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Abstract

An outbreak of respiratory disease caused by a novel coronavirus is ongoing till Decem-

ber 2019. As of March 16 2020, It has caused an epidemic outbreak with more than

1,79,073 confirmed infections and 7,074 reported deaths worldwide. During the period

of an epidemic when human-to-human transmission is established and reported cases of

coronavirus disease (COVID) are rising worldwide, forecasting is of utmost importance

for health care planning and control the virus with limited resource. In this study, we

propose and analyze a compartmental epidemic model of COVID to predict and control

the outbreak. The basic reproduction number and control reproduction number are cal-

culated analytically. A detailed stability analysis of the model is performed to observe

the dynamics of the system. We calibrated the proposed model to fit daily data from five

provinces of China namely, Hubei, Guangdong, Henan, Zhejiang and Hunan. Our find-

ings suggest that independent self-sustaining human-to-human spread (R0 > 1, Rc > 1)

is already present in all the five provinces. Short-term predictions show that the decreas-

ing trend of new COVID cases is well captured by the model for all the five provinces.

However, long term predictions for Hubei reveals that the symptomatic COVID cases

will show oscillatory behaviour. Futher, we found that effective management of quar-

antined individuals is more effective than management of isolated individuals to reduce

the disease burden. Numerical results show that the modification factor for quarantine,

modification factor for isolation and transmission rate are quite effective in reduction

of the COVID cases in Hubei. Thus, COVID is controllable by reducing contacts with

infected people and increasing the efficiency of quarantine and isolation. Health care

officials should supply medications, protective masks and necessary human resources in

the affected areas.
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1. Introduction

In December 2019, an outbreak of novel coronavirus (2019-nCoV) infected with viral

pneumonia infection [30; 53], which is lethal, was first noted in Wuhan, the sprawling

capital of the Hubei province of Central China [1] declared by the Health Commission of

Hubei Province. Now coronavirus is officially called COVID-19 by WHO (World Health

Organization). The outbreak was declared a Public Health Emergency of International

Concern on 30 January 2020 by WHO. Coronaviruses are enveloped positive-sense, non-

segmented RNA viruses belonging to the Coronaviridae family and the Nidovirales order

and widely distributed in humans and other mammals [30]. The virus is responsible for a

range of symptoms including dry cough, fever, fatigue, breathing difficulty, and bilateral

lung infiltration in severe cases, similar to those caused by SARS-CoV and MERS-CoV

infections[30; 26]. Many people may experience non-breathing symptoms including nau-

sea, vomiting and diarrhea [4]. Some patients have reported radiographic changes in

their ground-glass lungs; normal or lower than average white blood cell lymphocyte, and

platelet counts; hypoxaemia; and deranged liver and renal function. Most of them were

said to be geographically connected to the Huanan seafood wholesale market, which was

subsequently claimed by journalists to be selling freshly slaughtered game animals [3].

The Chinese health authority said the patients initially tested negative for common res-

piratory viruses and bacteria but subsequently tested positive for a novel coronavirus

(nCoV) [15]. In contrast to the initial findings [17], the 2019-nCoV virus spreads from

person to person as confirmed in [15]. It has become an epidemic outbreak with more

than 1,79,073 confirmed infections and 7,074 reported deaths worldwide as of 16 March

2020. The current epidemic outbreak had resulted in 81,048 (67794 of which are in Hubei)

confirmed cases and 3204 (3085 of which were in Hubei) deaths in China [1; 6], and spo-

radic cases exported from Wuhan have been reported in Thailand, Japan, Republic of

Korea, Hong Kong, Taiwan, Australia, Italy and the United States and have spread to

155 countries so far [6; 1]. Since first discovery and identification of coronavirus in 1965,

three major outbreaks occurred, caused by emerging, highly pathogenic coronaviruses,

namely the 2003 outbreak of Severe Acute Respiratory Syndrome (SARS) in mainland

China [27; 36], the 2012 outbreak of Middle East Respiratory Syndrome (MERS) in

Saudi Arabia [21; 22], and the 2015 outbreak of MERS in South Korea [20; 33]. These

outbreaks resulted in SARS and MERS cases confirmed by more than 8000 and 2200,

respectively [34]. The COVID-19 is caused by a new genetically similar corona virus to

the viruses that cause SARS and MERS. Despite a relatively lower death rate compared

to SARS and MERS, the COVID-19 spreads rapidly and infects more people than the

SARS and MERS outbreaks. In spite of strict intervention measures implemented in the

region where the infection originated, the infection spread locally in Wuhan, in China

and around the globally.
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Though COVID-19 laboratory testing ramped up rapidly in China and elsewhere as

of January 2020, China’s central government and all local governments, including Hubei,

have tightened preventive measures to reduce the spread of COVID-19. Many major

cities in Hubei province were locked up and several steps were taken, such as quarantining

infected cases, tracing close contacts, promoting social consensus on self-protection such

as wearing face masks in public places, etc. To control the outbreak, Chinese government

actively restricts the movement of more than 50 million people in Central China, which is

considered one of the largest quarantine in human history. More than 42,600 people have

been diagnosed with coronavirus in China as of February 10 [1]. The country is literally

at a standstill and the disease has seriously impacted the economy and the livelihood of

the people.

As the 2019 coronavirus disease outbreak (COVID-19) is expanding rapidly in China

and beyond, with the potential for becoming a global pandemic [2], real-time analyzes of

epidemiological data are required to increase situational awareness and inform interven-

tions [43]. Earlier, in the first few weeks of an outbreak, real-time analyzes shed light on

the severity, transmissibility, and natural history of an emerging pathogen, such as SARS,

the 2009 influenza pandemic, and Ebola [18; 19; 24; 37]. Analysis of detailed patient line

lists is especially useful for inferring key epidemiological parameters, such as infectious

and incubation periods, and delays between infection and detection, isolation and case

reporting [18; 19]. However, official patient’s health data seldom become available to the

public early in an outbreak, when the information is most required. In addition to medi-

cal and biological research, theoretical studies based on either mathematical or statistical

modeling may also play an important role throughout this anti-epidemic fight in under-

standing the epidemic character traits of the outbreak, in predicting the inflection point

and end time, and in having to decide on the measures to reduce the spread. To this end,

many efforts have been made at the early stage to estimate key epidemic parameters,

such as the basic reproduction number, serial interval, and doubling time, in which the

statistical models are mostly used [40; 35]. An Imperial College London study group

calculated that 4000 (95% CI: 1000-9700) cases had occurred in Wuhan with symptoms

beginning on January 18, 2020, and an estimated basic reproduction number was 2.6

(95% CI: 1.5-3.5) using the number of cases transported from Wuhan to other countries

[32]. Leung et al. reached a similar finding, calculating the number of cases transported

from Wuhan to other major cities in China [9] and also suggesting the possibility for

the spreading of risk [12] for travel-related diseases. Mathematical modeling based on

dynamic equations [25; 45] may provide detailed mechanism for the disease dynamics. A

variety of modeling experiments for the COVID-19 outbreak have already been carried

out. Wu et al. [49] developed an susceptible exposed infectious recovered model (SEIR)

model to explain the dynamics of transmission and predicted national and global disease

3



spread based on data recorded from 31 December 2019 to 28 January 2020. Tang et al.

[46] suggested a compartmental deterministic model incorporating the disease’s clinical

development, the patient epidemiological status and the intervention steps. They found

that the control reproduction number may be as high as 6.47, and that intervention

strategies including intense contact tracing accompanied by quarantine and isolation can

effectively reduce COVID cases. Using the hypothesis of Poisson-distributed daily time

increments Read et al. [41] stated a value of basic reproduction number to be 3.1 based

on A SEIR model fitted to real data. Imai et al. [31] performed computational model-

ing of possible epidemic trajectories in order to estimate the size of the outbreak of the

disease in Wuhan, with a emphasis on human to human transmission. Their findings

suggest that control measures need to block well over 60% of transmission in order to

contain the outbreak effectively. Among these, the classical SEIR is the most widely

accepted model for characterizing the COVID outbreak epidemic in China. Since the

dynamical model can reach comprehensible conclusions about the outbreak, a cascade of

SEIR models is being developed to visualize the mechanisms of transmission from source

of infection, hosts, reservoir to human [16].

Using similar modelling framework we aim to predict new COVID cases in five en-

demic provinces of China. By mathematical analysis of the proposed model we would

like to explore transmission dynamics of the virus among humans. Another goal is to

study the control strategies that can significantly reduce the outbreak in near future.

2. Model formulation

General mathematical models for the spread of infectious diseases have been described

previously [39; 23; 29]. A compartmental differential equation model for COVID is formu-

lated and analyzed. We adopt a variant that reflects some key epidemiological properties

of COVID. The model monitors the dynamics of seven sub-populations, namely sus-

ceptible (S(t)), exposed (E(t)), quarantined (Q(t)), asymptomatic (A(t)), symptomatic

(I(t)), isolated (J(t)) and recovered (R(t)) individuals. The total population size is

N(t) = S(t) + E(t) + Q(t) + A(t) + I(t) + J(t) + R(t). In this model, quarantine refers

to the separation of COVID infected individuals from the general population when the

population are infected but not infectious, whereas isolation describes the separation of

COVID infected individuals when the population become symptomatic infectious. Our

model incorporates some demographic effects by assuming a proportional natural death

rate µ > 0 in each of the seven sub-populations of the model. In addition, our model

includes a net inflow of susceptible individuals into the region at a rate Π per unit time.

This parameter includes new births, immigration and emigration. The flow diagram of

the proposed model is displayed in Figure 1.
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Figure 1: Compartmental flow diagram of the proposed model.

By recruiting individuals into the region, the susceptible population is increased and

reduced by natural death. Also the susceptible population decreases after infection, ac-

quired through interaction between a susceptible individual and an infected person who

may be quarantined, asymptomatic, symptomatic, or isolated. For these four groups

of infected individuals, the transmission coefficients are β, rQβ, rAβ, and rJβ respec-

tively. We consider the β as a transmission rate along with the modification factors

for quarantined rQ, asymptomatic rA and isolated rJ individuals. The interaction be-

tween infected individuals (quarantined, asymptomatic, symptomatic or isolated) and

susceptible is modelled in the form of total population without quarantined and isolated

individuals using standard mixing incidence incidence [38; 39; 23; 29]. The rate of change

of the susceptible population can be expressed by the following equation:

dS

dt
= Π−

S(βI + rQβQ+ rAβA+ rJβJ)

N −Q− J
− µS, (2.1)

Exposed population(E(t)):
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Population who are exposed are infected individuals but not infectious for the com-

munity. The exposed population decreases with quarantine at a rate of γ1, and become

asymptomatic and symptomatic at a rate k1 and natural death at a rate µ. Hence,

dE

dt
=

S(βI + rQβQ+ rAβA+ rJβJ)

N −Q− J
− (γ1 + k1 + µ)E (2.2)

Quarantine population (Q(t)):

These are exposed individuals who are quarantined at a rate γ1. For convenience, we

consider that all quarantined individuals are exposed who will begin to develop symptoms

and then transfer to the isolated class. Assuming that a certain portion of uninfected

individuals are also quarantined would be more plausible, but this would drastically com-

plicate the model and require the introduction of many parameters and compartments.

In addition, the error caused by our simplification is to leave certain people in the suscep-

tible population who are currently in quarantine and therefore make less contacts. The

population is reduced by growth of clinical symptom at a rate of k2 and transferred to

the isolated class. σ1 is the recovery rate of quarantine individuals and µ is the natural

death rate of human population. Thus,

dQ

dt
= γ1E − (k2 + σ1 + µ)Q (2.3)

Asymptomatic population(A(t)):

Asymptomatic individuals were exposed to the virus but clinical signs of COVID

have not yet developed. The exposed individuals become asymptomatic at a rate k1 by a

proportion p. The recovery rate of asymptomatic individuals is σ2 and the natural death

rate is µ. Thus,

dA

dt
= pk1E − (σ2 + µ)A (2.4)

Symptomatic population(I(t)):

The symptomatic individuals are produced by a proportion of (1 − p) of exposed

class after the exposer of clinical symptoms of COVID by exposed individuals. γ2 is the

isolation rate of the symptomatic individuals, σ3 is the recovery rate and natural death

at a rate µ. Thus,

dI

dt
= (1− p)k1E − (γ2 + σ3 + µ)I (2.5)

Isolated population(J(t)):

The isolated individuals are those who have been developed by clinical symptoms and

been isolated at hospital. The isolated individuals are come from quarantined community
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at a rate k2 and symptomatic group at a rate γ2. The recovery rate of isolated individuals

is σ4, disease induced death rate is δ and natural death rate is µ. Thus,

dJ

dt
= k2Q + γ2I − (δ + σ4 + µ)J (2.6)

Recovered population(R(t)):

Quarantined, asymptomatic, symptomatic and isolated individuals recover from the

disease at rates σ1, σ2, σ3 and σ4; respectively, and this population is reduced by a natural

death rate µ. Thus,

dR

dt
= σ1Q+ σ2A + σ3I + σ4J − µR (2.7)

From the above considerations, the following system of ordinary differential equations

governs the dynamics of the system:

dS

dt
= Π−

S(βI + rQβQ+ rAβA+ rJβJ)

N −Q− J
− µS,

dE

dt
=

S(βI + rQβQ+ rAβA+ rJβJ)

N −Q− J
− (γ1 + k1 + µ)E,

dQ

dt
= γ1E − (k2 + σ1 + µ)Q,

dA

dt
= pk1E − (σ2 + µ)A, (2.8)

dI

dt
= (1− p)k1E − (γ2 + σ3 + µ)I,

dJ

dt
= k2Q + γ2I − (δ + σ4 + µ)J,

dR

dt
= σ1Q+ σ2A + σ3I + σ4J − µR,

All the parameters and their biological interpretation are given in Table 1 respectively.
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Table 1: Description of parameters used in the model.

Parameters Interpretation Value Reference
Π Recruitement rate - [10]
β Transmission rate - Estimated
rQ Modification factor for quarantined 0.3 Assumed
rA Modification factor for asymptomatic 0.45 Assumed
rJ Modification factor for isolated 0.6 Assumed
γ1 Rate at which the exposed individuals are di-

minished by quaratine
- Estimated

γ2 Rate at which the symptomatic individuals
are diminished by isolation

- Estimated

k1 Rate at which exposed become infected 1/7 [1]
k2 Rate at which quaratined individuals are iso-

lated
- Estmated

p Proportion of asymptomatic individuals 0.13166 [46]
σ1 Recovery rate from quarantined individuals - Estimated
σ2 Recovery rate from asymptomatic individuals - Estimated
σ3 Recovery rate from symptomatic individuals 0.46 [1]
σ4 Recovery rate from isolated individuals - Estimated
δ Diseases induced mortality rate - Data
µ Natural death rate 0.3589 × 10−4 [8]

3. Mathematical analysis

3.1. Positivity and boundedness of the solution

This subsection is provided to prove the positivity and boundedness of solutions of

the system (2.8) with initial conditions (S(0), E(0), Q(0), A(0), I(0), J(0), R(0))T ∈ R7
+.

We first state the following lemma.

Lemma 3.1. Suppose Ω ⊂ R×Cn is open, fi ∈ C(Ω,R), i = 1, 2, 3, ..., n. If fi|xi(t)=0,Xt∈C
n
+0

≥

0, Xt = (x1t, x2t, ....., x1n)
T , i = 1, 2, 3, ...., n, then Cn

+0{φ = (φ1, ....., φn) : φ ∈ C([−τ, 0],Rn
+0)}

is the invariant domain of the following equations

dxi(t)

dt
= fi(t, Xt), t ≥ σ, i = 1, 2, 3, ..., n.

where Rn
+0 = {(x1, ....xn) : xi ≥ 0, i = 1, ...., n} [50].

Proposition 3.1. The system (2.8) is invariant in R7
+.
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Proof. By re-writing the system (2.8) we have

dX

dt
= M(X(t)), X(0) = X0 ≥ 0 (3.1)

M(X(t)) = (M1(X),M1(X), ...,M7(X))T

We note that

dS

dt
|S=0 = Π ≥ 0,

dE

dt
|E=0 =

S(βI + rQβQ+ rAβA+ rJβJ)

S + A+ I +R
≥ 0,

dQ

dt
|Q=0 = γ1E ≥ 0,

dA

dt
|A=0 = pk1E ≥ 0,

dI

dt
|I=0 = (1− p)k1E ≥ 0,

dJ

dt
|J=0 = k2Q+ γ2I ≥ 0,

dR

dt
|R=0 = σ1Q + σ2A+ σ3I + σ4J ≥ 0.

Then it follows from the Lemma 3.1 that R7
+ is an invariant set.

Proposition 3.2. The system (2.8) is bounded in the region
Ω = {(S + E +Q+ A + I + J +R ∈ R7

+|S + E +Q+ A+ I + J + R ≤ Π
µ
}

Proof. We observed from the system that

dN

dt
= Π− µN − δJ ≤ Π− µN

=⇒ lim
t→∞

supN(t) ≤
Π

µ

Hence the system (2.8) is bounded.

3.2. Diseases-free equilibrium and control reproduction number

The diseases-free equilibrium can be obtained for the system (2.8) by putting E =

0, Q = 0, A = 0, I = 0, J = 0, which is denoted by P 0
1 = (S0, 0, 0, 0, 0, 0, R0), where

S0 =
Π

µ
,R0 = 0.

The control reproduction number, a central concept in the study of the spread of com-

municable diseases, is e the number of secondary infections caused by a single infective
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in a population consisting essentially only of susceptibles with the control measures in

place (quarantined and isolated class) [47]. This dimensionless number is calculated at

the DFE by next generation operator method [48; 23] and it is denoted by Rc.

For this, we assemble the compartments which are infected from the system (2.8) and

decomposing the right hand side as F −V, where F is the transmission part, expressing

the the production of new infection, and the transition part is V, which describe the

change in state.

F =




S(βI+rQβQ+rAβA+rJβJ)

N−Q−J

0

0

0

0



,V =




(γ1 + k1 + µ)E

−γ1E + (k2 + σ1 + µ)Q

−pk1E + (σ2 + µ)A

−(1 − p)k1E + (γ2 + σ3 + µ)I

−k2Q− γ2I + (δ + σ4 + µ)J




Now we calculate the jacobian of F and V at DFE P 0
1

F =
∂F

∂X
=




0 rQβ rAβ β rJβ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



,

V =
∂V

∂X
=




γ1 + k1 + µ 0 0 0 0

−γ1 k2 + σ1 + µ 0 0 0

−pk1 0 σ2 + µ 0 0

−(1− p)k1 0 0 γ2 + σ3 + µ 0

0 −k2 0 −γ2 δ + σ4 + µ



.

Following [28], Rc = ρ(FV −1), where ρ is the spectral radius of the next-generation

matrix (FV −1). Thus, from the model (2.8), we have the following expression for Rc and

R0:

Rc =
rQβγ1

(γ1 + k1 + µ)(k2 + σ1 + µ)
+

rAβpk1
(γ1 + k1 + µ)(σ2 + µ)

(3.2)

+
βk1(1− p)

(γ1 + k1 + µ)(γ2 + σ3 + µ)
+

rJβγ1k2
(γ1 + k1 + µ)(k2 + σ1 + µ)(δ + σ4 + µ)

+
rJβ(1− p)k1γ2

(γ1 + k1 + µ)(γ2 + σ3 + µ)(δ + σ4 + µ)
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3.3. Stability of DFE

Theorem 3.1. The diseases free equilibrium(DFE) P 0
1 = (S0, 0, 0, 0, 0, 0, R0) of the sys-

tem (2.8) is locally asymptotically stable if Rc < 1 and unstable if Rc > 1.

Proof. We calculate the Jacobian of the system (2.8) at DFE, and is given by

JP 0
1
=




−µ 0 −rQβ −rAβ −β −rJβ 0
0 −(γ1 + k1 + µ) rQβ rAβ β rJβ 0
0 γ1 −(k2 + σ1 + µ) 0 0 0 0
0 pk1 0 −(σ2 + µ) 0 0 0
0 (1− p)k1 0 0 −(γ2 + σ3 + µ) 0 0
0 0 k2 0 γ2 −(δ + σ4 + µ) 0
0 0 σ1 σ2 σ3 σ4 −µ




,

Let λ be the eigenvalue of the matrix JP 0
1
. Then the characteristic equation is given

by det(JP 0
1
− λI) = 0.

⇒ rJβγ1k2(λ+σ2 +µ)(λ+ γ2 +σ3+µ)+ rJβγ2k1(λ+ k2+σ1 +µ)[(1− p)(λ+σ2 +µ)]+
rAβpk1(λ+γ2+σ3+µ)(λ+δ+σ4+µ)(λ+k2+σ1+µ)+βk1[(1−p)(λ+σ2+µ)](λ+δ+σ4+
µ)(λ+k2+σ1+µ)−(λ+γ1+k1+µ)(λ+σ2+µ)(λ+γ2+σ3+µ)(λ+δ+σ4+µ)(λ+k2+σ1+µ) =
0.
Which can be written as

rQβγ1
(λ+ γ1 + k1 + µ)(λ+ k2 + σ1 + µ)

+
rAβpk1

(λ+ γ1 + k1 + µ)(λ+ σ2 + µ)
+

βk1(1− p)

(λ+ γ1 + k1 + µ)(λ+ γ2 + σ3 + µ)

+
rJβ[γ1k2(λ+ σ2 + µ)(λ+ γ2 + σ3 + µ) + (1− p)k1γ2(λ+ k2 + σ1 + µ)(λ+ σ2 + µ)]

(λ+ γ1 + k1 + µ)(λ+ k2 + σ1 + µ)(λ+ σ2 + µ)(λ+ γ2 + σ3 + µ)(λ+ δ + σ4 + µ)
= 1.

Denote

G1(λ) =
rQβγ1

(λ+ γ1 + k1 + µ)(λ+ k2 + σ1 + µ)
+

rAβpk1
(λ+ γ1 + k1 + µ)(λ+ σ2 + µ)

+
βk1(1− p)

(λ+ γ1 + k1 + µ)(λ+ γ2 + σ3 + µ)

+
rJβγ1k2

(λ+ γ1 + k1 + µ)(λ+ k2 + σ1 + µ)(λ+ δ + σ4 + µ)

+
rJβ(1− p)k1γ2

(λ+ γ1 + k1 + µ)(λ+ γ2 + σ3 + µ)(λ+ δ + σ4 + µ)
.

We rewrite G1(λ) as G1(λ) = G11(λ) +G12(λ) +G13(λ) +G14(λ) +G15(λ)
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Now if Re(λ) ≥ 0, λ = x+ iy, then

|G11(λ)| ≤
rQβγ1

|λ+ γ1 + k1 + µ||λ+ k2 + σ1 + µ|
≤ G11(x) ≤ G11(0)

|G12(λ)| ≤
rAβpk1

|λ+ γ1 + k1 + µ||λ+ σ2 + µ|
≤ G12(x) ≤ G12(0)

|G13(λ)| ≤
βk1(1− p)

|λ+ γ1 + k1 + µ||λ+ γ2 + σ3 + µ|
≤ G13(x) ≤ G13(0)

|G14(λ)| ≤
rJβγ1k2

|λ+ γ1 + k1 + µ||λ+ k2 + σ1 + µ||λ+ δ + σ4 + µ|
≤ G14(x) ≤ G14(0)

|G15(λ)| ≤
rJβ(1− p)k1γ2

|λ+ γ1 + k1 + µ||λ+ γ2 + σ3 + µ||λ+ δ + σ4 + µ|
≤ G15(x) ≤ G15(0)

Then G11(0) + G12(0) + G13(0) + G14(0) + G15(0) = G1(0) = Rc < 1, which implies
|G1(λ)| ≤ 1.
Thus for Rc < 1, all the eigenvalues of the characteristics equation G1(λ) = 1 has negative real
parts.

Therefore if Rc < 1, all eigenvalues are negative and hence DFE P 0
1 is locally asymptotically

stable.
Now if we consider Rc > 1 i.e G1(0) > 1, then

lim
λ→∞

G1(λ) = 0.

Then there exist λ∗

1 > 0 such that G1(λ
∗

1) = 1.
That means there exist positive eigenvalue λ∗

1 > 0 of the Jacobian matrix.
Hence DFE P 0

1 is unstable whenever Rc > 1.

Theorem 3.2. The diseases free equilibrium (DFE) P 0
1 = (S0, 0, 0, 0, 0, 0, R0) is globally

asymptotically stable (GAS) for the system (2.8) if Rc < 1 and unstable if Rc > 1.

Proof. We rewrite the system (2.8) as

dX

dt
= F (X, V )

dV

dt
= G(X, V ), G(X, 0) = 0

where X = (S,R) ∈ R2 (the number of uninfected individuals compartments), V =
(E,Q,A, I, J) ∈ R5 (the number of infected individuals compartments), and P 0

1 =
(Π
µ
, 0, 0, 0, 0, 0, 0) is the DFE of the system (2.8). The global stability of the DFE is

guaranteed if the following two conditions are satisfied:

1. For dX
dt

= F (X, 0), X∗ is globally asymptotically stable,

2. G(X, V ) = BV − Ĝ(X, V ), Ĝ(X, V ) ≥ 0 for (X, V ) ∈ Ω,
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where B = DVG(X∗, 0) is a Metzler matrix and Ω is the positively invariant set with
respect to the model (2.8). Following Castillo-Chavez et al [13], we check for aforemen-
tioned conditions.
For system (2.8),

F (X, 0) =

[
Π− µS

0

]
,

B =




−(γ1 + k1 + µ) rQβ rAβ β rJβ
γ1 −(k2 + σ1 + µ) 0 0 0
pk1 0 −(σ2 + µ) 0 0

(1− p)k1 0 0 −(γ2 + σ3 + µ) 0
0 k2 0 γ2 −(δ + σ4 + µ)




and

Ĝ(X, V ) =




rQβQ(1− S
N−Q−J

) + rAβA(1−
S

N−Q−J
) + βI(1− S

N−Q−J
) + rJβJ(1−

S
N−Q−J

)

0
0
0
0



.

Clearly, Ĝ(X, V ) ≥ 0 whenever the state variables are inside Ω. Also it is clear that
X∗ = (Π

d
, 0) is a globally asymptotically stable equilibrium of the system dX

dt
= F (X, 0).

Hence, the theorem follows.

3.4. Existence and local stability of endemic equilibrium

In this section, the existence of the endemic equilibrium of the model (2.8) is estab-

lished. Let us denote

m1 = γ1 + k1 + µ,m2 = k2 + σ1 + µ,m3 = σ2 + µ,

m4 = γ2 + σ3 + µ,m5 = δ + σ4 + µ.

Let P ∗ = (S∗, E∗, Q∗, A∗, I∗, J∗, R∗) represents any arbitrary endemic equilibrium point

(EEP) of the model (2.8). Further, define

η∗ =
β(I∗ + rQQ

∗ + rAA
∗ + rJJ

∗)

N∗ −Q∗ − J∗
(3.3)

It follows, by solving the equations in (2.8) at steady-state, that

S∗ =
Π

η∗ + µ
,E∗ =

η∗S∗

m1

, Q∗ =
γ1η

∗S∗

m1m2

, A∗ =
pk1η

∗S∗

m1m3

, (3.4)

I∗ =
(1− p)k1η

∗S∗

m1m4

, J∗ =
η∗S∗(k2γ1m4 + (1− p)k1γ2m2)

m1m2m4m5

R∗ =
η∗S∗[σ1γ1m3m4m5 + pk1σ2m2m4m5 + (1− p)k1σ3m2m3m5 +m3σ4(k2γ1m4 + (1− p)k1γ2m2)]

µm1m2m3m4m5

13



Substituting the expression in (3.4) into (3.3) shows that the non-zero equilibrium of the

model (2.8) satisfy the following linear equation, in terms of η∗:

Aη∗ +B = 0 (3.5)

where

A = µ[m2m3m4m5 + pk1m2m4m5 + (1− p)k1m2m3m5] + σ1γ1m3m4m5

+ σ2pk1m2m4m5 + (1− p)k1σ3m2m3m5 + σ4k2γ1m3m4 + (1− p)σ4γ2k1m2m3

B = µm1m2m3m4m5(1− Rc)

Since A > 0, µ > 0, m1 > 0, m2 > 0, m3 > 0, m4 > 0 and m5 > 0, it is clear that

the model (2.8) has a unique endemic equilibrium point (EEP) whenever Rc > 1 and

no positive endemic equilibrium point whenever Rc < 1. This rules out the possibility

of the existence of equilibrium other than DFE whenever Rc < 1. Furthermore, it can

be shown that, the DFE P 0
1 of the model (2.8) is globally asymptotically stable (GAS)

whenever Rc < 1.

From the above discussion we have concluded that

Theorem 3.3. The model (2.8) has a unique endemic (positive) equilibrium, given by
P ∗, whenever Rc > 1 and has no endemic equilibrium for Rc ≤ 1.

Now we will prove the local stability of endemic equilibrium.

Theorem 3.4. The endemic equilibrium P ∗ is locally asymptotically stable if RC > 1.

Proof. The Jacobian matrix of the system (2.8) JP 0
1
at DFE is given by

JP 0
1
=




−µ 0 −rQβ −rAβ −β −rJβ 0
0 −(γ1 + k1 + µ) rQβ rAβ β rJβ 0
0 γ1 −(k2 + σ1 + µ) 0 0 0 0
0 pk1 0 −(σ2 + µ) 0 0 0
0 (1− p)k1 0 0 −(γ2 + σ3 + µ) 0 0
0 0 k2 0 γ2 −(δ + σ4 + µ) 0
0 0 σ1 σ2 σ3 σ4 −µ




,

Here, we use the central manifold theory method to determine the local stability
of the endemic equilibrium by taking β as bifurcation parameter [14]. Select β as the
bifurcation parameter and gives critical value of β at RC = 1 is given as

β∗ =
(γ1 + k1 + µ)(k2 + σ1 + µ)(σ2 + µ)(γ2 + σ3 + µ)(δ + σ4 + µ)

[rQγ1(σ2 + µ)(γ2 + σ3 + µ)(δ + σ4 + µ) + rApk1(k2 + σ1 + µ)(γ2 + σ3 + µ)(δ + σ4 + µ) + Z]

14



where, Z = k1(1 − p)(k2 + σ1 + µ)(σ2 + µ)(δ + σ4 + µ) + rJγ1k2(σ2 + µ)(γ2 + σ3 + µ) +
rJ(1− p)k1γ2(k2 + σ1 + µ)(σ2 + µ)

The Jacobian of (2.8) at β = β∗, denoted by JP 0
1
|β=β∗ has a right eigenvector (corre-

sponding to the zero eigenvalue) given by w = (w1, w2, w3, w4, w5, w6, w7)
T , where

w1 = −
γ1 + k1 + µ

µ
w2, w2 = w2 > 0, w3 =

γ1
k2 + σ1 + µ

w2, w4 =
pk1

σ2 + µ
w2,

w5 =
(1− p)k1
γ2 + σ3 + µ

w2, w6 =
k2γ1

(δ + σ4 + µ)(k2 + σ1 + µ)
w2 +

γ2(1− p)k1
(δ + σ4 + µ)(γ2 + σ3 + µ)

w2

w7 =
1

µ

[ σ1γ1
k2 + σ1 + µ

w2 +
σ2pk1
σ2 + µ

w2 +
σ3(1− p)k1

γ2 + σ3 + µ]w2
+

σ4k2γ1
(δ + σ + µ)(k2 + σ1 + µ)

w2

+
σ4γ2(1− p)k1

(δ + σ + µ)(γ2 + σ3 + µ)
w2

]
.

Similarly, from JP 0
1
|β=β∗ , we obtain a left eigenvector v = (v1, v2, v3, v4, v5, v6, v7)

T (cor-
responding to the zero eigenvalue), where

v1 = 0, v2 = v2 > 0, v3 =
rQβ

∗

k2 + σ1 + µ
v2 +

k2rJβ
∗

(k2 + σ1 + µ)(δ + σ4 + µ)
v2, v4 =

rAβ
∗

σ2 + µ
v2,

v5 =
β∗

γ2 + σ3 + µ
v2 +

γ2rJβ
∗

(γ2 + σ3 + µ)(δ + σ4 + µ)
v2, v6 =

rJβ
∗

δ + σ4 + µ
v2, v7 = 0.

Using the notations S = x1, E = x2, Q = x3, A = x4, I = x5, J = x6 and R = x7.
Hence, we have

a =
7∑

k,i,j=1

vkwiwj

∂2fk(0, 0)

∂xi∂xj

and

b =
7∑

k,i=1

vkwi

∂2fk(0, 0)

∂xi∂β

Replacing the values of all the second-order derivatives measured at DFE and β = β∗,
we get

a = −
2β∗µv2

Π
(rQw3 + rAw4 + w5 + rJw6)(w2 + w4 + w5 + w7) < 0

and

b = v2(rQw3 + rAw4 + w5 + rJw6) > 0

Since a < 0 and b > 0 at β = β∗, therefore using the Remark 1 of the Theorem 4.1 stated
in [14], a transcritical bifurcation occurs at RC = 1 and the unique endemic equilibrium
is locally asymptotically stable for RC > 1.
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3.5. Threshold analysis

In this section the impact of quarantine and isolation is measured qualitatively on the

disease transmission dynamics. A threshold study of the parameters correlated with the

quarantine of exposed individuals γ1and the isolation of the infected symptomatic indi-

viduals γ2 is performed by measuring the partial derivatives of the control reproduction

number Rc with respect to these parameters. We observe that

∂Rc

∂γ1
=

rQβ(k1 + µ)

(γ1 + k1 + µ)2(k2 + σ + µ)
−

rAβpk1
(γ1 + k1 + µ)2(σ2 + µ)

−
βk1(1− p)

(γ1 + k1 + µ)2(γ2 + σ3 + µ)

+
rJβ

(γ1 + k1 + µ)2(γ2 + σ3 + µ)

[ k2(k1 + µ)

k2 + σ1 + µ
−

(1− p)k1γ2
γ2 + σ3 + µ

]

so that, ∂Rc

∂γ1
< 0 (> 0) iff rQ < rγ1 (rQ > rγ1)

where

0 < rγ1 =
k2 + σ1 + µ

k1 + µ

[ rApk1
σ2 + µ

+
k1(1− p)

γ2 + σ3 + µ

]

+
rJ(k2 + σ1 + µ)

(k1 + µ)(δ + σ4 + µ)

[ (1− p)k1γ2
γ2 + σ3 + µ

−
k2(k1 + µ)

k2 + σ1 + µ

]

From the previous analysis it is obvious that if the relative infectiousness of quarantine

individuals rQ will not cross the threshold value rγ1 , then quarantining of exposed individ-

uals results in reduction of the control reproduction number Rc and therefore reduction

of the disease burden. On the other side, if rQ > rγ1 , then the control reproduction

number Rc would rise due to the increase in the quarantine rate and thus the disease

burden will also rise and therefore the use of quarantine in this scenario is harmful. The

result is summarized in the following way:

Theorem 3.5. For the model (2.8), the use of quarantine of the exposed individuals will
have positive (negative) population-level impact if rQ < rγ1 (rQ > rγ1).

Similarly, measuring the partial derivatives of Rc with respect to the isolation param-

eter γ2is used to determine the effect of isolation of infected symptomatic individuals.

Thus, we obtain

∂Rc

∂γ2
=

rJβ(1− p)k1
(γ1 + k1 + µ)(γ2 + σ3 + µ)(δ + σ4 + µ)

−
rJβ(1− p)k1γ2

(γ1 + k1 + µ)(γ2 + σ3 + µ)2(δ + σ4 + µ)

−
βk1(1− p)

(γ1 + k1 + µ)(γ2 + σ3 + µ)2

Thus, ∂Rc

∂γ2
< 0 (> 0) iff rJ < rγ2 (rJ > rγ2)

where

0 < rγ2 =
δ + σ4 + µ

σ3 + µ

16



The use of isolation of infected symptomatic individuals will also be effective in controlling

the disease in the population if the relative infectiousness of the isolated individuals rJ
does not cross the threshold rγ2 . The result is summarized below:

Theorem 3.6. For the model (2.8), the use of isolation of infected symptomatic individ-
uals will have positive (negative) population-level impact if rJ < rγ2 (rJ > rγ2).

The control reproduction number Rc is a decreasing (non dcreasing) function of the

quarantine and isolation parameters γ1 and γ2 if the conditions rQ < rγ1 and rJ < rγ2 are

respectively satisfied. See figure 8(a) and 8(b) obtained from model simulation in which

the results correspond to the theoretical findings discussed.

3.6. Model without control and basic reproduction number

We consider the system in this section when there is no control mechanism, that is,

in the absence of quarantined and isolated classes. Setting γ1 = γ2 = 0 in the model

(2.8) give the following reduce model

dS

dt
= Π−

S(βI + rAβA)

N̂
− µS,

dE

dt
=

S(βI + rAβA)

N̂
− (k1 + µ)E,

dA

dt
= pk1E − (σ2 + µ)A, (3.6)

dI

dt
= (1− p)k1E − (σ3 + µ)I,

dR

dt
= σ2A + σ3I − µR,

Where N̂ = S + E + A + I + R. The diseases-free equilibrium can be obtained for the

system (3.6) by putting E = 0, A = 0, I = 0, which is denoted by P 0
2 = (S0, 0, 0, 0, R0),

where

S0 =
Π

µ
,R0 = 0.

We will follow the convention that the basic reproduction number is defined in the absence

of control measure, denoted by R0 whereas we calculate the control reproduction number

when the control measure are in the place. The basic reproduction number R0 is defined

as the expected number of secondary infections produced by a single infected individual

in a fully susceptible population during his infectious period [11; 23; 29]. We calculate

R0 in the same way as we calculate Rc by using next generation operator method [48].

Now we calculate the jacobian of F and V at DFE P 0
2
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F =
∂F

∂X
=



0 rAβ β

0 0 0

0 0 0


 , V =

∂V

∂X
=



γ1 + k1 + µ 0 0

−pk1 σ2 + µ 0

−(1− p)k1 0 γ2 + σ3 + µ


 .

Following [28], R0 = ρ(FV −1), where ρ is the spectral radius of the next-generation

matrix (FV −1). Thus, from the model (3.6), we have the following expression for R0:

R0 =
rAβpk1

(k1 + µ)(σ2 + µ)
+

βk1(1− p)

(k1 + µ)(σ3 + µ)
(3.7)

Thus, R0 is Rc with γ1 = γ2 = 0.

3.6.1. Stability of DFE of the model 3.6

Theorem 3.7. The diseases free equilibrium (DFE) P 0
2 = (S0, 0, 0, 0, R0) of the system

(3.6) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. We calculate the Jacobian of the system (3.6) at DFE P 0
2 , is given by

JP 0
2
=




−µ 0 −rAβ −β 0
0 −(k1 + µ) rAβ β 0
0 pk1 −(σ2 + µ) 0 0
0 (1− p)k1 0 −(σ3 + µ) 0
0 0 σ2 σ3 −µ




Let λ be the eigenvalue of the matrix JP 0
2
. Then the characteristic equation is given by

det(JP 0
2
− λI) = 0.

⇒ rAβpk1(λ+σ3+µ)+βk1[(1−p)(λ+σ2+µ)]−(λ+k1+µ)(λ+σ2+µ)(λ+σ3+µ) = 0.

which implies

rAβpk1
(λ+ k1 + µ)(λ+ σ2 + µ)

+
βk1(1− p)

(λ+ k1 + µ)(λ+ σ3 + µ)
= 1.

Denote

G2(λ) =
rAβpk1

(λ+ k1 + µ)(λ+ σ2 + µ)
+

βk1(1− p)

(λ+ k1 + µ)(λ+ σ3 + µ)
.

We rewrite G2(λ) as G2(λ) = G21(λ) +G22(λ)
Now if Re(λ) ≥ 0, λ = x+ iy, then

|G21(λ)| ≤
rAβpk1

|λ+ k1 + µ||λ+ σ2 + µ|
≤ G21(x) ≤ G21(0)

|G22(λ)| ≤
βk1(1− p)

|λ+ k1 + µ||λ+ σ3 + µ|
≤ G22(x) ≤ G22(0)
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Then G21(0) +G22(0) = G2(0) = R0 < 1, which implies |G2(λ)| ≤ 1.
Thus for R0 < 1, all the eigenvalues of the characteristics equation G2(λ) = 1 has negative
real parts.

Therefore if R0 < 1, all eigenvalues are negative and hence DFE P 0
2 is locally asymp-

totically stable.
Now if we consider R0 > 1 i.e G2(0) > 1, then

lim
λ→∞

G2(λ) = 0.

Then there exist λ∗ > 0 such that G2(λ
∗) = 1.

That means there exist positive eigenvalue λ∗ > 0 of the Jacobian matrix.
Hence DFE P 0

2 is unstable whenever R0 > 1.

Theorem 3.8. The diseases free equilibrium (DFE) P 0
2 = (S0, 0, 0, 0, R0) is globally

asymptotically stable for the system (3.6) if R0 < 1 and unstable if R0 > 1.

Proof. We rewrite the system (3.6)as

dX

dt
= F1(X, V )

dV

dt
= G1(X, V ), G1(X, 0) = 0

where X = (S,R) ∈ R2 (the number of uninfected individuals compartments), V =
(E,A, I) ∈ R3 (the number of infected individuals compartments), and P 0

2 = (Π
µ
, 0, 0, 0, 0)

is the DFE of the system (3.6). The global stability of the DFE is guaranteed if the
following two conditions are satisfied:

1. For dX
dt

= F1(X, 0), X∗ is globally asymptotically stable,

2. G1(X, V ) = BV − Ĝ1(X, V ), Ĝ1(X, V ) ≥ 0 for (X, V ) ∈ Ω̂,

where B = DVG1(X
∗, 0) is a Metzler matrix and Ω̂ is the positively invariant set with

respect to the model (3.6). Following Castillo-Chavez et al [13], we check for aforemen-
tioned conditions.
For system (3.6),

F1(X, 0) =

[
Π− µS

0

]
,

B =



−(k1 + µ) rAβ β

pk1 −(σ2 + µ) 0
(1− p)k1 0 −(σ3 + µ)



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and

Ĝ1(X, V ) =



rAβA(1−

S

N̂
) + βI(1− S

N̂
)

0
0


 .

Clearly, Ĝ1(X, V ) ≥ 0 whenever the state variables are inside Ω. Also it is clear that
X∗ = (Π

d
, 0) is a globally asymptotically stable equilibrium of the system dX

dt
= F1(X, 0).

Hence, the theorem follows.

4. Model Calibration and epidemic potentials

We calibrated our 2019-nCoV model (2.8) to the daily new COVID cases for the

five provinces of China namely Hubei, Guangdong, Henan, Zhejiang and Hunan. Daily

COVID cases are collected for the period 22nd January, 2020- 21st February, 2020 from

the official websites of the National Health Commission of China and Provincial Health

Committees and World Health Organization [5; 1]. We fit the model (2.8) to daily new

isolated cases of COVID in the five provinces. Due to the high transmissibility the notified

cases are immediately isolated, and therefore it is convenient to fit the isolated cases to

reported data. Also we fit the model (2.8) to cumulative isolated cases of COVID in those

five provinces. We estimate the diseases transmission rates by humans, β , quarantine

rate of exposed individuals, γ1, isolation rate of infected individual, γ2, rate at which

quarantined individuals are isolated, k2, recovery rate from quarantined individuals, σ1,

recovery rate from asymptomatic individuals, σ2, recovery rate from isolated individuals,

σ4, and initial population sizes to match the COVID cases in five provinces of China.

The COVID data are fitted using the Nonlinear Least Squares fitting routine lsqnonlin

in the optimization tool box (MATLAB, R2017a). The estimated parameters are given

in Table 3. We also estimate the initial conditions of the human population and the

estimated values are given by Table 4. The fitting of the daily new isolated COVID cases

in five provinces of China are displayed in Figure 2 and the fitting of the daily cumulative

isolated cases are displayed in Figure 3.
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Figure 2: Model simulations fitted to daily new isolated COVID cases in (a) Hubei, (b) Guangdong, (c)
Henan, (d) Zhejiang and (e) Hunan. Observed data points are shown in black circle and the solid red
line depicts the model solutions.
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Figure 3: Model simulations fitted to daily cumulative isolated COVID cases in (a) Hubei, (b) Guang-
dong, (c) Henan, (d) Zhejiang and (e) Hunan. Observed data points are shown in black circle and the
solid red line depicts the model solutions.

Table 2: Recruitment rates and disease induced mortality rates for the five provinces of China.

Parameters Hubei Guangdong Henan Zhejiang Hunan
Π 2711 4072 3447 2059 2476
δ 0.034 0.00038 0.0157 0.00083 0.004
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Table 3: Estimated parameters for the five provinces of China.

Parameters Hubei Guangdong Henan Zhejiang Hunan
β 1.8457 1.6801 1.8344 1.6909 1.6646
γ1 0.8570 0.8413 0.8478 0.9443 0.7097
γ2 0.3249 0.0251 0.0177 0.0260 0.0196
k2 0.0505 0.0000001 0.0000006 0.0000001 0.0000001
σ1 0.3690 0.2633 0.2369 0.2222 0.3444
σ2 0.2561 0.1741 0.4644 0.1503 0.1750
σ4 0.2949 0.4755 0.4073 0.3558 0.6203

Table 4: Estimated initial population sizes for the five provinces of China.

Initial values Hubei Guangdong Henan Zhejiang Hunan
S(0) 499980 160600 232730 172350 173950
E(0) 1147 17.89 905 110 31
Q(0) 1583 106 945 2001 37
A(0) 1.6 9704 9998 9798 9992
I(0) 914 77 386 1.4 14
J(0) 105 12 1 5 1
R(0) 280 85.7 0.5 23 175

Using these estimated parameters and the fixed parameters from Table 1, we calculate

the basic reproduction numbers (R0) and control reproduction numbers (Rc) for all of

the five provinces. These estimates are given in Table 5

Table 5: Epidemic potentials of the five different provinces.

Reproduction
number

Hubei Guangdong Henan Zhejiang Hunan

R0 3.9098 3.7420 3.6956 3.8571 3.7045
Rc 2.0042 2.1695 2.5143 2.4845 1.8158

From Table 5, we observe that the estimated R0 values matches with the previous

estimates [52; 42; 7; 9; 51]. Rc values are all above unity, which indicates that these

provinces should increase the control interventions to limit future COVID cases.

5. Short-term predictions

In this section, the short-term prediction capability of the model 2.8 is studied. Using

estimated parameters form Tables 3 and 4, we simulate the newly isolated COVID cases
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for the period 22nd February, 2020 - 12th March, 2020. All other fixed parameters

are taken from Table 1 and 2. The short-term prediction for five provinces of China is

depicted in Fig 4.
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Figure 4: Short term predictions for the five provinces of China namely (a) Hubei, (b) Guangdong, (c)
Henan, (d) Zhejiang and (e) Hunan. The blue line represent the predicted new isolated COVID cases
while the solid dots are the actual cases. Here we have seen that the model performs excellently in case
of five provinces namely Hubei, Guangdong, Henan, Zhejiang and Hunan and captured the decreasing
trends of new COVID cases.

We calculate two performance metrics, namely Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE) to assess the accuracy of the predictions. This is defined

using a set of performance metrics as follows:
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Mean Absolute Error (MAE):

MAE =
1

Np

Np∑

i=1

|Y (i)− Ŷ (i)|

Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

Np

Np∑

i=1

(Y (i)− Ŷ (i))2

where Y (i) represent original cases, ˆY (i) are predicted values and Np represents the

sample size of the data. These performance metrics are reported in Table 6.

Table 6: Accuracy of the predictions in the five provinces.

Performance
metrics

Hubei Guangdong Henan Zhejiang Hunan

MAE 220.7821 3.9570 2.9794 1.9114 1.9239
RMSE 332.5486 4.2188 3.2779 2.2472 2.1823

We found that the model performs excellently in case of four of the provinces namely

Guangdong, Henan, Zhejiang and Hunan. On the other hand, the model performance is

slightly worse for Hubei province compared to other provinces as the number of confirmed

COVID cases are high. However, the decreasing trend of newly isolated COVID cases is

well captured by the model for all the five provinces. Furthermore, to check the long term

dynamics of the model we studied the time series. The short-term predictions displayed

a decreasing trend but the values of Rc for each of the provinces were above unity. So,

there may be a future outbreak in the long run. In Fig. 5, we plot the time series starting

from 13 March, 2020 up-to 1000 days.

From Fig. 5, it can be observed that Hubei can experience future outbreaks if the

control strategies are not implemented more efficiently. Sajadi et. al [44] assumed a

seasonal pattern in the transmission dynamics of COVID and concluded that the COVID

cases will amplify in the winter season. Our findings also indicate similar transmission

patterns. The reason behind the endemicity of the disease is that Rc > 1, i.e., the DFE of

the system is unstable. However, if the control measures are increased (or Rc is decreased

below unity) and maintained efficiently, the subsequent outbreaks can be controlled.

6. Control strategies for Hubei province

In this section, we analyze sensitivity of model parameters with respect to the signif-

icant response variable, and analyze different control parameters to limit COVID cases
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Figure 5: Long term prediction of new symptomatic infected cases in the Hubei province. Parameters
and initial conditions are taken from Tables 1, 2 3 and 4

throughout Hubei province. In order to get an overview of most influential parameters,

we compute the normalized sensitivity indices of the model parameters with respect to

Rc. We have chosen parameters transmission rate between human population β, the

control related parameters, γ1, γ2 and k2, the recovery rates from quarantine individuals

σ1, asymptomatic individuals σ2 and isolated individuals σ4 and the effect of diseases

induced mortality rate δ for sensitivity analysis. For the Hubei province, we compute

normalized forward sensitivity indices of these parameters with respect to the control

reproduction number Rc. We use the estimated parameters from Table 3 for the baseline

values. The rest of the parameter values are the same as in Table 1 and Table 2. However,

the mathematical definition of the normalized forward sensitivity index of a variable m

with respect to a parameter τ (where m depends explicitly on the parameter τ) is given

as:

Xτ
m =

∂m

∂τ
×

τ

m
.

The sensitivity indices of Rc with respect to the parameters β, γ1, γ2, k2, σ1, σ2, σ4 and

δ are given by Table 7.

26



Table 7: Description of variables used in the model

Xβ
Rc

Xγ1
Rc

Xγ2
Rc

Xk2
Rc

Xσ1

Rc
Xσ2

Rc
Xσ4

Rc
Xδ

Rc

1.0000 -0.1194 -0.0097 0.0845 -0.6488 -0.0304 -0.2327 -0.0268

The fact that Xβ
Rc

= 1 means that if we increase 1% in β, keeping other parameters

be fixed, will produce 1% increase in Rc. Similarly, Xσ1

Rc
= −0.6488 means increasing the

parameter σ1 by 1%, the value of Rc will be decrease by 0.6488% keeping the value of

other parameters be fixed. Therefore, the transmission rate between susceptible humans

and COVID infected humans is positively correlated and recovery rate from quaran-

tined individuals is negatively correlated with respect to control reproduction number

respectively.

In addition, we draw the contour plots of Rc with respect to the parameters γ1 and

γ2 for the model (2.8) to investigate the effect of the control parameters on control

reproduction number Rc, see Figure 6.

The contour plots of Figure 6 show the dependence of Rc on the quarantine rate

γ1 and the isolation rate γ2 for the Hubei province. The axes of these plots are given

as average days from exposed to quarantine (1/γ1) and average days from starting of

symptoms to isolation (1/γ2). For both cases, the contours show that, increasing γ1 and

γ2 reduces the amount of control reproduction number Rc and, therefore, COVID cases.

For Hubei, using the parameters set from Table 1, 2, 3, 4 and rQ = 0.3, we conclude that

quarantine and isolation are not sufficient to control the outbreak (see Figure 6(a) and

6(c)). With these parameter values, as γ1 increases, Rc decreases and similarly, when γ2
increases, Rc decreases. But, in the both cases Rc > 1, and therefore the disease will

persist in the population (i.e. the above control measures cannot lead to effective control

of the epidemic). By contrast, our study shows that when the modification factor for

quarantine become zero (so that rQ = 0), the outbreak can be controlled (see Figure

6(b) and 6(d)). From the above finding it follows that neither the quarantine of exposed

individuals nor the isolation of symptomatic individuals will prevent the disease with the

high value of the modification factor for quarantine. This control can be obtained by a

significant reduction in COVID transmission during quarantine (that is reducing rQ ).

Furthermore, we study the effect of the parameters modification factor for quaran-

tined individuals (rQ), modification factor for isolated individuals (rJ) and transmission

rate (β) on the newly infected symptomatic COVID cases (Icum) in the Hubei province.

The cumulative number of symptomatic cases has been computed at day 100 (chosen

arbitrarily). The effect of controllable parameters on (Icum) are shown in Fig. 7.
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Figure 6: Contour plots of Rc versus average days to quarantine (1/γ1) and isolation (1/γ2) for the Hubei
province, (a) in the presence of both modification factors for quarantined (rQ) and isolation (rJ )(b) in
the presence of modification factors for isolation (rJ ) only (c) in the presence of modification factors
for quarantined (rQ) only and(d) in the absence of both modification factors for quarantined (rQ) and
isolation (rJ ). All parameter values other than γ1 and γ2 are given in Table 3 for the Hubei province.
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Figure 7: Effect of controllable parameters γ1, γ2 and β on the cumulative number of symptomatic
infected COVID cases. The left panel shows the variability of the Icum with respect to 1

γ1

and 1

γ2

. The
right panel shows Icum with decreasing transmission rate β.

We observe that all the three parameters have significant effect on the cumulative
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outcome of the epidemic. From Fig. 7(a) it is clear that decrease in the modification

factor for quarantined and isolated individuals will significantly reduce the value of Icum.

On the other hand Fig. 7(b) indicates, reduction in transmission rate will also slow down

the epidemic significantly. These results point out that all the three control measures are

quite effective in reduction of the COVID cases in Hubei. Thus, quarantine and isolation

efficacy should be increased by means of proper hygene and personal protection by health

care stuffs. Additionally, the transmission coefficient can be reduced by avoiding contacts

with suspected COVID infected cases.

Furthermore, We numerically calculated the thresholds rγ1 and rγ2 for Hubei province.

The analytical expression of the thresholds are given in subsection (3.5). The effectiveness

of quarantine and isolation depends on the values of the modification parameters rQ and

rJ for the reduction of infected individuals. The threshold value of rQ corresponding to

quarantine parameter γ1 is rγ1 = 0.7439 and the threshold value of rJ corresponding to

isolation parameter γ2 is rγ2 = 0.715.
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Figure 8: Effect of isolation parameters γ1 and γ2 on control reproduction number Rc.

From figure 8(a) it is clear that quarantine parameter γ1 has positive population-level

impact (Rc decreases with increase in γ1) for rQ < 0.7439 and have negative population

level impact for rQ > 0.7439. Similarly from the figure 8(b), it is clear that, isolation has

positive level impact for rJ < 0.715, whereas isolation has negative impact if rJ > 0.715.

This result indicate that isolation and quarantine programs should run effective so that

the modification parameters remain below the above mentioned threshold.

7. Discussion

During the period of an epidemic when human-to-human transmission is established

and reported cases of COVID are rising worldwide, forecasting is of utmost importance
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for health care planning and control the virus with limited resource. In this study, we

have formulated and analyzed a compartmental epidemic model of COVID to predict and

control the outbreak. The basic reproduction number and control reproduction number

are calculated for the proposed model. It is also shown that whenever R0 < 1, the DFE of

the model without control is globally asymptotically stable. The efficacy of quarantine of

exposed individuals and isolation of infected symptomatic individuals depends on the size

of the modification parameter to reduce the infectiousness of exposed (rQ) and isolated

(rJ) individuals. The usage of quarantine and isolation will have positive population-level

impact if rQ < rγ1 and rJ < rγ2 respectively. We calibrated the proposed model to fit

daily data from five provinces of China namely, Hubei, Guangdong, Henan, Zhejiang and

Hunan. Using the parameter estimates, we then found the basic and control reproducton

numbers for these five provinces. Our findings suggest that independent self-sustaining

human-to-human spread (R0 > 1, Rc > 1) is already present in all the five provinces. The

estimates of control reproduction number indicate that sustained control interventions

are necessary to reduce the future COVID cases. The health care agencies should focus

on successful implementation of control mechanisms to reduce the burden of the disease.

The calibrated model then checked for short-term predictability in the five provinces.

It is seen that the model performs excellently in case of four of the provinces namely

Guangdong, Henan, Zhejiang and Hunan while in case of Hubei, the model performance

is slightly worse (Fig. 4). However, the decreasing trend of new COVID cases is well

captured by the model for all the five provinces. The model predicted that all the five

provinces will show decreasing trend of cases in the near future. But long term prediction

show a oscillatory behaviour of disease incidence for Hubei province (Fig. 5). However,

if the control measures are increased (or Rc is decreased below unity to ensure GAS of

the DFE) and maintained efficiently, the subsequent outbreaks can be controlled.

Having an estimate of the parameters and prediction results, we concentrate on Hubei

province for control intervention related numerical experiments. Sensitivity analysis re-

veal that the transmission rate is positively correlated and quarantine and isolation rates

negatively correlated with respect to control reproduction number. This indicate that

increasing quarantine and isolation rates and decreasing transmission rate will decrease

the control reproduction number and consequently will reduce the disease burden.

While investigating the contour plots 6, we found that effective management of quar-

antined individuals is more effective that management of isolated individuals to reduce

the control reproduction number below unity. Thus if limited resources are available,

then investing on the quarantined individuals will be more fruitful in terms of reduction

of cases.

Finally, we studied the effect of modification factor for quarantined population, mod-

ification factor for isolated population and transmission rate on the newly infected symp-
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tomatic COVID cases in the Hubei province. Numerical results show that all the three

control measures are quite effective in reduction of the COVID cases in Hubei (Fig. 7).

The threshold analysis reinforce that the quarantine and isolation efficacy should be in-

creased to reduce the epidemic in Hubei (Fig. 8). Thus, quarantine and isolation efficacy

should be increased by means of proper hygene and personal protection by health care

stuffs. Additionally, the transmission coefficient can be reduced by avoiding contacts

with suspected COVID infected cases.

In summary, our study suggests that COVID has a potential to show oscillatory

behaviour in the future but it is controllable by social distancing measures and efficiency

in quarantine and isolation. The ongoing control interventions should be adequately

funded and monitored. Health care officials should supply medications, protective masks

and necessary human resources in the affected areas.
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[19] Gerardo Chowell, Santiago Echevarŕıa-Zuno, Cecile Viboud, Lone Simonsen, James

Tamerius, Mark A Miller, and V́ıctor H Borja-Aburto. Characterizing the epidemi-

ology of the 2009 influenza a/h1n1 pandemic in mexico. PLoS medicine, 8(5), 2011.

[20] Benjamin J Cowling, Minah Park, Vicky J Fang, Peng Wu, Gabriel M Leung, and

Joseph T Wu. Preliminary epidemiologic assessment of mers-cov outbreak in south

korea, may–june 2015. Euro surveillance: bulletin Europeen sur les maladies trans-

missibles= European communicable disease bulletin, 20(25), 2015.

[21] Raoul J de Groot, Susan C Baker, Ralph S Baric, Caroline S Brown, Christian

Drosten, Luis Enjuanes, Ron AM Fouchier, Monica Galiano, Alexander E Gor-

balenya, Ziad A Memish, et al. Commentary: Middle east respiratory syndrome

coronavirus (mers-cov): announcement of the coronavirus study group. Journal of

virology, 87(14):7790–7792, 2013.

[22] Emmie de Wit, Neeltje van Doremalen, Darryl Falzarano, and Vincent J Munster.

Sars and mers: recent insights into emerging coronaviruses. Nature Reviews Micro-

biology, 14(8):523, 2016.

[23] Odo Diekmann and Johan Andre Peter Heesterbeek. Mathematical epidemiology

of infectious diseases: model building, analysis and interpretation, volume 5. John

Wiley & Sons, 2000.

[24] Christophe Fraser, Christl A Donnelly, Simon Cauchemez, William P Hanage,
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