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Abstract

The identification of disease hotspots is an increasingly important public health
problem. While geospatial modeling offers an opportunity to predict the locations
of hotspots using suitable environmental and climatological data, little attention
has been paid to optimizing the design of surveys used to inform such models.
Here we introduce an adaptive sampling scheme optimized to identify hotspot
locations where prevalence exceeds a relevant threshold. Our approach incorporates
ideas from Bayesian optimization theory to adaptively select sample batches. We
present an experimental simulation study based on survey data of schistosomiasis
and lymphatic filariasis across four countries. Results across all scenarios explored
show that adaptive sampling produces superior results and suggest that similar
performance to random sampling can be achieved with a fraction of the sample
size.

Keywords: adaptive sampling; neglected tropical diseases; hotspots; spatial
prediction; Bayesian optimization

Introduction
Recent years have seen considerable success towards control and elimination of a

range of globally important infectious diseases. For many of these diseases, decisions

relating to interventions are made across administrative units. For example, decisions

about where to conduct mass drug administration campaigns for neglected tropical

diseases (NTDs) are made at an implementation unit (IU), typically the district

or sub-district level [1]. A similar approach is typically taken in the control and

elimination of malaria, where entire districts or sub-districts may receive insecticide

treated nets or indoor residual spraying where others do not.

For NTDs, decisions relating to MDA are based on infection prevalence estimates

at the IU level obtained from cross sectional surveys. Where IU level prevalence

exceeds a threshold, the entire IU is treated [1]. Where prevalence does not exceed

this threshold, the IU does not qualify for MDA and no individuals in that area

are treated. For example, for schistosomiasis, current guidelines recommend that

MDA is conducted in areas where prevalence is greater than 10%, whereas for

soil-transmitted helminths, this threshold is 20% [1].

While operationally straightforward, this approach ignores any within IU hetero-

geneity. In many instances, districts with prevalence below the threshold that triggers

intervention contain a number of villages with active transmission [2]. Modeling

and intuition therefore suggest that as disease transmission declines, moving away

from decision making at coarse scales towards a more targeted approach is more
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cost-effective [3]. Such targeting is predicated on sufficiently accurate information on

the location of sites with an infection prevalence above a policy relevant threshold,

from hereon referred to as hotspots.

Missing hotspots could cause setbacks for elimination efforts. Hence, various ap-

proaches to identify them have been proposed. Variations of contact tracing, whereby

testing is targeted at families and neighbours of individuals found positive during

surveys or routine surveillance, have been explored for a number of diseases including

schistosomiasis [4], lymphatic filariasis [5] and malaria [6, 7]. Such approaches can,

however, be expensive and can still fail to identify hotspots if positive individuals

from those communities are not identified by the initial surveys.

An alternative approach is to use less costly survey methods to sample a higher

proportion of locations than would otherwise be possible. Techniques such as lot

quality assurance sampling, a method designed to minimize sampling effort in order

to categorize outcomes over a given population, is one such approach and has been

used to identify hotspot communities for schistosomiasis [8, 9]. Similarly, school-

based questionnaires relating to blood in urine and eye worm occurrence, have been

used to map urinary schistosomiasis [10, 11, 12] and loa loa [13, 14] respectively.

These methods are inherently noisy as they only allow measurement of proxies of

infection and can suffer from issues of recall.

Another approach to mapping hotspots, which negates the need to sample a

large fraction of the population, is using geospatial modeling. Climatological, envi-

ronmental and ecological layers can help predict the spatial distribution of many

infectious diseases. Furthermore, above and beyond patterns that can be explained

by these layers alone, disease outcomes often display some spatial structure, with

neighbouring values being correlated due to shared characteristics and transmission.

This spatial structure means that information from one site provides information

about neighbouring sites. Over the past decade, the ability to predict pathogen

infection prevalence across entire regions based on survey data and relationships

using geospatial modeling has improved considerably [15, 16, 17]. These advances in

geospatial modeling have opened the door to more targeted approaches, potentially

allowing decisions about treatment to be made with higher precision and granularity.

Despite these advances, surprisingly little attention has been paid to optimizing

the survey design for risk mapping efforts. Evidence from other fields has shown that

random sampling is suboptimal for spatial prediction [18, 19, 20, 21]. For lymphatic

filariasis, a grid sampling approach has been proposed as a mechanism to allow for

more efficient spatial interpolation [22, 23]. Diggle and Lophaven (2006) propose

the use of grid sampling supplemented with clusters of close pairs of points to allow

for better estimation of the variogram used for Kriging [24]. Simulation studies

also suggest that this design provides a more cost-effective approach to mapping

schistosomiasis [3].

More recently, Chipeta et al (2016) and Kabaghe et al (2017) proposed spatially

adaptive designs that leverage information from prior data to inform the locations

of future sampling sites to minimize prediction error [25, 26]. Using malaria as

an example, results from simulations and field studies show that adaptive spatial

designs can be used to produce more precise predictions of infection prevalence using

geostatistical modeling [25].
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Building on the adaptive spatial sampling approach, we incorporate ideas from

Bayesian optimization theory to propose an adaptive spatial sampling approach

optimized to identify hotspot communities [27, 28].

Methods
Spatial Model

To predict the probability that a given site (e.g. a village or other type of settlement)

is a hotspot or not, and to guide adaptive sampling schemes, requires fitting a spatial

model to observed data. As a reminder, here a hotspot is defined as a location where

infection prevalence is greater than a defined threshold. We assume that an initial

representative population sample exists to allow a model to be fit. If this is not the

case, a randomly sampled set of measurements would be one option, although there

may be superior approaches, particularly if data relating to the expected spatial

structure or covariate values at candidate survey sites exist [24, 29, 30].

There are a range of different modeling approaches available to predict prevalence

at unsurveyed sites. Here, we use a combination of machine learning and model-based

geostatistics [15, 31].

Let B be a region (e.g. a country) where we are interested in determining if a

set of sites are hotspots or not. As mentioned above, it is assumed that an initial

dataset from which we can estimate the overall prevalence exists. Say we have the

dataset D0 = {si, ni, yi,xi}m0
i=1, where si are the GPS coordinates that describe the

location of a site of interest, ni is the number of people tested in such site, yi are

the number of positive cases out of ni and xi are other features associated to the

site, like elevation, distance to water bodies or average temperature; m0 is the total

number of observations. Given these data we can model the prevalence in B as a

spatially continuous process given by

yi ∼ Binomial(ni, θi), (1)

ηi = log(
θi

1− θi
), (2)

ηi = x>i β + f(si) + ei; (3)

where β are a set of real parameters and f is a spatially correlated random effect

using a Matérn correlation function (see Appendix equation 8) and ei is a residual

independent error term.

Instead of including linear covariate effects, we first fit a random forest model using

20-fold cross validation using all the covariates, excluding latitude and longitude.

For each observation, we then have a cross-validated prevalence prediction (from

hereon termed out-of-sample predictions). Additionally, we fit a random forest using

all observations and use this model to predict to all observation and prediction

points (from hereon termed in-sample predictions). Out-of-sample predictions from

the random forest are then included as a single covariate in the geostatistical model

(equation 3).

When making predictions, in-sample predicted prevalence values from the random

forest using all observations were used as the covariate at each prediction point.

While this model allows us to predict prevalence across the continuous region B, in
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this case we are only interested in predictions at the location of human settlements.

Here, we denote these discrete locations as S ⊂ B.

In addition to obtaining estimates of predicted prevalence, the model described

above allows us to estimate the exceedance probabilities, i.e. the probability that

prevalence θi at location si is above a given threshold ϑ.

Adaptive Sampling

Exploitation

The goal we seek when using adaptive sampling or adaptive design is to leverage

the information available and select the optimal sampling locations to improve our

statistical inference [27, 28]. The criteria to define what is optimal depends on what

quantity is to be estimated. Hence, it is first necessary to define an objective or

utility function, i.e. the measure by which we evaluate the performance of any given

design. For situations where the goal is to produce as precise predictions as possible

over the study region, measures such as average prediction variance is a sensible

option [25]. If, however, the goal is to find hotspots, we are less interested in the

precision of our estimates and should be focused on minimizing hotspot classification

error from our model. Put another way, we wish to increase our confidence that

the prevalence at any given location is above or below the predefined threshold. A

measure that fits naturally into this framework is Shannon entropy. Shannon entropy

measures the uncertainty of a random variable based on its probability distribution

[32]. Let ϑ be the relevant threshold. Given the model described in Eq 1, for every

si ∈ S we can estimate its probability of being a hotspot p(θi > ϑ|D0). Then the

entropy value at such location regarding it being a hotspot or not is defined as

H(θi|si,D0) =− p(θi > ϑ|D0) log2 p(θi > ϑ|D0)−

p(θi ≤ ϑ|D0) log2 p(θi ≤ ϑ|D0).
(4)

Locations with exceedance probabilities of 0.5 (i.e. p(θi > ϑ|D0) = 1
2 ) are the most

uncertain and have an entropy value of one. On the contrary, the more certainty in

the event (i.e. exceedance probabilities close to 0 or 1), the entropy gets closer to 0.

By targeting high entropy values, sampling is focused on those sites with highest

classification (hotspot or not) uncertainty.

Exploration

Giving preference to locations with higher uncertainty is intuitively more efficient

than a uniform random selection, but choosing the design based only on entropy

values (Eq. 4) may not be efficient because prevalence is usually a spatially correlated

process. For example, see Figure 1 panel A, where we show a simulated field

of uncertainty where values are spatially correlated. Since locations with high

uncertainty can be expected to be clustered together, by defining a batch of sample

points based only on H(θi|si,D0) we may end up selecting locations that are very

close to each other. However, such an approach leads to redundancy, as taking a

measurement at one location also provides information about neighboring locations

due to the spatial correlation present. In Figure 1 panel B, we choose the 10 locations

(red dots) with highest uncertainty values from a grid of 15× 15 potential locations
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(white dots). The Figure demonstrates how this greedy approach can result in poor

coverage of the field.

It would be preferable to sample high entropy points, while ensuring a good spread

of points across the study area to avoid redundancy. This allows a balance between

exploitation (i.e. targeting high values of H(θi|si,D0)) and exploration (i.e. spread

batch locations in B) [33]. If in Eq. 3 we assume that f is a multivariate Gaussian

with spatial covariance K(si, sj), then the average amount of information contained

in a batch of locations A = {s1, . . . , sm1
} is given by the joint differential entropy

h(fA) =
1

2
log(2πe)m1 |KAA|, (5)

where fA = (f(s1), . . . , f(sm1))> and KAA = [K(si, sj)].

The differential entropy is the continuous case of the Shannon entropy introduced

before [32]. A low value of h(fA) implies that the random variable fA is confined to

a small volume, whereas a large value of the differential entropy implies a that the

variable is widely dispersed. Given a batch size, by choosing the elements in it that

maximize the differential entropy, we would be maximizing the average information

content of the batch with respect to the random field f . Finding the batch with

highest information content is a problem of combinatorial complexity. However an

exact solution is not needed [34]. A approximate solution can be found through a

sequential approach that at step t selects the new element of the batch according to

s∗ = argmaxs∈S h
(
fAt−1∪{s}

)
. (6)

Trade-off

Once we have a utility function and a rule for exploration, we only need to define

a trade-off strategy between exploration and exploitation that helps us select a

batch of new survey locations. In Bayesian optimization, this strategy is defined by

the acquisition function [35, 36]. Notice, however, that our setting is simpler than

the usual setting for Bayesian optimization, where evaluating the utility function

is considered to be expensive and the exploration sites could be infinite. In this

application we assume a finite set of potential survey locations, as they represent

villages or some type of human settlements. Also, in all of these locations we have a

measurement of our utility function through the posterior distribution of θ.

As trade-off strategy we define the step-wise algorithm that combines Eq. 4 and

Eq. 6, so that at step t the new element in the batch is chosen according to

y(st) = argmaxs∈S{H(θ|s,D0) +
√

log t× h
(
fAt−1∪{s}

)
}. (7)

In the expression above we are explicitly defining y as a function of s to emphasize

that we are interested in selecting survey locations. By using this acquisition function

we induce batch locations to be spatially scattered and therefore achieve a better

exploration. In Figure 1 panel C, we show a batch of 10 locations (red dots) chosen

according to Eq. 7. The locations selected are not the ones with the overall highest

uncertainty, but the ones with the highest uncertainty within a neighborhood.
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This approach allows targeting high entropy values, while reducing information

redundancy and exploring the region of interest.

The acquisition function in Eq. 7 is based on the Gaussian process upper confidence

bound (GP-UCB) algorithm [34]. The GP-UBC is used in Bayesian optimization

problems with an underlying Gaussian processes regression of the form yi = f(si)+εi.

The difference between our formulation in Eq. 7 and the original GP-UCB is that

the latter uses the mutual information between the observations yi and the process f

[32], as opposed to the joint differential entropy of fA only. The mutual information

between yi and f is theoretically a better approach. However, the assumption of

Binomial outcomes that depend on a transformation of f , makes this quantity harder

to compute. On the other hand, the use of differential entropy showed satisfactory

results in our simulation studies, as shown below.

Experimental Simulation

To test the proposed adaptive spatial sampling approach, we conducted a series of

experimental simulation studies parameterized using data from NTD surveys across

multiple diseases and countries. We created different scenarios in which the task

was to adaptively select new sampling locations with the goal of classifying sites as

hotspots and not hotspots. In this procedure, our benchmark was the prediction

performance when selecting batches of sampling sites randomly without adaptation.

We defined four prevalence scenarios based on cross-sectional prevalence survey

data of schistosomiasis from Cote d’Ivoire and Malawi and lymphatic filariasis from

Haiti and Philippines. In each of the four countries, we used a universe of 2000

candidate survey sites identified with the Village Finder algorithm (see Appendix).

This algorithm uses gridded population estimates of 2015 from Worldpop to identify

clusters of populated places [37]. Fig 2 shows the cluster locations in each country

and the simulated prevalence used as the truth during these experiments.

To generate simulated prevalence estimates against which to compare different

sampling approaches, a Generalized Additive Model was first fitted to the observed

prevalence data from the four countries using elevation (NASA SRTM) and distance

to water bodies (Digital Chart of the World) plus a spatial effect. This model was then

used to predict prevalence values at every candidate cluster for each country/disease.

Table 1 shows the details of the algorithm used to generate this random field of

prevalence. To define hotspots, we used prevalence thresholds of 10% and 2% for

schistosomiasis and lymphatic filariasis respectively, as these correspond to the

thresholds used to determine whether MDA occurs or not [1, 38]. The method used

to simulate these scenarios ensures that the prevalence shows spatial correlation. In

addition, to ensure that we could use the standard thresholds and keep our scenarios

realistic, we adjusted the overall mean of the simulated prevalence to have values

around the thresholds when needed.

In order to have consistency in our results, we repeated our experiments 50 times

per country. In each replicate, we randomly selected 100 locations from the universe

of clusters and used them as the locations of the initial set D0. We ran three versions

of the experiments, by sequentially selecting batches of size 1, 10 and 50, until

we had incorporated 100 new samples. Given a set of initial sampling locations

and batch size, we sampled additional locations either completely at random or
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adaptively following Eq. 7. At each step we fitted the model described in Eq. 1

to 3. As environmental variables we used: annual mean temperature, temperature

seasonality, annual precipitation and precipitation seasonality [39], elevation (SRTM)

and distance to inland water resampled to the same 1km resolution. After fitting the

spatial model on each iteration, we computed four out-of-sample validation statistics

to measure performance (see Appendix): accuracy, positive predictive value (PPV),

sensitivity and mean squared error (MSE). To compute the validation statistics

we fitted the model in Eq. 1 to all the available data at each iteration (i.e. ∪Dt−1
k=0

at step t) and made predictions on the villages that had not been visited yet (i.e.

S \∪t−1
k=0A?k at step t). MSE was computed comparing the predicted prevalence vs the

simulated prevalence (see Table 1). To compute accuracy, positive predictive value

and sensitivity we first classified the villages as hotspots when p(θi > ϑ|D0) > 0.5

and compared this classification vs the actual class according to the simulated

prevalence. Table 2 shows the algorithm followed to carry on our experiments.

Random forest and geostatistical models were fit using the R packages ranger [40]

and spaMM [41] respectively. All the simulated datasets and code developed as part

of this study, including that used to conduct the simulation experiments, is available

at https://github.com/disarm-platform/adaptive_sampling_simulation_r_

functions.

We are also in the process of developing a user-friendly web application to allow

both the hotspot mapping and adaptive sampling algorithms to be run without

code.

Results
We compared the performance of two approaches for selecting survey sites: random

sampling (RS), where sites are chosen randomly; and adaptive sampling (AS), that

follows the acquisition function of Eq. 7. The underlying statistical model is the same

in both cases (see Eq. 1 - 3). The initial dataset D0 is also the same in both cases

(see Table 2 lines 7 and 8). Hence, the variations in the performance with respect

to the predictions based on D0 depend only on the mechanism of selecting the new

survey locations A1,A2, . . .. Adding measurements at new locations improved out-of-

sample sites classification under both sampling approaches. However, across the four

scenarios tested we observed that adaptive sampling was consistently superior to

random sampling in terms of accuracy, positive predictive value and sensitivity. This

confirms that under adaptive sampling each new batch of locations leads to a better

classification of the unmeasured sites. Figure 3 shows the accuracy computed at each

step in the four country scenarios using a batch of size 1. Note that when selecting

a batch of size 1, the adaptive design does not take into account the exploration

component. In this case the new location suggested is the one that maximizes entropy.

Figure 4 shows a summary of the validation statistics after adding 100 new samples,

using different batch sizes (1, 10 and 50), across the four scenarios. The results show

that adaptive sampling produces superior accuracy, sensitivity and PPV across every

scenario, metric and batch size except in the Philippines where an adaptive approach

with a batch size of 50 produced inferior PPV. Better performance across all metrics

translates into a smaller number of false positives and a improved identification of

hotspots in locations that have not been visited yet. In contrast to the validation
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statistics discussed above, MSE (bottom row) is lower across all scenarios when

random sampling was employed.

At larger batch sizes there were smaller differences between random and adaptive

sampling in terms of accuracy, PPV and sensitivity (Figure 4). There are two ways

of interpreting this result. One interpretation is that when the batch is large enough,

random sampling provides a good coverage of the sampling universe negating the

need for a trade-off between exploitation and exploration. The more locations in

the batch the more redundant the information they provide, regardless of how they

are chosen. A second interpretation is that the adaptive sampling design is more

efficient and therefore requires smaller sample sizes to achieve the same results of

a larger random sample. Table 3 illustrates this and shows the number of sample

points needed when using adaptive sampling to achieve the same accuracy of random

sampling with a sample size of 100 locations. For batches of size 50, in Malawi and

Philippines adaptive sampling produced at least the same level of accuracy with

just half the number of additional points. This difference becomes larger for smaller

batch sizes (1 or 10). For batch sizes of 10, adaptive sampling required 20-50%

of the sample size to achieve the level of accuracy achieved with 100 additional

randomly selected sites and for batch sizes of 1, only 10-43% was required. With

such sample sizes the adaptive sampling also achieved similar levels of sensitivity

and PPV. Random sampling produced lower MSE across all scenarios.

Discussion
The identification of disease hotspots is an increasingly important public health

problem. This is particularly true in disease elimination settings, where transmission

is rare and typically focal. Numerous examples illustrate the use of geospatial

modeling to predict hotspots, but very little attention has been given to the optimal

survey design for such modeling efforts. Here, using simulation studies based on

schistosomiasis and lymphatic filariasis survey data, we described a novel, spatially

adaptive approach and demonstrate the superiority of this approach at identifying

hotspots compared with the standard approach to surveys based on purely random

sampling.

Results showed that across all batch sizes investigated, adaptive approaches

produced higher levels of accuracy, sensitivity, and PPV compared with random

sampling. Yet, the superiority of an adaptive approach declined with larger batch

sizes. With a batch size of 1, the adaptive approach has an opportunity to identify

the optimal next location to survey in the presence of all available data. In contrast,

with larger batch sizes, the impact on predictions of each adaptively sampled location

is not known until all locations in the batch are sampled and the model updates.

The use of an adaptive approach only produced marginal gains in accuracy (1-4%)

after adding 100 sites to the initial sample, but this could represent hundreds of

locations when applied at a country scale. Perhaps more importantly, however,

adaptive sampling was more efficient in terms of achieving a given level of accuracy

with a far smaller sample size. As outlined in Table 3, across almost all settings,

adaptive sampling was able to achieve the same level of accuracy and sensitivity to

that achieved by adding 100 locations randomly with between 10-50% the sample size.

The only exception to this was using batch sizes of 50 in Cote d’Ivoire and Haiti where
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100 adaptively selected sites were required to achieve at least the same performance

as an additional 100 randomly selected sites. These results demonstrate that an

adaptive spatial sampling approach has the potential to substantially reduce the

resources required to ensure hotspot locations receive treatment, while maintaining

similar rates of false positives. In control and elimination settings, an operationalized

adaptive spatial sampling approach for several years could render non-negligible

improvements in cost-effectiveness. Further simulation studies could be used to help

determine the magnitude of such benefits in cost-effectiveness.

It should also be pointed out that in all settings the mean squared error estimates

were higher for adaptive approach (Figure 4, Table 3). This illustrates the fact

that optimizing a design for one goal, here hotspot classification accuracy, leads to

compromising other goals (e.g. precision in the prevalence estimates). Where the

goal is to produce the most precise prevalence estimates at any given location, using

adaptive approaches based on prediction variance as opposed to entropy would be

more appropriate [25].

While this approach was demonstrated for two diseases only, it could be used

to support the identification of hotspots of any binomial outcome. This includes

prevalence of infection of other infectious and non-infectious diseases, particularly

those that display strong spatial correlation. Vector-borne diseases, such as malaria,

onchocerciasis and loiasis would certainly fall into this category given the association

between disease transmission and ecological and environmental conditions. While

it is likely that such spatial correlation will be masked following several years of

intervention, evidence suggests that residual hotspots still occur [2, 42]. In addition

to identifying hotspots of infection, this approach also has potential utility for

identifying cold spots in intervention coverage, such as pockets of undervaccination

[43]. While this would likely require use of different covariates related to intervention

access, such as distance to roads, population density and poverty, the statistical

problem is analogous.

While we used a combination of random forest and model-based geostatistics

to produce posterior prevalence estimates, the general adaptive sampling scheme

we have proposed would work for any suitable modeling approach that produces

posterior estimates with which to estimate exceedance probabilities. Combining

random forests with other base learners such as generalized additive models and

support vector machines may lead to improvements over using random forest alone.

Similarly, an underlying binomial model is not essential to the methodology described

here. What is important is the spatial correlation component in which the exploration

rule is based. For example, this methodology could work in a Poisson setting, for

some definition of hotspot based on a threshold incidence or numbers of cases.

Another possible extension of this methodology is applying it to cases where the

classification of interest is not binary. For example, for schistosomiasis, MDA is

recommended once per year in areas where prevalence is > 10% and < 50% and

twice per year in areas where prevalence is > 50% [1]. As estimation of entropy is not

restricted to binary classification problems, adapting the approach to such a setting

is straightforward assuming it is possible to produce probabilistic classifications from

the underlying model.

This study had a number of limitations. Firstly, the adaptive sampling approach

described requires a georeferenced set of candidate sampling locations. Complete
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georeferenced lists of settlements are, however, often not available. In the absence

of such data, there are several options available. Georeferenced locations could be

extracted and compiled from open sources, such as openstreetmap, geonames and

openAFRICA. Alternatively, village locations can be derived from gridded popu-

lation data using the approach described here (see Appendix) or using alternative

approaches as suggested by Thompson et al (2017) [44].

A second limitation is that we did not consider the temporal aspect of adaptive

surveys. In reality, there may be a time lag between the date at which survey data

are available and when adaptive surveys take place. Similarly, prior survey data

may have been collected over multiple time periods. To address this issue it would

be possible to extend the spatial model used, to a spatio-temporal model. Hotspot

probabilities could then be forecast from the historic data to the time point at

which adaptive surveys are to take place. Additionally, there may be value in using

temporally dynamic covariates as opposed to static, long-term averages as used here.

A third limitation was that we defined a site as hotspot if there was at least a 50%

chance that prevalence exceeded the relevant threshold. In some cases, programs

may a priori wish to define hotspots more conservatively by classifying sites as

hotspots with smaller probabilities (e.g. > 10% chance a site is a hotspot). While

the methodology would not change, such an approach would have a large impact on

the performance of the classifications, increasing sensitivity, but decreasing positive

predictive value. In such cases, it may also be useful to modify the acquisition

function.

A fourth limitation of this study is that we used a single acquisition function.

In the acquisition function we used, the exploration component has an increasing

concave weight as more locations are added to the new batch. This assumption,

or the specific shape of this weight, could be substituted for an alternative. Also,

the utility function, defined here as entropy, could be modified depending on the

goal pursued. For example, a program interested in targeting sampling efforts at

hotspots, instead of achieving a better binary classification, could use the probability

of a location being a hotspot as the utility function. Such an approach would be

suitable for situations where testing is required before an intervention/treatment

is administered. This approach may also be useful for surveys whose goal is to

determine freedom from infection [45, 46].

A fifth limitation stems from the simulated nature of the experiments. The strength

of a simulated approach is that multiple experiments can be conducted without the

need for expensive field validation studies. On the basis of these results, a valuable

next step would be to conduct field studies comparing random to adaptive designs.

Such studies would also allow an exploration of some of the more logistical elements

and constraints and using an adaptive approach.

This study has demonstrated the value in adopting an adaptive approach to surveys

designed to identify disease hotspots. Results show that a spatially adaptive sampling

approach produced consistently superior accuracy in hotspot classification over a

random sampling approach, and could dramatically lower the resources requirements

to conduct surveys whose goal is to detect disease hotspots.
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Figures

Appendix

Covariance Structure

In Eq. 1 - 3, it is the function f(si) the one that encodes the spatial structure. Here we model such spatial

structure as an Matérn covariance, given by

K(si, sj) =
21−ν

Γ(ν)

(√
2ν‖si − sj‖

`

)ν
Kν

(√
2ν‖si − sj‖

`

)
, (8)

where ν controls the smoothness of the process, ` is a lengthscale parameter and Kν is a modified Bessel function.
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Figure 1 Exploration-exploitation trade-off. A: Spatially correlated uncertainty. B: Batch selected
(red dots) by using the greedy approach of targeting the highest values of uncertainty. C: Batch of
locations selected (red dots) using the acquisition function described in Eq. 7.
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Figure 2 Simulated prevalence scenarios. The locations of the villages is marked by the dots,
whose colors represent the hypothetical prevalence of each scenario. A: Cote d’Ivoire
(schistosomiasis). B: Haiti (lymphatic filariasis). C: Malawi (schistosomiasis). D: Philippines
(lymphatic filariasis).

Village Finder

The Village Finder algorithm is accessible via a Shiny app that suggests GPS coordinates of populated sites based on

1km resolution Worldpop gridded population data. A populated site is an area that meets certain size and population

criteria and can represent a village, a neighborhood of a crowded city or a large but sparsely populated rural area.

The user specifies the following 3 parameters to define the type of population sites queried:
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Figure 3 Out of sample accuracy (batch size = 1). The solid line represents the average value
across 50 repetitions. The shaded area represents the 2.5% and 97.5% quantiles of the values
observed across all 50 repetitions at each step. A: Cote d’Ivoire (ϑ = 10%). B: Malawi (ϑ = 10%).
C: Haiti (ϑ = 2%). D: Philippines (ϑ = 2%).

- maximum area size, above which a region cannot be considered as a unique location;

- upper population threshold, above which a location should be counted as a unique location;

- lower population threshold, below which a region smaller than the maximum area size should not be

counted as a populated location.

The algorithm works iteratively. First, any 1km grid cells of the Worldpop raster that adhere to the three parameters

are identified and the centroids are kept. The gridded population data, minus those grid cells identified in the first

round, are then aggregated by a factor of 2 and any aggregated areas that adhere to the parameters are identified.

The centroid of the most populated cell in the aggregated area is then assigned as the village location for that

aggregated area. The process continues until all aggregated areas have an assigned centroid or until all thresholds

are met.

This app and the code behind are available from:

- https://disarm.shinyapps.io/ui-village-finder;

- https://github.com/disarm-platform/fn-village-finder.

Validation Statistics

To measure the performance of the classification model we used four different metrics. To define them, we first need

to define the following terms:

- True positives (tp): cases where the actual category and the predicted category are both positive (e.g. a site

classified as a hotspot actually has a prevalence above the threshold of interest).

- True negatives (tn): cases where the actual category and the predicted category are both negative (e.g. a

site classified as not being a hotspot actually has a prevalence below the threshold of interest).

- False positives (fp): cases where the actual category is negative, but the predicted class is positive (e.g. the

site is classified as a hotspot, but the actual prevalence is below the threshold of interest).

- False negatives (fn): cases where the actual category is positive, but the predicted class is negative (e.g.

the site is classified as not being a hotspot, but the actual prevalence is above the threshold of interest).

Accuracy. The proportion of sites correctly classified.

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
. (9)
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Figure 4 Summary of validation statistics. Metrics computed after adding 100 new samples in
batches of 1, 10 and 50 sites. Dots represent the mean and whiskers represent the the 2.5% and
97.5% quantiles of values observed across all 50 repetitions. The thresholds used to define a
hotspot are: ϑ = 10% in Cote d’Ivoire and Malawi and ϑ = 2% in Haiti and Philippines.

Positive predicted value. The proportion of sites correctly classified as hotspots to all sites classified (correctly or

incorrectly) as hotspots.

PPV =
tp

tp+ fp
. (10)

Sensitivity. The proportion of sites correctly classified as hotspots to all hotspots in the dataset.

Sensitivity =
tp

tp+ fn
. (11)

Mean squared errors. The average of the squared differences between the target value (predicted prevalence) and

the observed value (actual prevalence).

MSE =
1

m

m∑
i

(
yi

ni
− θi

)2

. (12)

Tables
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Table 1 Generation of prevalence scenarios. Based on cross-sectional surveys (line 1) and
environmental data (line 2), we fitted a prevalence model (line 3). This model does not include spatial
correlation explicitly, but encodes the relationship between prevalence and the variables elevation and
distance to water. The linear predictors of this model were smoothed spatially (line 5) and used to
generate the prevalence in all villages (lines 6 and 7). In these last two steps we explicitly included a
spatial component and dropped the dependence on the environmental variables. If the mean or range of
the prevalence generated was too high we scaled it to match a prevalence around the hotspot threshold
of the disease they represent (line 8).

Pseudo code for generating prevalence scenarios
1 {yi, ni, si}m0

i=1 ← survey data yi =positives, ni =total
2 D = {yi, ni, si,x(si)}m0

i=1 x = environmental data
3 fit yi ∼ Binomial(ni, logit−1(ηi)) with ηi =

∑
j fj(xi[j]) fj univariate smoother

4 wi = E(ηi|D)∀si ∈ D
5 fit wi = fs(si) + εi with εi ∼ N (0, σ2) fs spatial smoother
6 predict w∗i ∀si ∈ S S = villages in the country
7 θi = logit−1(w∗i ) θi = simulated prevalence
8 θi ← check values and adjust if needed

Table 2 Experimental procedure. We repeated each experiment a hundred times (line 1), for batches of
size 1, 10 and 50 (line 2). We started with an initial random sample of 100 locations (line 3) for both
random and adaptive methods (line 4). We incorporated subsequent samples until 100 additional
sampling locations were added (line 5). For the locations selected to be sampled we simulated the
observed positive cases according to a Binomial distribution with prevalence θ (line 7) and incorporated
the environmental data (line 8). We then used the accumulated data to find the probability of
exceeding the threshold ϑ (line 9). Finally we defined a new batch of locations according to a random
mechanism (line 11) and to the adaptive sampling method proposed (line 12).

Pseudo code for experiments
1 for rep in 1→ 100:
2 for m in {1, 10, 50}: m = batch size
3 A0 ← random selection: A0 ⊂ S with ‖A0‖ = 100 S = villages in the country
4 AR

0 = AA
0 = A0 R =random, A =adaptive

5 steps = 100/m + 1 total number of iterations
6 for t in 1→ steps :
7 y?i ∼ Binomial(100, θ(A?

t−1))
† ? = {R,A}

8 D?
t−1 = {A?

t−1, y
?,x(A?

t−1)} x=environmental data

9 find p(θ > ϑ| ∪t−1
k=0 D

?
k)

10 compute validation statistics on S \ ∪t−1
k=0A

?
k

11 AR
t ← random selection

12 AA
t ← acquisition function Eq. 7

†yRi = yAi for step t = 0.

Table 3 For random design RS with sample size of 100, we show the sample size needed to achieve a
similar accuracy using an adaptive design AS. Additional validation statistics: PPV, sensitivity and MSE
are also shown. Along the rows, results are shown per country and batch size ‖Ai‖.

Country ‖Ai‖
Num. Accuracy PPV Sensitivity MSE
obsv. (%) (%) (%) (×10−4)

RS AS RS AS RS AS RS AS RS AS

Cote d’Ivoire
1 100 43 82.0 82.0 78.6 77.7 74.5 74.7 5.5 6.8

10 100 50 81.7 82.4 78.4 77.9 74.1 75.3 5.6 6.4
50 100 100 82.3 84.2 77.8 80.6 75.2 76.9 5.4 5.7

Malawi
1 100 26 84.7 84.9 84.9 82.7 72.5 73.4 2.8 3.4

10 100 40 84.9 84.9 85.0 84.3 72.8 72.9 2.7 3.1
50 100 50 85.0 85.0 85.0 83.9 72.9 73.1 2.6 3.0

Haiti
1 100 26 91.1 91.3 91.3 91.1 89.8 90.4 1.1 1.5

10 100 40 91.2 91.5 91.8 92.6 89.4 89.6 1.1 1.8
50 100 100 90.7 91.6 91.5 94.5 88.8 88.9 1.1 1.7

Philippines
1 100 10 95.2 95.2 68.2 67.7 95.5 94.4 2.2 4.7

10 100 20 95.4 95.8 69.7 71.7 95.0 94.1 2.0 4.6
50 100 50 95.0 95.5 67.6 79.3 94.5 83.5 2.3 5.7
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