenotype where the underlying microbiome could 

influence morbidity and mortality. Amplicon and metagenomic MinION based 

sequencing was used to rapidly (within 8 hours) identify SARS-CoV-2 and assess the 

microbiome in nasopharyngeal swabs obtained from patients with COVID-19 by the 

ISARIC 4C consortium.  
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Introduction 

Mechanisms of life-threatening disease in COVID-19 including factors associated with 

morbidity and mortality. Middle East respiratory syndrome (MERS) can provide 

important parallels: one of the risk factors associated with severe disease and/or a 

fatal outcome is the presence of other infections [1, 2]. Other infections may therefore 

exacerbate COVID-19. A case study in China identified the presence of other 

microorganisms in patients with COVID-19 and included specific nucleic acid based 

detection for six common respiratory virus and the use of culture [3]. No viruses were 

identified but the study identified Acinetobacter baumannii, Klebsiella pneumoniae, 

and Aspergillus flavus in a single patient and several cases of fungal infection were 

diagnosed including Candida albicans and Candida glabrata. The ability to rapidly 

identify both the primary pathogen and other infections that may be present early in 

disease may provide opportunities for targeted intervention in patients suspected or 

confirmed with COVID-19. The advantage of both laboratory [4] and field-based 

sequencing approaches [5] was illustrated in the West African Ebola virus outbreak in 

characterising viral infection and also providing an assessment of the contribution of 

potential co-infections to outcome [6]. Rapid sequencing of SARS-CoV-2 itself 

provides utility in two main areas. First, specific amplicon-based sequencing of SARS-

CoV-2 allows for potential contact tracing, molecular epidemiology and studies of viral 

evolution. Second, the use of metagenomic approaches like SISPA provides a check 

on sequence divergence for amplicon-based approaches. This is particularly important 

for SARS-CoV-2 as the virus could undergo recombination with other human 

coronaviruses and mutation and this may also affect both vaccine and antiviral 

efficacy. 
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Methods 

Ethics and clinical information. Patients used in this study gave informed consent 

and were recruited under the International Severe Acute Respiratory and emerging 

Infection Consortium (ISARIC) Clinical Characterisation Protocol CCP 

(https://isaric.net/ccp), reviewed and approved by the national research ethics service, 

Oxford (13/SC/0149). Sequencing approaches were validated on samples from two 

patients, Patient 1 who was asymptomatic and Patient 2 who experienced a 4-day flu-

like illness. Samples were timed from the day of recruitment. 

 

RNA extraction and preparation. Nasopharyngeal swabs collected from patients 

with COVID-19 were placed in a viral transport medium and RNA isolated using 

QIAamp viral RNA mini kit (Qiagen) by spin-column procedure according to the 

manufacturer’s instructions. Total RNA was purified from SARS-CoV-2 infected Vero 

cells using the Qiagen RNA minikit following AVL inactivation. Infection of Vero cells 

was conducted at Containment Level 3 at Public Health England, Porton Down. RNA 

samples were treated with Turbo DNase (Invitrogen). 

 

Primer design. The SARS-CoV-2 reference sequence from NCBI (NC_045512.2) 

was aligned to 16 SARS-CoV-2 sequences published on GISAID. Primer binding sites 

were chosen according to defined conserved regions after alignment. Primers, 

available by request, were chosen that sequentially amplified roughly 1000 bp with an 

~200 bp overlapping region. 

 

RT-PCR. SuperScript IV was used to generate single strand cDNA using random 

hexamers. The primer sets were used to generate 30 amplicons from the cDNA. The 
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reaction conditions were; denaturation at 98oC for 30 sec followed by 35 cycles of 10 

sec denaturation at 98oC, 30 sec annealing at 66oC, and then 50 sec of extension at 

72oC. A final extension step was done for 2 min at 72oC. 

 

SISPA. For round A, RNA was reverse-transcribed with SuperScript IV Reverse 

Transcriptase (Invitrogen) using Sol-PrimerA (5′-GTTTCCCACTGGAGGATA-N9-3′), 

followed by second-strand DNA synthesis with Sequenase DNA polymerase 2.0 

(Invitrogen). For the round B reaction, Round A-labeled cDNA was added to the Q5-

high-fidelity 2xmaster mix (NEB) per sample with Sol-PrimerB (5′-

GTTTCCCACTGGAGGATA-3′). 

 

Library preparation for MinION sequencing. PCR products were purified using 

AMPure XP beads (Beckman Coulter [A63880]). NEBNext FFPE DNA Repair Mix 

(M6630) and NEBNext End repair/dA-tailing module (E7546) reagents were added to 

the PCR mix. Following end-repair of the amplicons, ligation buffer, NEBNext Quick 

T4 ligase (E6056) and Adapter mix (AMX [ONT]) were added. Amplicons with ligated 

adapters were then quantified on the qubit fluorometer before loading onto the flow 

cell. One flow cell was used for each sample with no multiplex. 

 

EPI2ME (WIMP). Fast5s generated by the MinION sequencer were base called into 

fastqs by Guppy. Fastq files were uploaded to Oxford Nanopore Technology’s (ONT's) 

cloud-based pipeline EPI2ME (WIMP rev. 3.2.2) workflow to retrieve information about 

the identity of the nucleic acid in the clinical samples. 
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Results 

To identify and sequence SARS-CoV-2 two complementary techniques were used. 

First, an amplicon-based system and the second, a metagenomic approach, that can 

also be used to assess the background microbiome. For the amplicon-based system, 

a series of primers were designed such that the SARS-CoV-2 genome could be 

amplified in appropriately 1000 base paired sequential fragments, with an 

approximately 200 base pair overlap to allow sequence assembly from the amplicon 

data (Fig. 1A). The primers were selected on the basis of conserved regions in the 

SARS-CoV-2 genome based upon an initial deposition of 17 genomes. The rationale 

to generate short amplicons was also to allow the selection of primer pairs that could 

amplify longer segments should one set of primers fail on a particular sample. To test 

whether the primers could generate amplicons, RNA was purified from Vero cells that 

had been infected with an isolate of SARS-CoV-2 (MT007544.1 GenBank). This RNA 

was used as a template for cDNA synthesis followed by PCR using the conserved 

primers. This generated 30 amplicons covering the SARS-CoV-2 genomes and these 

were sequenced using MinION (Fig. 1B). The amplicon-based approach was then 

evaluated on nasopharyngeal swabs collected from two patients with COVID-19. 

Three samples were used - Patient 1 – Days 1 and 3 and Patient 2 – Day 1. Amplicons 

were generated and sequenced using the MinION with reads mapping to SARS-CoV-

2 (Fig. 1C). The data indicated that potentially some amplicons were potentially more 

abundant than others, but nevertheless resulted in identification and sequencing of 

the viral genome. 

 

To assess the respiratory microbiome, and to provide an alternative approach to 

identify SARS-CoV-2 in a clinical sample, a metagenomic approach was used. This 
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made no prior assumptions as to what nucleic acid was present in the RNA extracted 

from the oropharyngeal swabs. Here, amplification by sequence-independent single 

primer amplification (SISPA) was used. This had previously been used to identify 

dengue, chikungunya, influenza and Lassa fever viruses in clinical samples [7-9]. To 

provide an internal control, samples were spiked with nucleic acid from a plasmid 

expressing the VP35 RNA from Ebola virus (EBOV) [10]. Samples were not bar coded 

and each sample was processed on a single flow cell. Sequence reads were mapped 

to retrieve information about the identity of the nucleic acid in the clinical samples. The 

total reads classified were 8,698,559, 9,890,327 and 5,849,966 for Patient 1 – Day 1, 

Patient 1 – Day 3 and Patient 2 – Day 1, respectively. Unsurprisingly, the majority of 

reads mapped to the human genome with 6,833,956, 9,661,370 and 5,422,187, for 

Patient 1 – Day 1, Patient 1 – Day 3 and Patient 2 – Day 1, respectively (data not 

shown). Nucleic acid mapping to the spike-in was identified in each sample and was 

correctly identified by the mapping software, providing confidence in the approach 

(data not shown). Nucleic acid mapping to bacteria was also identified and was used 

to identify at both the genus level (Fig. 1D) and species level as well. For example, in 

in Patient 2 – Day 1, 58,645 reads were mapped to Fusobacterium periodonticum. 

Reads mapping to viruses could also be identified and these included SARS-CoV-2 

and human betaherpes virus 5 (human cytomegalovirus) (Fig. 1D). Coverage of the 

SARS-CoV-2 genome in the three samples was not uniform (Fig. 1E) and 

unsurprisingly the read depth was much lower than with the amplicon-based approach 

(Fig. 1C). 
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Discussion 

This work demonstrates that amplicon-based sequencing is feasible for the study of 

the SARS-CoV-2 genome in samples from patients. Although not formally timed, we 

estimate that using this approach coupled to MinION based sequencing, then genomic 

information can be obtained within ten hours. One of the limitations is working at higher 

containment. We would note that our base calling used Epi2ME and artefacts are often 

observed by Kraken. BLAST analysis provides greater accuracy but takes longer. 

Sequencing of viral genomes during outbreaks provides much needed information in 

terms of viral adaptation [4] and informs molecular epidemiological studies [11]. Due 

to recombination in coronaviruses (e.g. [12, 13]) current diagnostics may not remain 

fit for purpose and therefore metagenomic approaches provide independent 

verification of the presence of viral genomes as well information on the underlying 

microbiome – which may contribute to severe disease in COVID-19. One limitation of 

the metagenomic approach is the limit of detection and in this study, not all of the 

SARS-CoV-2 genome was sequenced using the SISPA approach. For diagnostic 

purposes, RT-qPCR generally is more sensitive, provided that the primer binding sites 

remain conserved in the pathogen being tested. In this case, RT-qPCR diagnostic 

reagents can be revaluated based upon using sequencing as sentinel for these events. 

Determining the background microbiome in near real time can inform potential 

treatment strategies in the event specific co-infections are identified. Future efforts will 

quantify the limits of detection using genome sequencing by these approaches. 
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Fig. 1. (A) Schematic diagram of the SARS-CoV-2 genome with the position of the 

amplicons illustrated above. (B). Validation and sequence read depth analysis of 

amplicons generated from RNA isolated from Vero cells infected with SARS-CoV-2. 

(C). Sequence read depth analysis of amplicons generated from RNA isolated from 

patients with COVID-19. Blue is Patient 1, Day 1, orange is Patient 1, Day 3, and grey 

is Patient 2, Day 1. (D). Proportion of reads for each patient mapping to SARS-CoV-2 

and other identified nucleic acids for bacteria, virus and fungi using a metagenomic 

approach. (E). Location of mapped sequences on the SARS-CoV-2 genome using the 

metagenomic approach, Blue is Patient 1, Day 1, orange is Patient 1, Day 3, and grey 

is Patient 2, Day 1. 
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