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ABSTRACT 

 

Objectives – To assess the causal relationship of different health conditions in childhood and 

adolescence with educational attainment and school absence.  

 

Design – Longitudinal observational study and Mendelian randomization (MR) analyses. 

 

Setting – Avon Longitudinal Study of Parents and Children (ALSPAC), a population sample of children 

from South-West England born in 1991-1992. 

 

Participants – 6113 unrelated children with available GCSE records and genetic data (50% female).  

 

Exposures – Six common health conditions with known genetic markers measured at age 10 

(primary school) and 13 (mid-secondary school). These were: symptoms of Attention-Deficit 

Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), depression, asthma, migraines and 

BMI. Genetic liability for these conditions and BMI was indexed by polygenic scores. 

 

Main outcome measures – Educational attainment at age 16 (total GCSE and equivalents points 

score), school absence at age 14-16. 

 

Results – In multivariate-adjusted observational models, all health conditions except asthma and 

migraines were associated with poorer educational attainment and greater school absence. 

Substantial mediation by school absence was seen for BMI (e.g. 35.6% for BMI at 13) and migraines 

(67% at age 10), with more modest mediation for behavioural and neurodevelopmental measures of 

health. In genetic models, a unit increase in genetically instrumented BMI z-score at age 10 

predicted a 0.19 S.D. decrease (95% CI: -0.28 to -0.11) in attainment at 16, equivalent to around a 

1/3 grade difference in each subject. It also predicted 8.6% more school absence (95% CI:1.3%, 

16.5%). Similar associations were seen for BMI at age 13. Consistent with previous work, genetic 

liability for ADHD predicted lower educational attainment, but did not clearly increase school 

absence. 

 

Conclusions – Triangulation across multiple approaches supported a causal, negative influence of 

higher BMI on educational attainment and school absence. Further research is required to 

understand the mechanisms linking higher BMI with school absence and attainment. 

 

 

  



What is already known on this topic 

• On average, children with common health conditions have worse educational attainment  

• It is unclear whether all health-attainment and health-absenteeism associations are causal, 

or reflect confounding by social and economic circumstances 

• We do not know how much health-related school absenteeism contributes to these 

associations  

What this study adds 

• Results support a negative influence of high BMI in secondary school on educational 

attainment (GCSEs) and absenteeism  

• Absenteeism substantially mediated BMI-GCSE associations, suggesting a target for 

intervention  

• There was less evidence for causal effects of Autism Spectrum Disorder, depressive 

symptoms, asthma or migraines on attainment and absenteeism 

• Contribution of absenteeism to ADHD-GCSE associations was modest, suggesting 

interventions should target other mechanisms  

  



INTRODUCTION 

Good health in childhood is positively associated with later socioeconomic outcomes including 

educational attainment (1-3), but the extent to which associations are causal is unclear. Health in 

childhood also shows consistent social patterning by family background, with worse health for less 

advantaged groups(4). This implies that health may play a key role in intergenerational transmission 

of socioeconomic (dis)advantage(5), suggesting an avenue for potential  intervention(4). It also 

brings challenges for identification of causal mechanisms linking health to socioeconomic outcomes 

over the life-course(6), as socioeconomic circumstances in childhood may influence both attainment 

and health independently. This paper focuses on the impact of child and adolescent health on 

educational attainment: an aspect of socioeconomic position usually established in early adulthood, 

with extensive evidence of protective effects for later health(7).  

Childhood and adolescent health encompasses behavioural, emotional and physical aspects, across 

which both the size of effect on educational outcomes and the pathways involved may differ(8). For 

example, Attention-Deficit Hyperactivity Disorder (ADHD) is related to lower educational 

attainment(9-11), with mixed evidence for depressive symptoms (12-17). There is marked variability 

in academic ability observed for children with Autism Spectum Disorder (ASD)(18, 19). Evidence is 

mixed for the effect on attainment of body weight(20-26), asthma(27-31) and rarer health 

conditions(27-29, 32, 33). School absence may play a role in the link between health and education 

but its contribution likely differs by condition(34-36). Migraine(30, 37) and depression appear linked 

to school absence(38), but evidence is mixed for asthma(27, 31, 35), ADHD (28, 39), ASD(28, 40) and 

obesity(41-44). Retrospective reporting of absence by children or parents(45) means estimates from 

previous studies may be affected by recall bias and measurement error(31). 

Relationships of health, school absence and educational attainment are vulnerable to confounding. 

For instance, associations of obesity with social disadvantage(46) and poorer psychological 

health(47) may confound BMI-attainment associations(23), since disadvantage and poor 

psychological health may influence weight and attainment independently. Reverse causation may 

exaggerate associations with mental health(17). Approaches have been developed to circumvent 

these problems by using genetic variants (single nucleotide polymorphisms, or SNPs) associated with 

health conditions as proxies or instrumental variables. Since SNPs are assigned at conception, 

associations with SNPs cannot be due to reverse causation or classical kinds of confounding(48). 

Such studies support a causal influence of ADHD on educational attainment(9, 49), but report 

inconclusive effects for BMI(25, 26).  Results for ASD have been null(49), or pointed to effect 

heterogeneity, with a positive relationship between ASD and attainment for high-functioning 

subgroups(50). Fewer studies have examined depression with null results reported(51). These 

genetic methods have not yet been applied to the influence of asthma or migraines on attainment.  

To further understand these relationships, we applied a range of genetic methods to compare the 

impact of six aspects of childhood and adolescent health on educational attainment: ADHD, ASD, 

depressive symptoms, BMI, asthma, and migraines. Causality was explored in several ways. In an 

English birth cohort(52), we assessed associations of attainment with polygenic scores representing 

genetic liability for health conditions, and used polygenic scores as instrumental variables (one-

sample Mendelian randomization). We explore mediation of associations by school absence and 

avoid the recall bias likely to have affected previous studies by using linked records for absence and 

educational attainment. We consider health in late primary school (approximately age 10) and mid-

secondary school (approximately age 13), to examine whether influence of health on attainment 

varies with age. Finally, we conducted two-sample Mendelian randomization for the same 

conditions and educational attainment in independent adult samples. 



METHODS 

One and two-sample Mendelian Randomization 

To overcome confounding and reverse causality, a range of approaches have been developed which 

use genetic variants (typically SNPs) associated with health. Multiple SNPs associated with a health 

condition can be combined into a polygenic risk score (PGS) representing genetic liability for a 

condition. Relative to single SNPs, this improves statistical power by explaining more variation in a 

health exposure of interest. In one-sample Mendelian randomization, an effect size for the causal 

influence of the exposure is estimated by using the PGS as an instrumental variable for the exposure 

in a two-stage least-squares model. Two-sample Mendelian randomization, in contrast, requires only 

summary-level results from genome-wide association studies(GWAS)(53). This compares 

associations of individual SNPs with an exposure (here, a health condition) on one hand and an 

outcome (here, educational attainment) on the other. If the exposure-outcome relationship is 

causal, the same SNPs should associate with both. 

Study participants 

Individual-level data was obtained from the Avon Longitudinal Study of Parents and Children 

(ALSPAC), a birth cohort of children born in the south-west of England with estimated birth dates 

between April 1991 and December 1992. Inclusions and exclusions for this analysis are shown in 

Supplementary Figure 1. The total ALSPAC sample comprised 15,454 pregnancies, with 14,901 

children alive at 12 months. Questionnaire and clinic data were obtained from mothers and children 

from pregnancy onwards, with detailed description given elsewhere(52, 54). After excluding related 

individuals, there were 7856 unrelated ALSPAC participants with genetic data, of whom 6113 had 

GCSE records. Multiple imputation with chained equations (m=50) was used to impute missing 

health measures (Supplementary Table 1), absences and covariates.  

Measures 

Health in childhood and adolescence 

ADHD symptoms were based on the hyperactivity subscale of the Strengths and Difficulties 

Questionnaire (SDQ-HI), as completed by mothers, when children were aged 9 and 13. The SDQ is a 

validated screening tool for psychiatric disorders in the relevant age group(55). Depressive 

symptoms were measured using the short-form Mood and Feelings Questionnaire (MFQ)(56) 

completed by children at ages 10 and 13. For autism, the parent-reported Social Communication 

Disorder Checklist (SCDC) at ages 10 and 13 was used to derive a continuous measure of autistic 

social traits (57). BMI (in kg/m2) was based on measured height and weight from clinic assessments 

at ages 10 and 13. From this, measures were standardized to the 1990 UK Growth Reference 

according to gender and age. Resulting z-scores, representing S.D. difference from the reference 

mean, were included in models as continuous variables. Presence of asthma in the past 12 months 

was defined using mother’s reports of diagnoses, medication use and wheezing symptoms, at ages 

10 and 13. At age 10, mothers were asked if their children had experienced migraine, from which a 

binary indicator was derived. A later measure of migraine was not available. Please note that the 

study website contains details of all the data that is available through a fully searchable data 

dictionary and variable search tool:  http://www.bristol.ac.uk/alspac/researchers/our-data/ 

 

Educational attainment, school absence, and covariates 



Information on educational attainment and school absences came from linkage to the National Pupil 

Database (NPD). We consider educational outcomes at the end of year 11 (end of Key Stage 4), when 

most participants were aged 16 and which marked the end of compulsory education in the UK at the 

time. In all analyses, standard errors were clustered by school. We used the total GSCE and 

equivalents points score, based on a pupil’s best 8 GCSE or equivalent subjects. This is a continuous 

measure ranging from 0 to 540. One grade difference in one GCSE subject equates to 6 points, such 

that 5 grade Cs is worth 200 points and 8 A*s worth 464. A small number of scores above 464 reflect 

pupils who took AS levels early. More information is available from the Department of 

Education(58). School absence data was available for the academic years 2006-7 through 2008-9, 

corresponding to different school years for participants enrolled in ALSPAC (birth dates span 21 

months).  Records covered early September until the end of May. Information on absences was 

therefore available across the sample on absences in year 11, for the majority of participants on 

absences in year 10, but only for a minority in year 9 (Supplementary Table S1).  We therefore 

considered school absence during the two years of key stage 4 (years 10 and 11), by imputing each 

separately and calculating an average post-imputation.  

Polygenic scores 

ALSPAC children were genotyped using the Illumina HumanHap550 platform, and standard quality 

control procedures applied. Individuals were excluded for gender mismatches, minimal or excessive 

heterozygosity, disproportionate individual missingness (>3%) and insufficient sample replication 

(IBD<0.8). Individuals with non-European ancestry were removed. SNPs with a minor allele 

frequency of <1%, call rate of < 95% or evidence of Hardy-Weinberg disequilibrium (p-value<5×10
-7

) 

were removed. Cryptic relatedness was measured as proportion of identity by descent (IBD>0.1). 

Imputation was performed using Impute v2.2.2 to the 1000Genomes reference panel, and SNPs with 

poor imputation quality (infoscore<0.08) removed.  

GWAS were used to identify SNPs associated with ADHD, ASD, depression, asthma and migraine, and 

with BMI. We obtained SNP associations for ADHD(59), depression(51), ASD(50), asthma(60) and 

migraine(61) from GWAS including child and adult-onset conditions, since GWAS specifically of child-

onset conditions were unavailable. For BMI, we used genetic variants associated with adult BMI 

from the most recent and largest BMI GWAS(62). A GWAS of BMI in children exists, but ALSPAC 

comprised a substantial component of the discovery sample(63), and such sample overlap can cause 

bias (64). When choosing SNPs to include in the polygenic scores, the conventional threshold of 

genome-wide significance of p<5×10
-8

 was applied, except for ASD. As too few SNPs meet that 

threshold to permit meaningful analysis, a more liberal threshold of p<5×10-7 was used. Within the 

set of SNPs which were available in ALSPAC and had passed standard quality control, we removed 

SNPs which were not independent (linkage disequilibrium clumping threshold r2=0.01, 

distance=10,000kb). Polygenic scores were calculated in PLINK 1.9 by summing each individual’s 

number of trait-increasing alleles. These were weighted by the regression coefficient for the allele’s 

association with the trait from the relevant GWAS – so that genetic variants with greater effects 

contributed more to the scores – and then standardized. Details of the GWAS and SNPs used are 

provided in Supplementary Figure 1, and Supplementary Tables S2 and S3. 

Statistical analysis  

Analyses in ALSPAC  

Analyses were conducted using STATAv15. The proportion of school sessions missed ranged from 0 

to 0.79 (Table 1, Supplementary Table S4) with considerable skew, so for analysis was log- 



Table 1: Descriptive Characteristics of Analytic Sample (N=6113)
a 

 
mean SD min max 

Maternal age 28.27 4.68 15.00 44.10 

SDQ hyperactivity scoreb at 10 (114 months) 0.04 1.01 -3.12 4.36 

SDQ hyperactivity scoreb at 13 (156 months) 0.03 1.00 -3.27 4.82 

MFQ scorec at 10 (127 months) 0.01 0.98 -3.09 5.98 

MFQ scorec at 13 (154 months) 0.33 1.16 -3.68 4.28 

SCDC scored at 10 (120 months) 0.07 1.02 -3.11 4.32 

SCDC scored at 13 (156 months) 0.00 1.01 -3.43 5.17 

BMIe z-score at 10 (127 months) 0.05 1.02 -3.21 5.98 

BMIe z-score at 13 (154 months) 0.41 1.20 -3.85 4.56 

GCSE capped points score 332.34 87.36 0.00 540.00 

Percent of sessions absent, year 11 (age 15-16)f 7.80 8.95 0.00 98.59 

Percent of sessions absent, year 10 (age 14-15)f 7.10 8.28 0.00 90.39 

Percent of sessions absent, key stage 4 (age 14-16) f   7.45 7.57 0.00 79.29 

  
% 

gender male 49.99 

 
female 50.01 

maternal educational qualifications CSE or less 16.81  

 
vocational 9.49  

 
O level  36.00  

 
A level  24.29  

 
Degree  13.41  

maternal housing tenure in pregnancy mortgage/owned outright 80.07  

 
council rented 10.44  

 
private/other rented 6.89  

 
other 2.60 

maternal parity at child’s birth 0 44.90 

 
1 36.16 

 
2 14.00 

 
3+ 4.94 

mother smoked during pregnancy no 76.91 

 
yes 23.09 

migraines at 10 no 95.16 

 
yes 4.84 

asthma at 10 (128 months) no 87.90 

 
yes 12.10 

asthma at 13 (157 months) no 88.05 

 
yes 11.95 

school typeg at key stage 4 (age 14-16) mainstream state 93.13  

 
independent 5.45  

 
other 1.42 

aAnalysis was restricted to unrelated ALSPAC participants with genetic data and linked GCSE records, N=6,113. 

Missing data in covariates, exposures and school absence was imputed using multiple imputation by chained 

equations. 
 b

SDQ=Strengths and Difficulties Questionnaire, for ADHD symptoms. 
 c
MFQ=Mood and Feelings 

Questionnaire, for depressive symptoms. dSCDC=Social Communication Disorder Checklist, for autistic social 

traits. eUsing 1990 UK Growth Reference. Values represent standard deviation difference from age- and 



 

transformed after adding a constant of 0.01. Coefficients for absence are therefore expressed in 

terms of percentage change. For each aspect of health at age 10 and 13, linear regression was used 

to examine associations with GCSE points score and with logged school absence. All analyses were 

adjusted for gender and a number of potential confounders relating to family socioeconomic 

circumstances at birth: maternal age (in years) and parity, maternal education (from highest 

qualification, classified as none, CSE, vocational qualifications, O-level, A-level, or university degree), 

maternal smoking during pregnancy (yes/no), and maternal housing tenure (owner-occupier/council 

rented/private or housing association rented/other). Sensitivity analyses stratified by school type, 

restricting in turn to children attending mainstream state schools, independent (fee-paying) and 

other schools (community special schools, pupil referral units, further education colleges). Mediation 

analysis using STATA’s paramed package considered associations of health with GCSE points score 

via school absence (the indirect effect) and unexplained by school absence (the direct effect). 

Models were run separately within each imputed dataset and estimates combined across 

imputations.  

Linear regression was used to examine associations between each of the polygenic scores with GCSE 

points score and with school absence. Genetic models were adjusted only for gender and 20 

principal ancestry components. With a valid instrument, adjustment for confounders of 

observational associations is not necessary, and can introduce bias if those factors were not included 

in the GWAS used as the source of the gene variant-exposure associations(65). Where there was 

evidence of an association and the polygenic scores were shown to be sufficiently strong 

instruments (first-stage F-statistics >10), one-sample MR analyses were run using each of the 

polygenic scores as an instrument for the corresponding measured health condition at age 10 and 

13. A concern in MR studies is pleiotropy, which can bias exposure-outcome causal estimates. This is 

when alleles related to the exposure (e.g. BMI) influence the outcome (e.g. GCSEs) via pathways 

other than through the exposure. Validity of instruments was checked using Stata’s MRRobust 

package. This applies two-sample MR methodology to the SNPs included in each PGS, producing MR-

median, MR-modal and MR-Egger estimates(66). 

Summary-level Mendelian Randomization  

Using the TwoSampleMR package in R(67), summary-level MR analyses were performed to assess 

the causal effect of asthma, migraine and BMI on educational attainment. SNPs associated with 

educational attainment came from the most recent GWAS of years of schooling in European-

ancestry individuals(68), except for BMI where an earlier education GWAS was used (69) to avoid 

sample overlap which could bias results. Details of the GWAS used MR are given in Supplementary 

Tables 1 and 2.  

  

gender-specific reference mean. fAbsences were analysed as the number of half-day sessions recorded as 

missed, divided by the number of sessions on which data was available. For most participants, data was 

available each year for between 280 and 320 sessions, not the 390 of a standard school year, as records cover 

early September until the end of May. A small minority (2.3% in year 10, 4.8% in year 11) had data 

corresponding to fewer sessions. gMainstream state schools: community, voluntary controlled or aided, 

foundation, city technology college, academy. Other schools: community special, pupil referral unit, further 

education college 



RESULTS 

Socioeconomic background, GCSEs, and school absence 

GCSEs scores and school absences varied by gender and by child’s socioeconomic background 

(Supplementary Table S5). Girls’ GCSE capped points scores were on average higher than boys: 345.6 

(95% CI: 338.7, 352.5) compared to 319 (95%CI: 311.0, 327.1), but school absence was also slightly 

higher for girls: 7.8% (95%CI: 7.1%, 8.4%) compared to 7.1% (95% CI: 6.6%, 7.7%) for boys. Maternal 

education was positively associated with attainment, and negatively associated with school absence. 

Children whose mothers had a degree had an average GCSE point score of 393.2 (95% CI: 387.2, 

399.1) and average school absence of 6.0% (95% CI: 4.6%, 7.4%). For children whose mothers had a 

Certificate of Secondary Education or no qualifications, average GCSE points score was 275.6 (95% 

CI:266.9, 284.4) and average school absence 9.8% (95% CI: 9.0%,10.7%). As expected, GCSE points 

scores were negatively associated with school absence. For example, adjusted for gender, an 

increase in absence corresponding to an extra day/year at key stage 4 was associated with -2.7 (-

3.3,-2.0) fewer GCSE points. 

Phenotypic models: health, GCSEs and school absence 

In phenotypic models (Figure 1, Table 2), all aspects of child and adolescent health were associated 

with GCSE points score except for migraines and asthma. All were associated with school absence 

(Figure 2, Table 3). Depressive symptoms at age 10 showed a considerably stronger association with 

GCSEs than depressive symptoms at 13 (GCSE points scores: -14.75; 95% CI: -17.45, -12.06 compared 

to -5.39; 95% CI: -7.93, -2.85 per SD MFQ score). Otherwise, associations did not differ substantially 

by age. In mediation analyses, associations between all aspects of health and educational attainment 

were mediated by school absence expect for asthma, where indirect and total effects went in 

opposite directions at age 10, and indirect and direct effects in opposite directions at 13 (Figure 3, 

Supplementary Table S6). Percent of associations mediated by absence varied, with the lowest for 

ADHD (6.1% at age 10, 7.9% at 13) and the highest for BMI (48.5% at age 10, 35.7% at 13) and 

migraine (67.4% at age 10). (Figure 3, Supplementary Table S4). Results were similar restricting to 

participants in mainstream state schools. For other school types, small numbers of participants led 

to imprecise estimates (Supplementary Tables S7 and S8).  

 

Table 2: Phenotypic associations: health in childhood and GCSE points score (range 0-540, 

mean=332.3, SD=87.4)
a 

  Health at age 10  Health at age 13  

Beta CI Beta CI 

          

Standardized values of SDQ-HI score
b
 -25.09 -27.89,-22.29 -27.75 -30.52,-24.97 

Standardized values of MFQ score
c
 -14.75 -17.45,-12.06 -5.39 -7.93,-2.85 

Standardized values of SCDC score
d
 -17.88 -21.15,-14.62 -21.16 -24.18,-18.15 

Migraines at age 10 -6.41 -19.31,6.49   

Asthma in past 12 months 2.08 -5.07,9.22 -1.17 -9.32,6.97 

BMI z-score
e
 -1.95 -3.88,-0.01 -3.70 -5.61,-1.78 

a

N=6113. Coefficients represent change in GCSE capped points score adjusted for gender, maternal education, 

maternal housing tenure, maternal age, maternal parity, whether smoked in pregnancy. 
b
SDQ-HI: Strengths and 

Difficulties Questionnaire hyperactivity subscale. 
c
Mood and Feelings Questionnaire. 

d
Social Communication 

Disorders Checklist..
e
Based on 1990 UK Growth Reference, values represent S.D. difference from age- and gender-

specific reference mean 
 



Table 3: Phenotypic associations: health at 10 and 13 to absenteeism at age 14-16
a 

 Health at age 10 Health at age 13 

% increase   CI % increase   CI 

          

Standardized values of SDQ-HI score
b
 5.02 2.43,7.69 7.61 4.89,10.39 

Standardized values of MFQ score
c
 5.10 2.6,7.65 6.24 3.97,8.57 

Standardized values of SCDC score
d
 6.25 3.56,9.01 9.25 6.59,11.98 

Mother report age 10 F10: child gets migraines 13.81 1.72,27.34   

Asthma in past 12 months  11.47 4.28,19.16 10.21 2.64,18.33 

BMI z-score
e
 2.87 0.98,4.80 4.05 2.24,5.90 

a

N=6113. Adjusted for gender, maternal education, maternal housing tenure, maternal age, maternal parity, whether 

smoked in pregnancy. Coefficients for log-transformed days were exponentiated to obtain % change.
 b

SDQ-HI: Strengths 

and Difficulties Questionnaire hyperactivity subscale. 
c
Mood and Feelings Questionnaire. 

d
Social Communication 

Disorders Checklist. Absenteeism in years 10 and 11: mean 7.5% of total sessions, S.D.7.8%, range 0-79.3%, median 4.4%. 

Coefficients above represent proportional change in absenteeism (0%=no change) with presence of the health condition, 

or per S.D. increase in continuous exposures. 
e
Based on 1990 UK Growth Reference, values represent S.D. difference from 

age- and gender-specific reference mean 

 

Genetic models: health, GCSEs and school absence 

Predictive power of the polygenic scores varied considerably by health condition. The proportion of 

variance explained by the scores (R2 or pseudo-R2 for binary exposures) was 7.4% and 7.7% for BMI 

at 10-11 and 13, respectively, but less than 1% for migraine and asthma, and less than 0.1% for 

ADHD, ASD and depressive symptoms (Supplementary table S9). Tests for instrument strength 

(Supplementary Table S7) confirmed the BMI PGS could be used to instrument BMI z-scores, but the 

other PGSs could not be used as instruments. 

For ADHD and BMI, higher values of the polygenic scores predicted lower GCSE points (Table 4, 

Figure 4). Specifically, each SD increase in the genetic liability for ADHD corresponded to a decrease 

of 2.70 (95% CI: -4.83, -0.58) GCSE points. A one SD increase in the BMI genetic score corresponded 

to a decrease of 5.37 (95% CI: -7.78, -2.96) GCSE points and a 2.70% (95% CI: 0.58%,4.86%) increase 

in school absence. Using the polygenic score for BMI as an instrumental variable showed that, for 

each unit increase in BMI z-score at age 10, GCSE points scores were 17.01 lower (95% CI: -24.76,-

9.28) and absences were 8.60% greater (95% CI:1.27%, 16.47%). For each unit increase in age- and 

gender-standardized BMI at age 13, GCSE points scores were 16.12 lower (95% CI: -23.43, -8.81) and 

absences were 8.13% greater (95% CI: 1.22%, 15.52%). 



 

Results were similar restricting to participants in mainstream state schools, while small numbers of 

participants again led to imprecise estimates for other school types (Supplementary Table S10).  

Tests of instrument validity applying two-sample methodology in ALSPAC (Supplementary Table S11) 

were consistent with main results, and there was no evidence of bias due to pleiotropy for 

associations with GCSEs. There was evidence of pleiotropy for effect of BMI on absenteeism (MR-

Egger intercept 0.004, p=0.02), but additional SNP-specific checks(70) could not identify particular 

SNPs responsible (Supplementary Table S12). Results did not differ using a BMI PGS excluding 24 

SNPs identified as outliers in Two-Sample MR (Supplementary Table S13). 

Results of two-sample MR analyses using published GWAS for educational attainment (years of 

schooling) were broadly consistent with results from ALSPAC (Table 5). Previous two-sample MR 

analysis reported evidence of an effect of ADHD(49) but not ASD(49) or depression(51). Our analyses 

supported an influence of BMI, with a one-unit increase in BMI associated with 0.16 (p<0.001) and 

0.11 (p<0.001) fewer years of schooling in IVW and weighted median models respectively.  These 

models also support a negative influence of asthma on years of schooling (-0.02, p<0.001 and -0.02, 

p=0.01 respectively). There was little evidence of a causal impact of migraine. For BMI, the MR-Egger 

constant (-0.002, p<0.001) indicated an influence of pleiotropy. Outliers were therefore identified by 

comparing SNP-specific estimates with the overall IVW estimate, and analyses repeated with these 

SNPs excluded. This did not change conclusions (supplementary table S14). We also checked 

associations of these SNPs with other phenotypes but none stood out as clear confounders 

(supplementary table S14). 

Table 5: Results from Two-Sample Summary-level Mendelian Randomization
a
 

Exposure and Outcome GWAS Method N SNPs Beta
b
 se p 

Migraine (Gormley 2016)  

Years of schooling (Lee) 

Inverse variance weighted 29 -0.002 0.011 0.824 

Weighted median 29 0.016 0.010 0.090 

Weighted mode 29 0.018 0.011 0.113 

MR Egger 29 -0.014 0.029 0.619 

MR Egger - Intercept 29 0.001 0.002 0.654 

Asthma (Moffatt 2007) 

Years of schooling (Lee) 

Inverse variance weighted 8 -0.023 0.005 <0.0001 

Weighted median 8 -0.018 0.007 0.009 

Weighted mode 8 -0.013 0.014 0.396 

MR Egger 8 -0.042 0.038 0.313 

Table 4: Association of polygenic scores with GCSEs and absenteeism at age 14-16
a

  

  

GCSE 

points CI 

Absences: 

% increase CI 

          

Standardized values of ADHD PGS -2.70 -4.83, -0.58 -0.20 -2.13,1.78 

Standardized values of depression PGS 0.75 -1.75, 3.25 -0.80 -2.84,1.29 

Standardized values of ASD PGS -1.78 -3.84, 0.28 -0.55 -2.60,1.54 

Standardized values of migraine PGS -0.93 -3.04, 1.18 1.36 -0.630,3.39 

Standardized values of asthma PGS -0.66 -2.80, 1.48 1.15 -0.66,3.00 

Standardized values of BMI PGS -5.37 -7.78, -2.96 2.70 0.58,4.86 

          
a
N=6113. Adjusted for gender and PC1-PC20. GCSE points score: range 0-540, mean 332.3, S.D.87.4. 

Coefficients for absences represent proportional change in absenteeism (0%=no change) per S.D. 

increase in the polygenic score. 

 



MR Egger - Intercept 8 0.003 0.005 0.632 

BMI (Yengo 2018) 

Years of schooling (Okbay) 

Inverse variance weighted 945 -0.158 0.010 <0.0001 

Weighted median 945 -0.109 0.012 <0.0001 

Weighted mode 945 -0.032 0.031 0.306 

MR Egger 945 -0.042 0.028 0.137 

MR Egger - Intercept 945 -0.002 0.000 0.000 
aConducted in MR Base with the TwoSampleMR package. Details of GWAS used in supplementary table 1 
bBetas from Two-Sample MR represent change in the outcome (years of schooling) per unit increase in BMI, 

or per unit increase in log-odds of having asthma or migraine 

 

DISCUSSION 

In phenotypic analysis, all aspects of adverse health at ages 10 and 13 predicted greater school 

absences between age 14 and 16, and all aspects of adverse health except asthma and migraines 

predicted lower educational attainment at 16. Lack of associations of asthma and migraine with 

GCSEs may reflect binary measures unable to capture the full range of symptoms, or 

misclassification of these exposures as diagnosis can occur later. However, these associations are 

vulnerable to reverse causation and residual confounding by family- and individual-level 

characteristics not captured by covariates. In line with previous work in ALSPAC(9), polygenic scores 

representing genetic liability for ADHD were associated with worse GCSEs, but they were not 

associated with greater school absence. Polygenic scores for higher BMI were associated with both. 

Models using the PGS to instrument BMI supported these findings, and results shown to be robust to 

exclusion of outlier SNPs identified from Two-Sample MR. MR analyses using ALSPAC found some 

evidence of pleiotropy in BMI-absenteeism associations. However, we could not identify individually 

pleiotropic SNPs. SNP-specific estimates were imprecise, and mechanisms should be explored in 

samples large enough to investigate SNP-specific pathways more fully. Results from two-sample 

summary-level Mendelian randomization also supports a negative causal impact of higher BMI on 

educational attainment, despite the exposure and outcome being measured in individuals who were 

considerably older than ALSPAC participants. Results indicate that, for BMI, associations with 

attainment and absenteeism do not reflect only confounding. That IV coefficients were larger in 

magnitude than OLS coefficients for the (negative) influence of BMI on GCSEs may point to an 

offsetting mechanism causing suppression of effects in observational models. In UK children, both 

thinness and obesity are associated with deprivation(71), and a nonlinear relationship between BMI 

and socioeconomic hardship could lead to underestimation of the impact of high BMI on educational 

attainment. IV estimates could also be inflated due to family-level processes, such as the influence of 

parents’ genotype on offspring via environmental pathways(72) which may bias MR estimates based 

on samples of unrelated individuals(73). 

A key strength of this study is triangulation across several methodological approaches to investigate 

if associations are causal. Negative associations of depressive symptoms at age 12(74), ADHD 

symptoms in preschool(75) and obesity at 11 and 16 with GCSEs have been previously demonstrated 

in the ALSPAC cohort(21). Our results support a causal interpretation of the latter two. They are 

consistent with studies into educational impact of ADHD and depression using within-sibling 

comparison (10, 12), which addresses confounding at the level of the family, but not confounding at 

the level of the individual, such as by comorbidities. Two-sample MR suggested an influence of 

asthma, as well as ADHD and BMI, on educational attainment. Although not apparent in ALSPAC, this 

was observed in a recent study using UK Biobank participants, where genetically-instrumented 



asthma corresponded to a 17% lower probability (CI:-25.3% to -8.7%) of holding a degree(76). Since 

in the two-sample analysis educational attainment was measured in a substantially older 

population(68), the discrepancy could reflect a cohort effect, with better treatment available to 

younger cohorts, or asthma diagnoses made in adulthood.  

A limitation concerns the relative strength of the genetic instruments, which was considerably 

greater for BMI than other aspects of health. For ADHD, ASD and depression, the low proportion of 

variance in the phenotype explained by the polygenic scores limited the degree to which genetic 

methods could be meaningfully applied. For ASD, a more lenient threshold was required for SNPs 

included in the PGS. Thus, results of genetic models for ASD and depressive symptoms should not be 

interpreted as evidence of no effect. Rather, they indicate that associations may become clearer as 

the genetics of these conditions becomes better understood. Migraine could only be examined at 

age 10, but not 13, where effects may be greater. Recent evidence points to bias due to family-level 

processes even in genetic studies of BMI(73). It is possible that such effects have influenced our 

results, potentially overestimating BMI’s causal influence on attainment. Work in study populations 

with genetic data on related family members will be required to investigate this further. ALSPAC is 

not a national survey, and over-representation of more affluent groups and an under-representation 

of non-White minority ethnic groups(52) may limit generalizability of findings. A major strength was 

use of linked records for educational attainment and school absence, which meant associations were 

not influenced by recall bias. Results of mediation analysis are consistent with a recent UK study(45) 

reporting substantial mediation by parents’ reports of long-term absence (>1month) for any long-

term health condition and a measure of mental health. Our findings indicate such results do not only 

reflect recall bias, and add to current knowledge by also showing mediation by absence for high BMI. 

A limitation is that information on absence was restricted to age 14-16, and absence earlier in 

secondary school may also affect attainment. Mechanisms other than absenteeism linking health to 

attainment are likely to be complex. For BMI, research has pointed to negative neurocognitive 

correlates of obesity, but this largely cross-sectional literature has not established a causal 

influence(77) and the evidence from longitudinal studies is much less clear(78). Socially-mediated 

processes by which weight could influence educational outcomes involve weight bias by 

teachers(79) and the impact of bullying by peers(80). Further work using both genetic and 

qualitative approaches will be required to unpick these mechanisms. 

Conclusion 

In a UK-based cohort born in the early 1990s, our analyses supported a negative, causal influence of 

high BMI on educational attainment and school absence. Mediation analysis supported substantial 

mediation by absenteeism for BMI, and a smaller role for absenteeism in ADHD. The impact of 

health on attainment was not fully explained, highlighting the need for a better understanding of the 

social and biological mechanisms involved. 



Figure Legends 

Legend for figure 1: 

 

Legend for figure 2: 

 

Legend for figure 3: 

 

Legend for figure 4:  

N=6113. Educational attainment: GCSE capped points score, range 0-540, mean 332.3. Coefficients 

represent change in GCSE points with presence of the health condition, or per S.D. increase in 

continuous exposures. 

SDQ-HI: Strengths and Difficulties Questionnaire hyperactivity subscale, for ADHD symptoms; MFQ: 

Mood and Feelings Questionnaire, for depressive symptoms; SCDC: Social Communication Disorder 

Checklist, for autistic social traits. BMI z-score: based on 1990 UK Growth Reference, values 

represent S.D. difference from age- and gender-specific reference mean 

N=6113. Coefficients represent proportional change (1=no change) in year 10 and 11 absenteeism 

with presence of the health condition, or per S.D. increase in continuous exposures.  

Absenteeism at age 14-16: mean 7.5% of total sessions, S.D.7.8%, range 0-79.3%, median 4.4% 

SDQ-HI: Strengths and Difficulties Questionnaire hyperactivity subscale, for ADHD symptoms; MFQ: 

Mood and Feelings Questionnaire, for depressive symptoms; SCDC: Social Communication Disorder 

Checklist, for autistic social traits. BMI z-score: based on 1990 UK Growth Reference, values 

represent S.D. difference from age- and gender-specific reference mean 

N=6113. GCSE points: mean 332.3, S.D. 87.4, range 0-540. Absenteeism at age 14-16: mean 7.5%, 

S.D.7.8%, range 0-79.3%. Coefficients represent change in GCSE points with presence of health 

condition, or per S.D. increase in continuous exposures.  

SDQ-HI: Strengths and Difficulties Questionnaire hyperactivity subscale, for ADHD symptoms; MFQ: 

Mood and Feelings Questionnaire, for depressive symptoms; SCDC: Social Communication Disorder 

Checklist, for autistic social traits. BMI z-scores: based on 1990 UK Growth Reference, values 

represent S.D. difference from age-and gender-specific reference means. 

Percent of total effects mediated by absenteeism: SDQ-HI at 10: 6.1%, SDQ-HI at 13: 7.9%, MFQ at 

10: 10.9%, MFQ at 13: SCDC at 10: 10.8%, SCDC at 13: 12.6%, Migraines at 10: 67.4%, Asthma at 10: 

-175.8%, Asthma at 13: 277.1%, BMI z-score at 10: 48.5% 37.7%, BMI z-score at 13: 35.7% 

N=6113. Polygenic scores are standardized. GCSE points score: mean 332.3, S.D. 87.4, range 0-540. 

Absenteeism in years 10 and 11: mean 7.5% of total sessions, S.D.7.8%, range 0-79.3%, median 

4.4%. Coefficients represent proportional increase in school absence per standardized unit increase 

in PGS (1=no change) 



Legend for figure 5: 

 

  

Associations with health and with educational attainment were taken from GWAS listed in Table S1. 

A non-zero value for the MR-Egger intercept indicates pleiotropy (influence of SNPs on the 

outcome of interest not via the exposure). 
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