1	Comparative Performance of SARS-CoV-2 Detection Assays using Seven Different Primer/Probe Sets and
2	One Assay Kit
3	
4	Amanda M. Casto ^{a,b*#} , Meei-Li Huang ^{c*} , Arun Nalla ^{c*} , Garrett Perchetti ^c , Reigran Sampoleo ^c , Lasata
5	Shrestha ^c , Yulun Wei ^c , Haiying Zhu ^c , Alexander L. Greninger ^c , Keith R. Jerome ^{b,c}
6	
7	^a Department of Medicine, University of Washington, Seattle, WA
8	^b Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
9	^c Department of Laboratory Medicine, University of Washington, Seattle, WA
10	
11	Running Head: Comparative Performance of SARS-CoV-2 Detection Assays
12	
13	[*] Amanda M. Casto, Meei-Li Huang, and Arun Nalla contributed equally to this work. Author order is
14	alphabetical by last name.
15	[#] Address correspondence to Amanda M. Casto, amcasto@uw.edu.
16	
17	Abstract
18	More than 100,000 people worldwide are known to have been infected with SARS-CoV-2
19	beginning in December 2019. The virus has now spread to over 93 countries including the United States,
20	with the largest cluster of US cases to date in the Seattle metropolitan area in Washington. Given the
21	rapid increase in the number of local cases, the availability of accurate, high-throughput SARS-CoV-2
22	testing is vital to efforts to manage the current public health crisis. In the course of optimizing SARS-
23	CoV-2 testing performed by the University of Washington Clinical Virology Lab (UW Virology Lab), we
24	tested assays using seven different primer/probe sets and one assay kit. We found that the most

25	sensitive assays were those the used the E-gene primer/probe set described by Corman et al.
26	(Eurosurveillance 25(3), 2020, https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045) and the N2
27	set described by the CDC (Division of Viral Diseases, Centers for Disease Control and Prevention, 2020,
28	https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf). All assays
29	tested were found to be highly specific for SARS-CoV-2, with no cross-reactivity with other respiratory
30	viruses observed in our analyses regardless of the primer/probe set or kit used. These results will
31	provide invaluable information to other clinical laboratories who are actively developing SARS-CoV-2
32	testing protocols at a time when increased testing capacity is urgently needed worldwide.
33	
34	Background
35	In late December 2019, a cluster of cases of pneumonia of unclear etiology was first noted in
36	Wuhan City in the Hubei Province of China (1). The etiology of these pneumonia cases, a novel type of
37	coronavirus, was identified on January 7, 2020 (1). This novel coronavirus has now been named severe
38	acute respiratory syndrome coronavirus 2 (SARS-CoV-2) while the disease it causes is known as
39	coronavirus disease 2019 (COVID-19) (2).
40	To date, the epidemic has been largely concentrated in China, with a total of 80,695 known
41	cases as of March 7, 2020 (3). However, cases outside of China were observed early in the epidemic with
42	the first detected in Thailand on January 13 (4). Soon afterwards cases were also identified in other east
43	Asian countries including Japan and South Korea (1), which now has the largest number of known cases
44	outside of China with 7,134 as of March 7 (3).
45	The Centers for Disease Control and Prevention (CDC) confirmed the first case of COVID-19 in
46	the United States on January 21. The infected person was a 35 year old man who had recently returned
47	to his home in Snohomish County, Washington after travelling to Wuhan City (5). No additional cases of
48	COVID-19 were identified in Washington State until February 28 when two new cases were confirmed,

49	one in Snohomish County and one in neighboring King County, where Seattle is located (6). Since
50	February 28, the number of cases of COVID-19 in Washington has steadily increased and currently
51	stands at 102 (7).
52	In response to the rapidly increasing number of confirmed and suspected cases of COVID-19 in
53	the Seattle metropolitan area, the Clinical Virology Laboratory at the University of Washington (UW
54	Virology Lab) has begun testing clinical specimens for SARS-CoV-2. Prior to and since making this testing
55	service available, we have endeavored both to optimize the performance of our assay and to increase
56	the rate at which we are able to test samples. We report here our observations comparing three
57	different RNA extraction methods. We also compare the performance of SARS-CoV-2 detection assays
58	using seven different primer/probe sets and one assay kit.
59	
60	Materials and Methods
61	
62	Samples
63	
64	Three sets of samples were used in our analyses. First, we used a set of approximately 300
65	clinical respiratory samples sent to the UW Virology Lab for respiratory virus testing. These samples
66	were in the form of nasopharyngeal or oropharyngeal swabs in viral transport media and had not
67	previously been tested for SARS-CoV-2. Secondly, we used a collection of nasal swabs in viral transport
68	media that are used to validate all assays performed at the UW Virology Lab. This collection includes
69	samples positive for: rhinovirus (3 samples within the set), influenza B (2), influenza A (2), parainfluenza
70	virus 1 (1), parainfluenza virus 3 (2), parainfluenza virus 4 (1), adenovirus (2), metapneumovirus (1),
71	bocavirus (2), respiratory syncytial virus (2), coronavirus (25). The coronaviruses included in the sample
72	set are non-SARS-CoV-2 samples. Twenty-two negative samples are also included in this sample set.

73	Finally, we obtained a set of 10 samples confirmed to be positive for SARS-CoV-2 by the Washington
74	State Department of Health (WSDOH) Public Health Laboratories. These samples were also all
75	nasopharyngeal or oropharyngeal swabs immersed in viral transport media.
76	
77	RNA Extraction
78	
79	RNA extraction from samples was performed using two different systems, the MagNA Pure LC
80	2.0 and the MagNA Pure 96 (Roche Lifesciences). For both systems, RNA extraction was performed
81	according to the manufacturer's instructions. For the MagNA Pure LC 2.0, 200 μ L of each sample was
82	subjected to extraction with an elution volume of 200 μL . For the MagNA Pure 96, 200 μL of each
83	sample was subjected to extraction with an elution volume of either 50 or 100 μ L. 5 μ L of RNA in elution
84	buffer was used in each SARS-CoV-2 detection assay.
85	
86	SARS-CoV-2 Detection Assays
87	
88	We used a total of 7 different primer/probe sets in our SARS-CoV-2 detection assays. The
89	University of Washington (UW) RdRp primer/probe set was designed by the UW Virology Lab. Three
90	additional primer/probe sets were designed as described in Corman et al. (8); these will be referred to
91	as the Corman N-gene, RdRp, and E-gene primer/probe sets. The Centers for Disease Control (CDC) N1,
92	N2, and N3 sets were developed by the CDC and have been published on the CDC website (9).
93	For all of the above primer/probe sets, real-time RT-PCR assays were performed using the
94	AgPath-ID One Step RT-PCR kit (Life Technologies). 25 μ L of reaction mix consists of 2x RT-PCR buffer,
95	25x enzyme mix, primers/probes, and 5 μL of extracted nucleic acid. Primer/probe concentrations were
96	as recommended in Corman et al (8) and by a CDC recommended protocol (10). RT-PCR was performed

97	on an ABI 7500 real-time PCR system (Applied Biosystems) with cycle parameters: 10 minutes at 48 $^\circ$ C
98	for reverse transcription, 10 minutes inactivation at 95 °C followed by 40 cycles of 15 seconds at 95 °C
99	and 45 seconds at 60 °C.
100	We also tested samples for SARS-CoV-2 using the BGI RT-PCR detection kit (BGI). These assays
101	were conducted according to the kit manufacturer's instructions.
102	A negative (human specimen control) was included in every RNA extraction procedure and non-
103	template (water) control was included in every RT-PCR run. An internal control amplification was
104	performed to monitor the extraction and RT-PCR quality.
105	
106	Results
107	
108	Assays using UW RdRp and Corman N-gene primer/probe sets found to have LODs of 1:2x10 ³
109	
110	The first two primer/probes sets that we evaluated were the UW RdRp and the Corman N-gene
111	sets. We tested the sensitivity of assays using these primer/probe sets by examining approximately 300
112	clinical samples of unknown SARS-CoV-2 status. RNA was extracted for these assays using two different
113	systems. The first was the MagNA Pure LC (LC) system, which is able to process 32 samples at a time and
114	elutes RNA into 200 μ L of buffer. The second was the MagNA Pure 96 (MP96) system, which is able to
115	process 96 samples at a time and elutes RNA into 100 μL of buffer. One sample out of the 300 was
116	positive for SARS-CoV-2. The positive result was consistent regardless of which of the two RNA
117	extraction methods and which of the two primer/probe sets was used.
118	We then determined the limit of detection (LOD) of assays using the UW RdRp and Corman N-
119	gene primer/probe sets when run on dilutions of the one positive clinical sample. For both RNA
120	extraction techniques and both primer/probe sets, the LOD was found to be 1:2x10 ³ (for each

121	combination of RNA extraction method and primer/probe set, twenty out of twenty replicate assays
122	were positive for SARS-CoV-2 when the positive clinical sample was diluted to 1:2x10 ³). Finally, we
123	tested the specificity of assays using both primer/probe sets by running them on a collection of samples
124	that are positive for respiratory viruses other than SARS-CoV-2. Assays using both sets were found to be
125	100% specific with no false positives noted in this analysis.
126	
127	Assays using the Corman RdRp and E-gene sets found to have LODs of $1:2x10^4$
128	
129	We next tested assays using the Corman RdRp and Corman E-gene primer/probe sets. We again
130	used two RNA extraction methods. The LC extraction method was performed using the same protocol as
131	before. However, for the MP96 method, we eluted RNA into 50 μ L of buffer instead of 100 μ L of buffer
132	to determine whether this would increase the sensitivity of SARS-CoV-2 detection assays. We ran assays
133	using both the Corman RdRp and the Corman E-gene primer/probe sets coupled with both RNA
134	extraction methods on 10 samples confirmed by the WSDOH Public Health Laboratories to be positive
135	for SARS-CoV-2. The results of these tests are shown in Table 1. There was one sample that was positive
136	for assays using the E-gene set when the MP96 system was used but not when the LC system was used
137	and two samples that were positive for assays using the RdRp set when the MP96 system was used but
138	not when the LC system was used. Based on these results, we subsequently used the MP96 RNA
139	extraction system with RNA eluted into 50 μ L of buffer for all analyses.
140	To assess the sensitivity of assays using the Corman RdRp and E-gene primer/probe sets, we ran
141	them on dilutions of the positive UW Virology clinical sample. The LOD was found to be 1:2x10 ⁴ for both
142	(again 20 replicate assays for each primer/probe set were performed and all 20 were positive). We also
143	tested the specificities of assays using these sets by running them on our collection of samples positive

144	for various respiratory viruses. Like assays using the UW RdRp and the Corman N-gene primers, those
145	using the Corman RdRp and E-gene sets were 100% specific with no false positives noted.
146	
147	Assays using the CDC N1 and N2 primer/probe sets performed better those using the N3 set
148	
149	Given that assays using the Corman RdRp and E-gene primer/probe sets showed superior
150	performance relative to those using the UW RdRp and Corman N-gene sets, we wanted to compare the
151	former to assays using the primer/probe sets published by the CDC: CDC N1, CDC N2, and CDC N3. We
152	ran assays using these three sets on the 10 positive samples obtained from the WSDOH Public Health
153	Laboratories. The results of these analyses are shown in Table 2. All assays produced positive results for
154	all samples, except for the assay using the CDC N3 primers/probe which produced a negative result for
155	SC5784. The assay using the Corman RdRp set also produced a negative result for this sample. For the
156	other nine samples, assays using the Corman RdRp set consistently produced the highest cycle times out
157	of all the assays compared in Table 2 (CDC N1, CDC N2, CDC N3, Corman RdRp, and Corman E-gene)
158	followed by assays using the Corman E-gene set.
159	
160	Assays using the CDC N2 and Corman E-gene primer/probe sets were more sensitive than those using the
161	CDC N1 and Corman RDRP sets and the BGI kit
162	
163	Our final analysis was to test the sensitivity and specificity of assays using the CDC primer/probe
164	sets and compare these to the sensitivity and specificity of assays using the Corman RdRp and E-gene
165	sets. Because assays using the N3 set did not perform as well as those using the N1 and N2 sets, we did
166	not include the latter set in this analysis. We did, however, include in this analysis an evaluation of the
167	sensitivity and specificity of assays performed using a SARS-CoV-2 test kit from BGI. To directly compare

168	LODs between assays using the Corman RdRp and E-gene sets to those using the N1 and N2 sets and the
169	BGI kit, we ran assays on dilutions ranging from 1:10 ⁵ to 1:10 ⁷ of the positive UW Virology clinical
170	sample. We again ran twenty duplicate assays with each primer/probe set and with the BGI kit on each
171	dilution. The results of the analysis are shown in Table 3. The least sensitive assays were the ones that
172	used the Corman RdRp primer/probe set. At a dilution of 1:10 ⁵ , only 17 out of the 20 assays that used
173	this set were positive for SARS-CoV-2. The most sensitive assays used the CDC N2 and the Corman E-
174	gene sets for which 18 and 17 replicate assays, respectively, were positive at a dilution of 1:10 ⁶ .
175	The specificities assays using the CDC N1 and N2 primer/probe sets and the BGI kit were also
176	tested using our panel of samples positive for various respiratory viruses. Assays using the N1 and N2
177	sets and the BGI kit were found to be 100% specific.
178	
179	Conclusions
-	
180	Known cases of COVID-19 have now exceeded 105,000 worldwide. While cases in China appear
181	to be leveling off with fewer new cases diagnosed each day, new case clusters are rapidly appearing in
182	other nations across the world (3). In the coming days and weeks, many clinical laboratories will be
183	developing their own SARS-CoV-2 testing protocols. Maximizing the sensitivity and specificity of these
184	tests is critical to efforts around the world to minimize the impact of this epidemic on global health.
185	A number of different primer/probe sets for use in SARS-CoV-2 detection assays and SARS-CoV-
186	2 testing kits have been developed and are now available. As we have demonstrated here, the
187	performance characteristics of assays using these primer/probe sets and testing kits are variable. Of the
188	
100	seven different primer/probe sets and one testing kit that we evaluated, all were found to be highly
189	seven different primer/probe sets and one testing kit that we evaluated, all were found to be highly specific with no false positive results observed when assays were run on samples positive for a number

191	found that assays using the CDC N2 and Corman E-gene primer/probe sets to be particularly sensitive.
192	Assays using these sets were able to detect SARS-CoV-2 in ten out of ten known positive clinical samples.
193	They were also able to reliably detect SARS-CoV-2 in a positive sample diluted down to 1:10 ⁶ . In addition
194	to our evaluation of different assays for SARS-CoV-2 detection, we also show that it is possible to
195	significantly increase capacity for the RNA extraction step of SARS-CoV-2 testing without sacrificing
196	sensitivity.
197	In summary, we report variable performance characteristics of assays using seven different
198	primer/probe sets and one complete testing kit used for SARS-CoV-2 testing of clinical samples. While
199	assays using all sets were highly specific, some, such as those using the CDC N2 and the Corman E-gene

- 200 sets, were found to be more sensitive than others. These findings will provide important insights on
- 201 SARS-CoV-2 detection assay design to labs that are currently working to develop their own testing
- 202 methods. Our results also emphasize the importance of on-going optimization of viral detection assays
- 203 following the emergence of novel viral pathogens.
- 204 Funding
- 205 This work was support by the National Institute of Allergy and Infectious Diseases (NIAID) (grant
- 206 number 5T32Al118690-04 T32 Training Grant to AMC at the Fred Hutchinson Cancer Research Center).
- 207 Bibliography
- World Health Organization. 2020. Novel Coronavirus (2019-nCoV) Situation Report 1. World
 Health Organization, Geneva, Switzerland.
- 210 2. Coronaviridae Study Group on the International Committee on Taxonomy of Viruses. 2020. The
- 211 species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it
- 212 SARS-CoV-2. Nature Microbiology. https://doi.org/10.1038/s41564-020-0695-z.

- 3. Dong e, Du H, Gardner L. 2020. An interactive web-based dashboard to track COVID-19 in real time.
- 214 The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(20)30120-1.
- 4. Okada P, Buathong R, Phuygun S, Thanadachakul T, Parnmen S, Wongboot W, Waicharoen S,
- 216 Wacharapluesadee S, Uttayamakul S, Vachiraphan A, Chittaganpitch M, Mekha N, Janejai N,
- 217 Iamsirithaworn S, Lee RT, Maurer-Stroh S. 2020. Early transmission patterns of coronavirus disease
- 218 2019 (COVID-19) in travellers from Wuhan to Thailand, January 2020. Euro Surveillance 25(8).
- 219 https://doi.org/10.2807/1560-7917.ES.2020.25.8.2000097.
- 5. Sun LH, Bernstein L. 2020. First U.S. case of potentially deadly Chinese coronavirus confirmed in
- 221 Washington State. Washington Post.
- Miller M, Chastaine D, Sullivan O. 2020. Coronavirus reaches Federal Way as USPS employee tests
 positive. Federal Way Mirror.
- Fields A. 2020. Coronavirus deaths in Washington now at 16, with 102 confirmed cases. Seattle
 Times.
- 226 8. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, Bleicker T, Brünink S, Schneider
- J, Schmidt ML, Mulders DGJC, Haagmans BL, van der Veer B, van den Brink S, Wijsman L, Goderski G,
- 228 Romette J-L, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MPG, Drosten C. 2020.
- 229 Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveillance 25(3).
- 230 https://www.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045.
- 9. Division of Viral Diseases. 2020. 2019-Novel Coronavirus (2019-nCoV) Real-time rRT-PCR Panel
- 232 Primers and Probes. Centers for Disease Control and Prevention.
- 233 https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf.

- 10. Division of Viral Diseases. 2020. Real-Time RT-PCR Panel for Detection of 2019-Novel Coronavirus:
- 235 Instructions for Use. Centers for Disease Control and Prevention.
- 236 https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-for-detection-
- 237 instructions.pdf.

- -

	Corman E-ge	ene CTs ¹	Corman RdRp CTs ₂₆		
Sample IDs	LC ²	MP96 ³	LC	MP96	
SC5777	27.2	24.9	29.1	29.0 ²⁶³	
SC5778	33.9	31.9	Negative	34.8 ₂₆₄	
SC5779	37.7	34.7	Negative	36.5	
SC5780	16.7	15.1	17.9	19.2 ²⁶⁵	
SC5781	17.2	16.2	18.6	20.2 ₂₆₆	
SC5782	24.4	22.6	25.6	26.9	
SC5783	18.4	16.9	19.6	20.8 ²⁶⁷	
SC5784	Negative	35.4	Negative	Negative ₈	
SC5785	32.7	28.9	34.4	32.7	
SC5786	27.6	25.6	28.1	29.4 ²⁶⁹	

261

270 Table 1: Relative performance of SARS-CoV-2 detection assays using the Corman E-gene and RdRp

271 primer/probe sets and two different RNA extraction methods.

¹Cycle-times

 2 RNA extraction performed on the MagNA Pure LC system with RNA eluted into 200 μ l of buffer.

³RNA extraction performed on the MagNA Pure 96 system with RNA eluted into 50 μl of buffer.

275

- 276
- 277

Sample IDs	CDC N1	CDC N2	CDC N3	Corman RdRp	Corman E-gene
SC5777	24.5	23.2	23.3	29.0	24.9
SC5778	30.2	30.6	30.1	34.8	31.9
SC5779	33.3	32.8	32.0	36.5	34.7
SC5780	14.6	13.7	13.9	19.2	15.1
SC5781	15.1	14.1	14.3	20.2	16.2
SC5782	21.8	20.9	21.0	26.9	22.6
SC5783	16.0	14.9	15.6	20.8	16.9
SC5784	36.0	35.6	Negative	Negative	35.4
SC5785	27.8	27.3	27.4	32.7	28.9
SC5786	23.9	24.0	24.3	29.4	25.6

278

Table 2: Relative performance of SARS-CoV-2 detection assays using five different primer/probe sets.

279

280

281

282

283

Corman E-gene								
Dilution	Samala ID	Replicates			CT ^{1,2}	503		
Dilution	Sample ID	Tested	Positive	Negative	% Positivity	Mean	30-	
1:10 ⁵	S5	20	20	0	100	33.7	1.13	
1:10 ⁶	S6	20	17	3	85	37.2	1.34	
1:107	S7	20	3	17	15	37.9	0.10	

Corman RdRp gene								
Dilution	Sample ID	Replicates			% Desitivity	СТ	۶D	
		Tested	Positive	Negative	% POSILIVILY	Mean	30	
1:105	S5	20	17	3	85	36.6	1.84	
1:10 ⁶	S6	20	2	18	10	35.8	1.79	
1:107	S7	20	1	19	5	37.5	0.00	

CDC N1								
Dilution	Sample ID	Replicates			% Desitivity	СТ	50	
		Tested	Positive	Negative	% POSILIVILY	Mean	30	
1:10 ⁵	S5	20	20	0	100	33.7	1.45	
1:106	S6	20	13	7	65	36.2	1.41	
1:107	S7	20	2	18	10	36.2	0.55	

CDC N2								
Dilution	Sample ID	Replicates				СТ	SD.	
		Tested	Positive	Negative	% POSITIVITY	Mean	30	
1:10 ⁵	S5	20	20	0	100	33.1	1.26	
1:10 ⁶	S6	20	18	2	90	36.8	1.35	
1:10 ⁷	S7	20	3	17	15	37.2	0.61	

BGI Kit								
Dilution	Sample ID	Replicates			% Desitivity	СТ	50	
		Tested	Positive	Negative	% Positivity	Mean	30	
1:105	S5	20	20	0	100	31.6	2.39	
1:10 ⁶	S6	20	10	10	50	34.7	2.06	
1:107	S7	20	0	20	0	-	-	

284 Table 3: Relative sensitivities of SARS-CoV-2 detection assays using 4 different primer/probe sets and

285 the BGI testing kit.

286 ¹Cycle-time

287 ²Only positive results are included in calculation of mean CT

288 ³Standard deviation