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The new coronavirus known as COVID-19 is rapidly spreading since December 2019. Without any
vaccination or medicine, the means of controlling it are limited to quarantine and social distancing.
Here we study the spatio-temporal propagation of the COVID-19 virus in China and compare
it to other global locations. Our results suggest that the disease propagation is highly related to
population migration from Hubei resembling a Lévy flight which is characteristic of human mobility.
Our results also suggest that the disease spread in a city in China is characterized by two-stages
process. At early times, at order of few days, the infection rate in the city is almost constant
probably due to the lack of means to detect infected individuals before infection signs are observed
and at later times it decays approximately exponentially due to quarantines. These two stages
can explain the significant differences between the propagation in China and in other world-wide
locations. While most Chinese cities control the disease which resulted in the decaying stage, in
other world-wide countries the situation is still becoming worse probably due to less control.

I. INTRODUCTION

Since December 2019 the world is fiercely struggling
against an epidemics of a novel Coronavirus named
COVID-19 identified in Wuhan, a city of 11 million peo-
ple in Hubei Provence, China. A medical cure from the
disease is yet unavailable and the number of infected
cases is still increasing (Fig. 1a). In China, the num-
ber of infected individuals exceeds 80000 as for 18 of
March 2020 and the virus has already spread to more
than 100 countries around the world. Furthermore, the
virus shows a mortality rate of 2.5% of all infected per-
sons [1] (4% as for 18 of March 2020), compared to 9.6%
in SARS [2] or 0.6% for the H1N1 influenza [3]. This
high mortality rate together with the lack of a cure for
the COVID-19 virus, are the reasons for the severe re-
strictions on those that were in contact with COVID-19
confirmed cases, which mainly includes strict quarantine
of 14 days. The high mortality rates of COVID-19 are
not uniformly distributed through different ages. Rather
the mortality rate is as high as 5%-11% for ages over 70
with an increased risk for patients with cardiovascular
diseases, diabetes, respiratory diseases or cancer [4].

In the absence of both medicine and vaccination,
strategies of effective distributing of them are not con-
sidered yet [5] and the options to stop the propagation of
the disease are currently to quarantines the infected in-
dividuals [6] and social distancing [7] in order to cut the
infection channels. Statistical estimations of the incubat-
ing (latency) period of the virus which includes no signs
of illness vary between different populations and found to
be of about 4-6 days [8] while a long incubation period of
19 days has also been observed [9]. The 14 days quaran-
tine period, which has been adopted by many countries,

is a result of the higher limit of the 95% confidence lev-
els [10] of this incubating period. Under this quarantine
strategy, the virus spreading could be alleviated.

The COVID-19 propagation is currently in a differ-
ent stage in China compared to other locations in the
world. Although China is the country with most infec-
tion cases (as for 18 of March 2020), the disease stopped
to spread while in other countries the disease keeps prop-
agating close to exponentially as can be seen in Figs. 1b
and 1c. In fact, in most of the cities in China spreading
stopped approximately after 20 days as shown in Fig. 1c,
in contrast, in other location it is spreading as shown for
Italy in Fig. 1d. This suggests that one can learn from
the disease decay in China and apply similar measures
in other locations in the world. While a general estima-
tion of the disease evolution has been recently conducted
[11, 12], a comprehensive analysis of its spatio-temporal
propagation which is important for epidemic forecast, is
still missing. In this manuscript, we study the spatio-
temporal propagation of the COVID-19 virus and discuss
the differences between China and other countries.

We study the spatial propagation of the COVID-19
originated in Hubei and find scaling (power) laws for the
number of infected individuals in each province as a func-
tion of the province population and the distance from
Hubei. Furthermore, we find strong correlation between
the number of infected individuals in each province and
the population migration from Hubei to this province.
This correlation suggests that the disease propagation is
due to human mobility [13, 14] which has been suggested
to follow a Lévy-Flight pattern [15–17]. A reasonable
explanation for this correlation can be the strict quar-
antines applied in most of the cities in China after the
shutdown of Wuhan traffic [18, 19]. These quarantines
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FIG. 1: General view of the COVID-19 propagation.
(a) The number of infected cases I(t) in mainland China and
other locations around the globe on a semi-log scale. The
number of infected individuals in China almost reaches satu-
ration while the number in other locations are still increasing
(b) The slope (derivative) of log(I(t)). Since most of the
cities in China are in the decaying stage, the disease is almost
stabilized and the derivative approaches zero. However, since
cities in other locations around the globe are still in their early
stage, the disease is still spreading as can be seen by the al-
most constant or even increase of the derivative (see also (d)).
(c) The number of infected cases I(t) in different locations in
China and Italy since the first infection. While in most of
cities in China the disease stabilized after approximately 15
days on average, the disease in Italy is still spreading almost
exponentially, see dashed line and (d). The slope (derivative)
of log(I(t)). The dashed lines are linear extrapolation of the
last 5 points of the derivative. The trend in Italy is mixed,
while some places start approaching stability, in others the
disease still increasing.

were effective and probably prevented infected individu-
als to further spread the disease to other cities. Hence,
the number of infected individuals is highly correlated
to the population migration from Hubei before the shut-
down, Fig. 2.

Our results suggest that many cities in China experi-
ence a two-stages process of the disease. At early times
(of order of few days), the disease was undetectable due
to the incubating period and the disease was spreading
within the city. At later times, the infected individuals
have been quarantined and the disease started to decay
approximately exponentially in many cities. The quar-
antines have been effective to extinct the disease inside a
city and reach a stable state with close to zero infection
rate. Since quarantines were applied almost at the same
time in most of the cities in China, we find that the de-
cay stage of the disease starts almost at the same time
for most of the cities no matter if they are large central

cities, small cities or even Hubei province cities. For the
same reason most of the cities experience a similar 10-20
days characteristic time of the disease drastic reduction.

II. SPATIAL SCALING

One of the most important properties of epidemics
spreading is its spatial propagation, a characteristic
which mainly depends on the epidemic mechanism, hu-
man mobility and control strategy. Thus, we assume that
the number of infected individuals in different provinces
in China can be generally described as

I = f(r,m) (1)

where r is the distance of the province from Wuhan and
m is the population of the province. Since r and m are
independent of each others, one can assume and study
the scaling relation of each of them independently,

I ∼ rα (2)

and

I ∼ mβ . (3)

Since r and m are independent, Eq. (1) can assume the
scaling form (in analogous with population mobility [20]),

I ∼ rν/mµ (4)

from which the relation ν/α−µ/β = 1 should be satisfied.
Using weighted least squares regression for the scaling we
find in Fig. 2a that α ' −1.87±0.23 in agreement with a
recent study [21] and β ' 1.18±0.20 as shown in Fig. 2b.
The minimization of the error of the exponents relation
yields that ν = µ ' −0.84 ± 0.09. Thus, Eq. (4) takes
the form

I ∼ (r/m)γ (5)

with γ = ν = µ ' −0.84±0.09 as shown in Fig. 2c. Thus,
r/m can be regarded as a suitable distance-population
parameter. The relation between these 3 exponents is,

1/α− 1/β = 1/γ. (6)

In order to better understand the basic mechanism of
the disease propagation, we examine the relation of the
number of infected individuals in different provinces in
China with the population migration, Pm, from Hubei.
Our results shown in Fig. 2d suggest an almost linear
scaling relation

I ∼ Pφm (7)

with φ = 0.96 ± 0.25. This relation can be understood
since strict quarantines were applied in most of the cities
in China after the shutdown of Wuhan traffic. The quar-
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FIG. 2: Spatial propagation analysis of the COVID-19 in China. (a) The number of infected individuals I (as of March
1, 2020) as a function of the distance from Hubei. The scaling follows Eq. (2) with α = −1.87 ± 0.23. (b) The number of
infected individuals I as a function of the city population, m. The scaling follows Eq. (3) with β = 1.18±0.20. (c) The scaling
of I with the distance-population ratio r/m follows Eq. (5) with γ = −0.84 ± 0.09. The exponents within the errorbars follow
Eq. (6). (d) The scaling of infected individuals with the population migration from Hubei. Almost linear scaling is observed
with φ = 0.96 ± 0.25 strongly relating the disease propagation to human mobility. The scaling of population migration with
the (e) distance, (f) population and (g) distance-population ratio follows Eq. (8) with α̃ = −1.37 ± 0.11, β̃ = 1.11 ± 0.09 and
γ̃ = −0.74 ± 0.13 respectively. The large value of α compared to α̃ indicate probably the quarantines efficiency.

antines were efficient to prevent infected individuals to
spread the disease to other cities leading to a close to lin-
ear relation between the number of infected individuals
and the population migration from Hubei. This supports
the relation between the disease propagation and human
mobility.

To further study the relation between population mi-
gration and the disease propagation we measured the
population migration number, Pm, as a function of the
distance, population and the distance-population param-
eter. We assume the following scaling relations [20],

Pm ∼ rα̃

Pm ∼ mβ̃

Pm ∼ (r/m)γ̃
(8)

with α̃ = −1.37 ± 0.11, β̃ = 1.11 ± 0.09 and γ̃ =
−0.74± 0.13 as shown in Figs. 2e,f,g respectively. These
exponents for the population migration represent the
analogy of the exponents α, β and γ of the number of in-

fected individuals and follow a similar relation as Eq. (6)
within the errorbars. Interestingly, α̃ is lower than α and
it can be probably understood by quarantines efficiency
which reduces the spatial spread of infected individuals
compared to the population migration. A summary of
the exponents of (2)-(8) can be found in Table I.

III. TEMPORAL BEHAVIOUR

The absence of vaccination makes the control of the
disease very difficult and the main action possible is
to quarantine infected individuals and those that were
with them in contact, in order to prevent further spread-
ing. This approach is effective but limited since an in-
fected individual can spread the disease before showing
illness signs. This period of time called the latency period
[18, 22] and should be taken into account when temporal
analysis is being conducted. To further study the effect of
quarantines, we measured the infection rate in different
cities in China and different provinces in Italy. The in-
fection rate of , P (t), is measured for each city (province)
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FIG. 3: Two-stages infection rate. The infection rate P (t) for different types of cities: (a) cities in Hubei province, (b)
small cities in China and (c) large central cities in China and provinces in Italy. In early times an approximate constant
infection rate, P0 ∼ 1.16 is usually observed (above the horizontal dashed line). After a few days, an exponential decay is
observed in China representing the efficiency of the quarantines. The dashed lines are the best fit for the exponential decay,
Eq. (10). The characteristic decay parameter τ in Eq. (10) represents the time it takes to control the disease. In the last few
days in China, there are no points since the infection rate is zero showing that the disease stabilized and no new cases appear.
In marked contrast, Italy is still in the early stage with nearly constant infection rate. Here we used a latency period of 4 days
as described in Eq. (9).

Spatial
α -1.87 ± 0.23
α̃ -1.37 ± 0.11
β 1.18 ± 0.20

β̃ 1.11 ± 0.09

γ -0.84 ± 0.09
γ̃ -0.74 ± 0.13
φ 0.96 ± 0.25

Temporal
P0 1.16 ± 0.84
τ 15.9 ± 7.7

TABLE I: Spatio-temporal scaling exponents. Spatial
- α is the exponent of the spatial distribution of infected indi-
viduals, Eq. (2). β is the scaling exponent of the population,
m, Eq. (3) and γ is the scaling exponent for the scaling func-
tion of the distance-population ratio r/m, Eq. (5). The expo-
nent φ relates the number of infected individuals to the num-
ber of population migration with almost linear scaling, Eq.
(7). α̃, β̃ and γ̃ are the exponents characterizing the scaling
of the population migration with r, m and r/m respectively,
Eq. (8). Temporal - P0 is the approximately constant in-
fection rate at early times while the disease is spreading. τ
is the characteristic time of the disease decay at later times,
assuming exponential decay, Eq. (10).

using the total number of infected individuals in the city
in a given day I(t) from the first day that infected in-
dividuals have been detected in the city. Since a newly
detected infected individual has been infected a few days
earlier due to the latency period l, the infection rate is
defined as the fraction of the newly infected individuals
at each day and the number of individuals l days earlier:

P (t) =
I(t)− I(t− 1)

I(t− l)
. (9)

We examined three different types of cities in China. a)
cities in Hubei province, b) small cities and c) large cen-
tral cities assuming latency period of l = 4 days [18, 22]
as shown in Fig. 3a,b,c respectively. In all three cases, an
approximately constant infection rate is observed in early
times (assuming smaller latency period show clearer con-
stant behaviour, see SI). However, after a few days, decay
is observed. Determining if the decay is exponential or
power-law is uncertain due to the few data points in the
samples. Assuming exponential decay [23], Eq. (9) takes
the form:

P (t) =

{
P0 t0 < t < tx
P0e

−(t−tx)/τ tx < t,
(10)

where P0 is the constant infection rate without con-
strains, t0 represents the time that the first infected in-
dividual was detected in the city, tx is the time when the
quarantine starts and τ is the characteristic time for the
disease drastic reduction. The approximately constant
infection rate in early times represents the real infection
rate of the disease before quarantines were applied to
control the disease while the exponential decay in later
times represents the efficiency of quarantines to the in-
fected rate. The smaller the parameter τ indicate more
efficient restrictions. The constant value tx is very similar
in different cities in China due to the similar emergency
response of other provinces with respect to the epidemic
outbreak (see SI). If indeed the decay is exponential and
not power-law it indicates that quarantines are efficient
to tame the disease since exponential decay has charac-
teristic time and indeed, in the last days the infection
rate is zero and no new cases are found as seen in Fig. 3.
While the latency period is assumed to be l = 4 when cal-
culating P (t), it seems that changing this value does not
change the general behaviour and only slightly changes
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FIG. 4: Statistical properties of the two-stages city in-
fection with latency period of 4 days. (a) The constant
infection rate, P0 is mostly range 0.5-2 while in a few cities it
can be much larger. The average value is 1.16 with standard
deviation 0.84. (b) The distribution of the exponent τ char-
acterizing the extinction of the disease which found to be in
the range 5-50 days. The average value is 15.9 with standard
deviation 7.7.

τ and P0 (see SI). In marked contrast, Italy is still at
early stages of the disease with approximately constant
infection as seen in Fig. 3c.

Assuming latency period of 4 days [18, 22], most of

cities in China are characterized by P0 in the range 0.5-
2 with an average of 1.16 and a standard deviation of
0.84 as shown in Fig. 4a. The value of τ for most of the
cities is 10-20 days while for a few cities the characteristic
time can be longer as seen in Fig. 4b. The value of τ
characterizes the efficiency of quarantines. The average
value of τ is 15.9 with standard deviation 7.7. Summary
of the temporal parameters can be found in Table I.

IV. DISCUSSION AND SUMMARY

The COVID-19 is spreading world-wide but stopped
spreading in China. Since the spread of the disease is
highly related to population migration, it follows a Lévy
flight behavior which is characteristic of human mobility
[20]. The long incubating period together with the Lévy
flight long jumps makes the disease very hard to control
and raise the alarm for the other countries. By the time
that infected individual is being detectable (5 days in the
best scenario), one can already perform a long-distance
trip and further spread the disease. This is the reason
why quarantines are so critical not only for infected per-
sons, but also for others that were nearby infected in-
dividuals. The lifetime of the disease in a city is char-
acterized by two stages, uncontrolled infection in early
times and decaying stage at later times once quarantines
are being performed. These two stages can explain the
disease situation in China and predict the situation in
other locations in the world if similar strategies will be
adopted. The stage of the disease in China is almost
stable although it is the country with most of infection
cases (as for 18 of March 2020). The reasoning is that
most of the infected cities in China applied strict quar-
antine measures, leading to exponential decay of disease.
However, in other locations around the world, most of
the cities are still at the early stages at which the disease
is less controlled and may lead to another or even worse
outbreak at high risks.
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