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Can the COVID-19 epidemic be controlled on the
basis of daily test reports?

Francesco Casella, Member, IEEE

Abstract—Short answer: not much, and only with an overly
cautious approach. The paper presents a suitable mathematical
model of the process for feedback control analysis and uses well-
known results from control theory to prove that suppression
strategies based on daily test reports can be effective if enacted
very early, while mitigation strategies, including trying to achieve
herd immunity, are likely to fail.

Index Terms—COVID-19, control theory, limitations of control.

I. INTRODUCTION

THE first outbreak of the COVID-19 [1] virus epidemic
took place in China, starting in December 2019, possibly

even earlier. The outbreak has since then spread to Western
countries, sparking a debate on what are the most appropriate
measures to control it.

The unique features of COVID-19 make this task particu-
larly challenging. The virus is new, so there is no previous
immunity in the general population, nor there are effective
vaccines or cures, except life support in the most critical cases.

On one hand, the mortality rate, although still uncertain,
is much lower than that of previous virus outbreaks such as
the MERS and SARS. Many infected people show little or no
symptoms, but are contagious and spread the virus to other
people that can develop much more serious symptoms.

On the other hand, a significant number of affected sub-
jects eventually develop severe bilateral pneumonia, which
requires hospitalization, oxygen ventilation, and intensive or
sub-intensive care, and that can lead to respiratory failure and
death if not treated properly. Such treatment is effective for
a majority of patients, particularly those less than 70 years
old, but has the potential to overwhelm and disrupt the public
health systems even as a modest fraction of the population
is affected at any point in time. Such a disruption could
leave most patients with severe pneumonia without crucial
life support, thus increasing the fatality ratio of COVID-19
by several times, and must thus be avoided at all costs to
avoid dire consequences [2].

Two approaches have been advocated to deal with the
outbreak. The first is suppression: rigorous, sometimes outright
draconian, social distancing measures are taken by national
governments, such as closing schools and public places,
issuing stay-at-home orders, closing non-essential industrial
and commercial activities, banning all kind of non-essential
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travel, etc. The goal in this case is to reduce the reproduction
number Rt, which is the number of persons an infectious
person infects on average, below unity, causing the outbreak
to subside. This approach was followed very thoroughly by
China, where the original outbreak developed [1], effectively
suppressing the epidemic in a couple of months time. This
approach was subsequently followed, albeit with much less
draconian restrictions, by most Western European countries,
in particular by Italy, who was hit first and hardest. Some
countries, most notably South Korea, adopted a suppression
strategy based on extensive tracking and early isolation of
infected people, in order to achieve the same effects of general
lock-down in a less socially disruptive way.

Although suppression has proven to be very effective, it
leaves open the question of what strategy to adopt once
the epidemic has been tamed, since it leaves most of the
population still vulnerable to the virus and thus prone to a
second, and possibly even more, wave(s) of disease outbreak.

The second approach is mitigation: the idea is to let the
epidemic run its course in a controlled way, eventually leading
to herd immunity, while at the same time ensuring that the
capacity of the public health system is not overcome. This
approach was initially spearheaded by the UK government [3],
which later changed the strategy to suppression after the public
release of report [2], which predicted 250,000 casualties in the
UK and 1.1-1.2 million casualties in the USA, if the mitigation
approach was adopted.

The goal of this paper is to provide fundamental insight on
this problem by adopting a control-theoretical analysis frame-
work. To this aim, a suitably simplified dynamic model of the
process of epidemic evolution is formulated, which is backed
by experimental evidence, alongside with a representation of
the decision-making process which is amenable to analysis by
means of basic control theory.

The main result of this analysis is twofold. On the one hand,
suppression strategies can be successful, if enacted promptly,
much earlier than one would do by looking at the latest daily
reports of reported cases and deaths, and with drastic enough
measures. On the other hand, mitigation strategies are likely
to fail, due to the combination of fast unstable dynamics, time
delays in measurements, and process uncertainty, and may
possibly be used as a last resort option only if special care
is taken to reduce those adverse features as much as possible.

The paper is structured as follows: Section II introduces
a control-oriented model of the epidemic during the time
interval when the above-mentioned policies are taken, based
on available daily data regarding the number of new cases. In
Section III, the two above-mentioned strategies are analysed in
terms of feedback control. Section IV draws conclusions from
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the control-theoretical analysis with some recommendations
for decision makers and future research.

II. MODELLING

A. Derivation of the model

The mathematical theory of epidemics was started almost
100 years ago by W.O. Kermack and A. G. MacKendrick in
their seminal paper [4], that introduced the SIR compartmental
model. Since then, extensions were developed in various
directions: by increasing the number of compartments, by
accounting for more phenomena to the model, by distinguish-
ing among different age cohorts, by adding spatial structure
and explicit modelling of contagion paths, and by considering
stochastic behaviour, see e.g. [5] for a comprehensive review.

Such models, see e.g. [2], [6], can be extremely detailed
and sophisticated, but all share a common feature: they are
not first-principle models in the sense of mechanical or
electrical system models, that are based on very precise and
highly repeatable physical laws, but rather crucially depend
on empirical coefficients that need to be tuned a posteriori on
relevant historical data. Their a priori predictive power is thus
inherently limited when dealing with COVID-19, for which
there is no prior experience, there are no effective drugs or
vaccines, and only social distancing methods are available to
limit the spread of the disease and its consequences.

This is clearly shown by the results of the study [7], which
tries to estimate the effect of various types of government
interventions onto the relative reduction of the reproduction
number Rt, by applying Bayesian methods to data from 11
European countries. The initial reproduction number R0 is
estimated to be well above 2, possibly even about 4 in some
countries. Hence, a reduction of the reproduction number by
at least 60-70%, possibly more, is necessary to avoid the
exponential growth of cases.

The main result of that study (see [7], Fig. 4) is that
lockdown leads to an average reduction of Rt by 50%, school
closure by 20%, other measures around 10%. However, 95%
confidence intervals on the reduction factors are huge, e.g.
10% to 80% reduction for lockdown, 0% to 45% reduction for
school closure, fundamentally undermining their usefulness for
predictive models. This problem is inherent to the requirement
of a large enough data set to be statistically significant, which
requires to put countries with very different social habits
and very different interpretations of the same measure (e.g.
lockdown) in the same data set, inevitably leading to very
large uncertainty in the estimation of their effects.

Furthermore, the quality and homogeneity of data used to
tune those models are often highly questionable: different
countries adopt different standards to determine who gets
tested and when, and possibly change them over time; some
data get lost or are reported with extra delay because of
clerical mismanagement; some countries or regions may report
lower numbers than real because of political pressures. Even
bona-fide reporting systems may be completely overwhelmed
and fail to provide reliable data. For example, the number
of additional deaths on municipal records during March 2020
with respect to March 2019 in some areas of Lombardy, Italy,

are two to four times larger than officially reported COVID-
19-related deaths.

It is then a compelling evidence that any public policy based
on such models cannot be applied blindly, but must be adapted
and corrected based on the observed outcome, which currently
means the daily reports of individuals that are reported positive
to swab tests. The crucial question is then: is feedback control
feasible at all in such a system?

In order to answer this question, a suitably simplified model
of the epidemic is used. This model is not accurate enough to
perform open-loop predictions, but is good enough to capture
the fundamental dynamics that is relevant for the success (or
failure) of the feedback policy. This kind of simplification is
a well-established common practice in control engineering.

The basic SIR model can be formulated as follows:
dS

dt
= −βIS

N
(1)

dI

dt
=
βIS

N
− γI (2)

dR

dt
= γI (3)

where N is the total population, S is the number of people
Susceptible to infection, I is the number of Infectious people,
that can transmit the disease to others, and R is the number of
Resistant people, which are immune to the disease because of
genetics, vaccination, or immunity acquired after contracting
the disease. β and γ are (possibly time-varying) parameters
that account for the likelihood of susceptible people to get
infected by infectious people, and of infectious people to
eventually recover and become Resistant, per unit time. Given
the short time spans involved (a few weeks) and the relatively
low mortality rate (a few percent at most), deaths and births
are neglected. Immigration and emigration are also neglected
for simplicity. In this case, adding the three equations leads to

d(S + I +R)

dt
= 0. (4)

Hence, the last equation can be replaced by an algebraic
equation, making the model effectively second-order:

R(t) = N − S(t) − I(t). (5)

The COVID-19 outbreak in Europe has several specific
features, that are relevant for the process modelling.

1) COVID-19 is a new virus, so the vast majority of the
world population has never been exposed to it yet.

2) No vaccine is available or expected in the near future.
3) No really effective cure has been found yet.
4) The ratio of deceased people over positive tested subjects

is strongly country-dependent, ranging from about 2%
(Germany), to 4% (China) to about 10% (Italy, France,
Spain).

5) The actual mortality ratio with respect to infected people
is expected to be much lower, since many subjects show
no or mild symptoms, do not report to hospitals, and
are thus not tested for the virus, but are still reportedly
contagious. The ratio α between positive tested subjects
and actually infectious subjects is uncertain, strongly
dependent on country-specific testing policies, probably
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around one order of magnitude. In the case of the Hubei
province outbreak it was estimated that α = 0.05 [8].

6) A certain fraction of officially reported infectious cases
(about 30% in Northern Italy) ends up with severe bilat-
eral pneumonia and respiratory difficulties, that require
hospitalization and may require non-invasive CPAP res-
pirators. A certain fraction σ, about 4% in Northern Italy,
eventually requires mechanical ventilation and intensive
care for a period from a few days to a couple of weeks to
sustain the patient’s life functions. Absent the possibility
of adequate life support, this fraction of patients is more
likely to die because of respiratory failure, increasing the
mortality rate dramatically.

7) The number of beds, equipment, and personnel which is
required to perform artificial ventilation on patients in
public health systems is based on normal needs of post-
surgery care, trauma care, and care of people with rare
but serious diseases like amyotrophic lateral sclerosis,
with relatively small extra capacity. The number Nic
of COVID-19 patients that can be admitted to intensive
and sub-intensive care is thus severely limited. While
the actual numbers vary widely by country, the typical
order of magnitude is 10−4N . During the very short time
span of the initial phases of the outbreak, this number
can be significantly expanded if timely action is taken,
but certainly not by orders of magnitude.

8) The initial dynamics of the outbreak is very fast, with
doubling times of reported cases of the order of 4 days.

9) The moment an infected patient becomes infectious is
still not fully clear. There are some indications that
patients, who later report severe symptoms and get
tested because of that, started becoming infectious two
days before the onset of fever. Furthermore, in most
countries people only get tested when they develop
serious symptoms, which can delay the moment they
are tested by many days. There is thus a time delay τt
of several days on average between the moment people
become infectious, and the moment they get tested. This
delay is critical for decision and control.

10) The testing process also introduces a delay in the pro-
cess. Although in principle it is possible to provide the
results of the test in a few hours, the average time to
report the results is normally much longer, because of
logistic constraints and because of limited availability
of analytical equipment. For example, the average time
required to obtain the test results in Lombardy during
the second week of March 2020 was about one week.
This delay τr is also critical for decision and control.

Assuming a worst-case scenario, which is required by the
precautionary principle given the number of lives at stake, Item
1 suggests to consider S(0) = N . The absence of a vaccine
(Item 2) implies there is no means to reduce the value of S and
increase the value of R by means of vaccination campaigns.
Item 3 allows us to consider γ as a constant, at least as a first
approximation.

Items 5-6, coupled to Items 1-3, are crucial from the
modelling point of view. When the health-care system capacity

limit is reached, standard recommended triage practice is to
give priority access to intensive care to younger and healthier
people, which are likely to recover more quickly (freeing up
the scarce resources for other patients), and who are likely to
live longer once recovered, while denying access to elderly
or otherwise frail individuals, see e.g. the recommendations
in [9]. It is the opinion of the author that enacting a public
policy with a significant risk of causing this outcome a priori
is morally unacceptable. Hence, any acceptable control policy
should ensure a priori that ασI < Nic at all times. With the
previously mentioned values, this implies

I <
Nic
ασ

≈ 0.05N (6)

It is then possible to assume a priori that I � S. Fur-
thermore, since the average time to heal from COVID-19 is
between two and six weeks, it is possible to assume that during
the first one-two months of the outbreak, the number R of
people who recover will be even smaller, so I + R � S.
Since I + R + S = N , one can assume in Eq. (2) that
S is nearly constant, and approximately equal to N . This
assumption decouples Eq. (2) from Eq. (1), leading to

dI

dt
= (β − γ)I. (7)

Assuming that also β is constant, which is reasonable as
long as no significant social distancing measures are taken by
the authorities, Eq. (7) has an exponential solution

I(t) = I(0)e(β−γ)t = I(0)ert, (8)

where r = β−γ. The doubling time Td of the infectious cases
is given by

Td =
log(2)

r
. (9)

Note that the initial reproduction number is R0 = β/γ,
estimated between 2 and 4 for COVID-19 [7].

In fact, Eq. (8) refers to the number of actual infectious
cases, which is largely unknown, see Item 4. However the
empirical ratio σ of patients requiring artificial ventilation
mentioned in Item 5 is referred to the much lower number
It(t) of cases that will eventually get tested positive to the
virus. Given that It(t) = αI(t), assuming the ratio α to be
constant, it is trivial to prove that also the dynamics of tested
positive cases It obeys the same differential equation

dIt
dt

= (β − γ)It, (10)

whose solution is

It(t) = It(0)e(β−γ)t = It(0)ert. (11)

The government interventions mentioned earlier (lockdown,
school closures, etc.) have the effect of changing the rate of
infection β, hence the actual reproduction number Rt = β/γ.
These measures are varied and can be applied progressively.

We can then assume that the time-varying parameter β is
in fact a function of a representative manipulated variable
u(t), where the value of u indicates the intensity of adopted
public health measures on a scale from 0 (no intervention) to
1 (full lockdown and isolation of all individuals). The β(·)
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function is thus monotonously decreasing from the value β0,
observed during the initial outbreak when no social restrictions
are enforced, to zero, corresponding to a complete lockdown.
Note that the latter situation is a bit unrealistic, since it
would require people to also isolate themselves within their
households.

If the effect of each public measure in terms of reduction
of β (or, equivalently, of Rt) was known exactly, the function
β(·) would be also known. However, considerable uncertainty
is involved in the estimation of the effects of different inter-
ventions [7], which then affects the knowledge of β(·).

The measured variable Ir(t) of the process is the number
of reported infected cases. As mentioned in items 8-9, the
overall measurement process of reported cases is subject to an
average delay of τt days between the onset of infectiousness
and the moment the swab test is taken, and by another delay
of τr days before the result of testing becomes available to
public authorities.

The control-oriented model of the virus outbreak dynamics
is thus the following:

dIt(t)

dt
=
[
β(u(t)) − γ

]
It(t) (12)

Ir(t) = It(t− τm), (13)

where β(u) is an uncertain function, γ is an uncertain constant
parameter, τt, τr are uncertain, possibly time-varying param-
eters, and τm = τt + τr is the overall measurement delay.

B. Validation and Tuning

The first validation of the model is based on data of the
Hubei province outbreak in China [1]. The outbreak initially
ran unchecked, until a very strict lockdown (strict stay-at-home
order, one person per building allowed to shop for food) was
imposed on Jan 23, 2020 in the city of Wuhan, followed by
other 15 cities of the province on the next day.

Assuming R0 = 3, the values β(0) = 0.26 days−1 and
γ = 0.0867 days−1 give the best fit of the model (red curve)
to the data, corresponding to r = 0.173 days−1 and Td = 4.0
days, see Fig. 1. The lockdown was applied on days 5 and 6,
marked by the arrows in the figure, and caused very clearly
a delayed effect. Assuming the reduction of β was equally
split on those two days, the best fit to the second part of the
transient is obtained by assuming an overall 89% reduction of
the initial value β0, and an overall delay τm = 11 days.

The second validation case is based on data from the
Lazio region in Italy, including Rome, reported by the Italian
Civil Protection Department [10], for the period Feb 24
through Mar 29, 2020. This dataset was picked because no
restrictions of any sort were applied until March 5 in that
region, while Northern Italy, were the outbreak started and
made most damage, many subsequent restrictions were applied
in sequence, making it difficult to identify their individual
effect; this also makes the analysis of the overall numbers
from Italy conceptually questionable, because it puts together
completely different situations. Starting from Mar 5, 2020,
schools, theatres and museums were closed and sports events
cancelled in the whole country; from Mar 12, restaurants, bars,
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Fig. 1. Model validation: Hubei outbreak
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Fig. 2. Model validation: Lazio outbreak

and all commercial outlets except for food and medicines were
also closed.

The best fit of the model, red curve of Fig. 2, is obtained
by taking β(0) = 0.315 and γ = 0.105, corresponding to r =
0.21 days−1 and Td = 4.8 days, by assuming a 20% reduction
of β on day 10 (first round of measures), and a further 17%
reduction of β on day 17 (second round of measures), with
an overall delay τm = 10 days. The delayed effect of the two
rounds of public measures is clearly visible when comparing
the data with models that do not consider the second one, or
both (dashed curves).

III. CONTROL

The effects of the application of the two control policies
briefly outlined in the Introduction will now be analysed, based
on the model derived in the previous Section.

The common theme behind both can be summarized by
the title of the famous 2003 Bode Lecture paper by Gunter
Stein: ”Respect the Unstable” [11]. Feedback control strategies
should not be applied light-heartedly to unstable systems,
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particularly when a large number of human lives is at stake,
as the sobering memory of the Chernobyl disaster discussed
in that paper suggests. In the case discussed in this paper, par-
ticularly deadly consequences can stem from the combination
of unstable dynamics, time delay, and uncertainty.

A. Suppression

The suppression policy can be brutally summarized in the
following terms: as soon as Ir(t) reaches a value Is which is
scary enough to decision makers to overcome their reluctance
to disrupt the social and economic life of their country, drastic
containment measures are taken, which means the following
discontinuous control law is applied:

u(t) =
0, Ir(t) < Is
ū, Ir(t) ≥ Is

(14)

As long as ū is large enough that r = β(ū) − γ < 0, once
the threshold Is is exceeded the number of tested positive
cases It(t) will start decaying exponentially, until it will
asymptotically reach zero in a time of about −5/r days,
corresponding to a steady cumulated value of infected people
that will eventually heal or die.

The number of reported cases Ir(t) = It(t− τm) is instead
delayed by τm days, so it will peak at a value MIs after τ
days, where the multiplier

M = exp(rτm) (15)

can have quite large values, e.g. M = 6.7 for the Hubei
province and M = 10 for the Lazio region, assuming stronger
measures were taken than those reported in the previous
Section. A wise choice of Is should ensure that the number of
cases needing intensive care is always such that σIt(t) < Nic,
i.e., within the reach of the public health system, possibly with
a good safety margin. This requires to pick Is < Nic/σM .
Political decision-makers without a training in mathematical
modelling may have difficulties in understanding the role and
magnitude of factor M and may be caught by surprise once
it is too late to act.

The other open problem of this policy is that it is not clear
if the equilibrium which is finally reached is sustainable once
the containment measures are lifted, or if there is rather a
risk that a second outbreak ensues. However, even in the case
this unfortunate event takes place, this policy allows to buy
precious time to improve the maximum capacity of intensive
and sub-intensive health care units, by building or restoring
new hospitals, by procuring ventilators and intensive care beds,
and by hiring and training personnel to operate them. Given
enough time, these measures can strongly mitigate the final
death toll and avoid the need of taking wartime-like triage
decisions in severely strained hospitals.

B. Mitigation

1) Policy statement: Proponents of the mitigation strategy
for the COVID-19 outbreak argue that, in the absence of a
vaccine, the majority of people should get infected and become
immune one way or the other, until herd immunity is achieved.
This requires R > NR0/(R0 + 1), which is about 60-75%

of the population given the current estimates for R0. This
outcome should be achieved by initially letting the epidemic
run free, and then introducing the right measures at the right
time to control the outbreak and ride through it as fast as
possible, while avoiding an excessive number of critical cases,
that could overwhelm the public health system.

2) Mathematical formalization: In mathematical terms, the
first step to enact this strategy is to compute a reference trajec-
tory I0r (t) for the reported cases Ir(t), and a corresponding
optimal control policy u0(t), obtained by the application of
public measures whose effect on β is accurately calibrated.
This reference trajectory should guarantee to reach the herd
immunity condition as fast as possible, while ensuring that
σIt(t) < Nic at all times, meaning that the health system is
never exceeding its capacity limit to provide intensive care to
all patients who need it. Note that this requires to take the
delays τr and τt into proper consideration.

Such a reference trajectory can be obtained by means of
constrained nonlinear optimization, using sophisticated models
of the COVID-19 epidemic evolution such as [2], that can be
much more accurate than the simple SIR model presented in
the previous Section.

It is quite obvious that the unstable nature of the state
trajectories while r > 0, i.e. before the peak of the epidemic
is reached, makes a completely open-loop implementation of
this policy infeasible. The reference trajectory should then be
followed by adapting the public policy measures u(t) in real
time, based on the observed values of the reported cases Ir(t).
In fact, every government pays extreme attention to the new
daily reports of Ir(t), and rightfully so. This corresponds in
principle to closing a feedback loop to stabilize the unstable
reference trajectory.

In the following sub-sections it will be shown that even
a fairly sophisticated feedback control law cannot manage
to stabilize the trajectory close to the reference, because
of the adverse nature of the process dynamics identified in
the previous Section. This casts very serious doubts on the
feasibility of all mitigation approaches, which will in fact use a
much less sophisticated feedback control strategies to achieve
the same goal.

3) Trajectory controller design: The process model, lin-
earized around the reference trajectory u0(t), I0r (t), reads:

d∆It(t)

dt
= β′(u0(t))I0t (t)∆u(t) +

[
β(u0(t)) − γ

]
∆It(t)

(16)
∆Ir(t) = ∆It(t− τm) (17)

where β′ indicates the derivative of β with respect to u.
By making the overly optimistic assumptions that the pa-

rameters γ, σ, and τm are constant and perfectly known, and
that the function β(u) that expresses the effects of public
policy decision on the infection rate β is time-invariant,
monotonously decreasing, smooth, and perfectly known, one
could compensate the very strong nonlinearity of the process
behaviour, by designing a linear controller with transfer func-
tion C(s) with suitable gain scheduling, that will result in a
linear and (almost) time-invariant loop dynamics, and add its
output to the reference trajectory u0(t) to stabilize it.
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One should also account for a further delay τc of one-two
days within the controller, corresponding to the time which
is necessary to collect the data, make decisions which are
potentially disruptive for the social fabric and the economy,
communicate them effectively to the public, and give the
public time to actually implement them. The feedback control
law can then be described as:

u(t) = u0(t) +
1

β′(u0(t− τc))I0r (t− τc)
uf (t− τc) (18)

uf (s) = C(s)Ir(s), (19)

The loop transfer function of this system reads:

L(s) = C(s)
µ

1 − (β(u0(t)) − γ)s
e−s(τm+τc). (20)

where µ is the ratio between the actual (unknown) value of
β′(u0(t))I0t (t) and its reference value. In ideal conditions, µ =
1, though results from [7] suggest this parameter is affected
by very significant uncertainty.

This notation is slightly improper, since β(u0(t)) is in
general time-varying for non-trivial reference trajectories. For
the sake of the subsequent analysis, we assume that this
parameter changes over a time scale which is much longer than
the time scale of the closed-loop system feedback response,
a common assumption when dealing with gain-scheduling
control, and thus consider it as a constant.

The loop transfer function reveals the very dangerous nature
of this process, which has an unstable pole with time constant
T , a time delay τ , and a highly uncertain gain µ:

T =
1

β(u0) − γ
=

1

r
=

Td
log(2)

(21)

τ = τt + τr + τc. (22)

The observed order of magnitude of those parameters at
the beginning of the outbreak is T = 4 ÷ 7 days and τ =
12 ÷ 14 days. Anyone familiar with basic control theory will
immediately recognize this situation as a guaranteed recipe for
disaster [11], [12].

4) Control feasibility: Well-known results from the theory
of limitations of control can now be applied. In order to
guarantee some robustness of the system performance against
the large gain uncertainty of the process, the Bode plot of∣∣L(jω)

∣∣ should maintain a roughly constant slope over a
sufficiently wide interval around the crossover frequency ωc,
thus approximating Bode’s ideal loop transfer function. The
analysis reported in [12], Sect. 4.6, leads to conclude that in
the most favourable case the product of the unstable pole p
and of the time delay T should be pT < 0.326 for the process
to be controllable. If one wants to limit the maximum norm
of the sensitivity function Ms < 2, for increased robustness,
the limit is even more stringent, namely pT < 0.156. Using
the notation of this paper, these conditions become:

τ

Td
< 0.47 (23)

τ

Td
< 0.225 (24)

In other words, even under very optimistic assumptions
on the knowledge of the process parameters, the process is

controllable only if the total feedback loop delay is less than
half of the doubling time of the epidemic, preferably less
then one quarter. In the two validation cases reported in the
previous section, the delay is more than double the doubling
time, making the feedback control strategy utterly infeasible
even in this idealized case. This refers to the initial phases of
the outbreak, when β ≈ β0.

The exact details of mitigation policies have not been made
public. What is understood is that some trajectory has been
planned, and it will then be followed by changing the public
health measures u(t) when certain thresholds of the number
of reported cases Ir(t) are crossed, possibly also considering
the number of new daily reported cases, which is related
to dIr(t)/dt. This would be an extremely crude step-wise
approximation of a proportional-derivative controller C(s),
which is hardly going to perform much better than a carefully
designed gain-scheduled linear controller.

Of course there is no theorem that can be directly invoked
to prove that any feeback control policy would not suffer from
the same limitations of a carefully scheduled linear controller.
However, limitations of control in the case of unstable pro-
cesses with large delays and uncertainty are inherent to the
unfavourable nature of the process dynamics and not to the
specific type of controller employed. In principle, a well-
designed nonlinear, possibly time-varying controller could
achieve somewhat better performance, but the large amount of
uncertainty in the knowledge of the process behaviour makes
this proposition completely impractical.

The analysis also clearly indicates under which conditions
feedback control of the epidemic based on daily swab test
reports may be feasible, which may give precious indications
for the handling of the re-opening phase, once the suppression
strategy has been successful in stopping the outbreak.

On one hand, it is essential to reduce the delay τ as much
as possible, which could be in principle achieved if one had
widespread instant-testing technology that could be applied
to statistically relevant swaths of the population. This could
probably halve the typical values of τ to about one week.
On the other hand, the application of substantial, though not
utterly draconian, measures, such as in the case of Lazio, could
reduce β(u0) by another factor two/four, bringing the system
to the brink of controllability, albeit with a very thin robustness
margin.

IV. CONCLUSIONS

Governments all the world over are faced with very chal-
lenging life-or-death decisions regarding the management of
the COVID-19 epidemic, involving the balance between public
health and economic issues. In order to take such decisions,
they rely on expert advice based on the results of epidemio-
logical mathematical models and on daily reports of numbers
of infectious people, based on swab test results.

This paper analyses the problem from a control systems per-
spective, casting it as a feedback control problem, as it actually
is, and using a simple model that captures the control-relevant
dynamic behaviour of sufficiently homogeneous territories, in
which certain public health measures are applied. The model
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was validated in two cases, one corresponding to a draconian
lockdown in the Hubei province of China, the other one to the
application of severe, but milder social distancing measures in
the region of Lazio, Central Italy.

The main results of the paper are the following:

• The suppression strategy can be effective, but requires a
full understanding of the multiplicative effect of measure-
ment delays, the factor M in Eq. (15), to correctly decide
when it is time to enforce strict enough social distancing
and lockdown measures.

• Mitigation strategies leading to herd immunity are not
viable, because they require to let the outbreak run loose
at the beginning of the transient to pick up high enough
numbers of infected subjects, and the process simply
cannot be controlled in such conditions, with high risk
of catastrophic runaway scenarios.

• Mitigation strategies could in principle be applied to
manage the re-opening phase after the outbreak has been
effectively suppressed, but they would require extensive
availability of instant testing equipment, as well as signifi-
cant social distancing measures to ensure that the unstable
dynamics of the epidemic process is at least two-three
times slower than it is without any measure enforced.
Even in this case, the control problem would be very
difficult, and would probably have a significant likelihood
of runaway scenarios, with eventual collapse of public
health systems and unacceptable loss of life.

The application of the precautionary principle, a fundamen-
tal staple of European Union legislation, suggests to take the
issue of controllability of the process very seriously. Given
the limitations exposed in this paper, it is the opinion of the
author that the safest way out of the COVID-19 epidemic is a
combination of suppression and very aggressive research to-
wards a vaccine and an effective cure of the severe pneumonia
caused by the virus, which is the main cause of death and of
the potential collapse of public health systems.

That said, in the absence of effective pharmaceutical so-
lutions in the medium-long term, any exit strategy should
be carefully studied with the tools of control theory, which
may possibly suggest viable solutions that are not obvious to
epidemiologists and physicians.

One such example, which is already discussed in this paper,
is the awareness of the absolutely crucial role of reducing the
measurement delay for the success of control policies.

Another example concerns the availability of reliable anti-
body tests that could be applied to statistically significant sam-
ples of the general population, allowing to provide a reliable
estimate of the real state of the system, in particular regarding
the number of subjects R(t) that have recovered from the
disease without showing significant symptoms and being tested
for the virus. Such knowledge may help understanding by how
much the contagion rate will be reduced because the term
S/N in Eq. (1) is significantly less than one. The number
of recovered subjects is believed to be much higher than the
number of reported cases, but is currently largely unknown.

A control strategy based on such a measurement could be
classified as state-feedback control, which control practitioners

will immediately recognize as more effective than output
feedback subject to large gain uncertainty and time delay.
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