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Abstract

The novel Coronavirus of 2019 caused an ongoing pandemic with over 400,000 confirmed
cases and large variability in its reported case fatality rates (CFRs), which are proportions of
fatal cases among demographic groups. The relative CFRs between groups and countries are key
ratios that guide policy decisions regarding scarce medical resource allocation. In the middle of
an active outbreak, estimating this measure involves correcting for time- and severity- dependent
reporting of cases as well as time-lags in observed patient outcomes. In this work, we argue that
we must make up for lost information about time when estimating the relative CFR: without
inferring the time-dependent balance between reporting rates of fatal and non-fatal cases, CFR
estimators can perform badly. To make this argument rigorous, we carry out a theoretical
analysis of some current estimators of CFR. We then adapt a previously developed method—
based on the well known expectation-maximization (EM) technique—for COVID-19 reporting.
Our analysis is supplemented by numerical results and an open-source implementation. This
should enable epidemiologists and other analysts to fit likelihood-based models similar to the
ones we propose as remedies for the biased nature of naive CFR estimates, permitting more
accurate planning of medical resource distribution.

1 Introduction

As of March 23, 2020, the 2019 novel Coronavirus (SARS-COV-2) outbreak claimed at least 18,915
lives out of 422,915 confirmed cases worldwide, of which 108,573 recovered [3|. Because the basic
reproduction number Ry of the virus is high (est. 2 to 3) [10], public health organizations and local,
state, and national governments must allocate scarce resources to populations especially susceptible
to death during this pandemic. Therefore it is critical to have good estimates of the absolute
case fatality ratio (CFR) of COVID-19 and the relative CFRs between different populations. It is
widely believed that the naive estimate, obtained from a simple ratio of deaths to reported cases
(and which has a value of 4.4% when applied to the data of March 23, 2020), is biased [6, 2.
Despite this understanding, naive estimates continue to be used, reported, and cited in major
publications [16, 18]. In the current manuscript we review some of the statistical reasons for the
bias and we discuss model-based corrections for these forms of bias. In particular, we review a
bias-corrected estimate based on approximate maximum likelihood estimation, first introduced in
Reich et al. [14], and apply it to the COVID-19 dataset.

To our knowledge, this method has not yet been applied to COVID-19 data that has been
made publicly available [3|. This method permits us to directly estimate the relative CFR based
on covariates such as geography and age. With some additional assumptions, we estimate bias-
corrected absolute CFR over time.


https://github.com/aangelopoulos/cfr-covid-19
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Figure 1: Left. Plot of time series of recoveries, R;, deaths Dy, and cases (Y, plotted against time
index t, on a logarithmic scale. We additionally plot the number of total diagnoses, R; + D;. Right.
A plot of Epaive and Eopg as time series.

Our study is motivated by the urgent need to develop data-informed protocols for allocating
scarce medical resources geographically. We view the relative CFR as a useful target for such
protocols. Indeed, the absolute CFR itself has little intrinsic meaning as it averages out all effects
of medical care, age, geography, genetics, and more. Making the conservative assumption that
COVID-19 is sufficiently deadly to cause scarcity of medical resources (which is already apparent),
the absolute CFR is not useful for planning. Furthermore, even in a given geographic region, the
CFR varies in time with the strain on the medical system. One can imagine conditioning the
quantity on the covariates above, and more, down to the atomic level, eventually targeting the
causal increase in probability that a particular individual will die because of COVID-19. Although
this deeper inquiry may be of intrinsic interest, practical decisions will ultimately be made based on
averages of these covariates; for example, a region-specific relative CFR may be needed for resource
distribution.

Thus, for planning purposes, we target the relative number of deaths among total cases between
groups of people as the critical measure of relative risk which informs decisions affecting human lives.
Ventilators, test kits, vaccines, and medical personnel should be allocated based on a combination of
disease prevalence and relative risk of death (i.e., relative CFR). Fortunately, although the relative
CFR varies based on the covariates of the kind mentioned above, it is actually estimable under
weaker assumptions than the absolute CFR. Our estimates, explained below, correct the poor
performance of the naive estimates of CFR in a meaningful way which could affect the distribution
of medical resources.

2 Notation

We access publically available data courtesy of Johns Hopkins University, consisting of time-series
data of recoveries, deaths, and confirmed cases stratified across several dozen groups (in this case,
geographic locations) [3]. We denote cohorts or groups of cases by indices g, belonging to a set
G. For time points t = 1,2,...,T = 41, we collect daily data that we describe presently: for each



group g € G we collect R, D, and CY, which correspond to the number of recoveries, deaths, and
cases reported on day ¢ within group g. We drop the group superscript g for population quantities:

Ry:=Y R}, Dy:=) Dj Cp:=)» CY.
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3 The naive estimator

In early March 2020, the WHO estimate of the CFR, 3.4% was widely reported |15, 8]. This estimate
is obtained from a naive estimator;! specificially, the raw proportion of deaths among confirmed
cases. Formally, as of March 6, 2020,

As of March 23, 2020, Epaive is 4.4%. Unfortunately, as we establish in Appendix A, the naive CFR
is biased for the true CFR of the disease unless the covariance between being diagnosed and dying
is zero, and reporting is perfect. Even asymptotically, the performance of this estimator becomes
unboundedly bad as reporting goes to zero or the CFR goes to zero.

The bias comes from at least two flawed assumptions. First, at the time of estimation, Fyaive
assumes we have observed all deaths that will happen among diagnosed cases. Second, it assumes
the reporting rates of cases is the same at all times regardless of severity. We formalize this argu-
ment mathematically in Appendix A. The naive estimator ignores time-dependent reporting: the
denominator of the fraction is growing much faster than the numerator during an active outbreak,
as more people become infected (or aware that they are).

It is therefore a challenge to disentangle which recoveries should “count" at which time point t.
The efficiency of the estimator is also questionable, as it never takes into account the quantity Ry
(the time series of recovered cases).

The naive estimator requires no complex modeling or tuning parameters and is easy to interpret.
As we will see, there is no uniformly best method of measuring the CFR, and the naive estimator
should be viewed as one in a constellation of estimators which give a heuristic idea of the causal
CFR. Nonetheless, the naive estimator can be improved at little cost, and indeed, in this work, we
suggest applying a simple correction for time-dependent reporting rates which alleviates the two
basic problems with the naive estimator.

4 Estimation using only observed outcomes

One can view the problems listed in Section 3 as a consequence of “censoring” the data. Methods
for handling censored data have been studied for almost 40 years in the statistical literature; in
particular, in the context of the bootstrap [4]. Several works have already applied the bootstrap to
COVID-19 data to find confidence intervals for other epidemiological parameters such as Ry [13, 1].
This should also be done for the CFR for COVID-19, as Jewell et al. did for SARS [9]. There is

'To be clear, it is not made explicit in the WHO report what the exact form of their case fatality rate estimates
are.



also a very simple estimator which only uses observed data, namely

>y Dy
23:1 Dy + Zthl Ry

This estimator accounts for the inflation of the denominator in the naive estimator, but does not take
advantage of any information in Cyy 7). Furthermore, this estimator makes the further assumption
that we observe the same fraction of recovered cases and fatal cases at the time of estimation. We
formalize this assertion in Appendix B. Note that in all cases, Eops > Fnaive. Generally it cannot
be said that either estimator is an upper or lower bound on the true CFR due to time delay.

The closest work to ours attempts to correct for the time-dependent reporting by picking an
single day in the past, and using the denominator of E,giye from that day[12]. However, such
methods are misleading because they do not compensate for time- and severity-dependent reporting.
For example, in the simple case that people do not report the disease until it is in an advanced
stage, such a method would break. Instead, we must parameterize a likelihood model which can
account for these factors explicitly.

Eobs = ~ 130%

5 Likelihood models

In this section, we explain how, under milder assumptions, the parametric model in Reich et al. [14]
can estimate the time-dependent CFR of COVID-19. Accordingly, we show how to outperform
Faive and Egpg by fitting a parametric model to time-series data. Maximum likelihood methods
have been used in the past to fit parametric models of time-dependent epidemiological quantities
using data from influenza pandemics such as HIN1 and the Spanish flu [5, 14, 7]. A parametric
model allows us to “bake in” assumptions about COVID-19 to improve the estimator. For example,
using our model, the (unknown) probability that a person who died from COVID-19 was diagnosed
is denoted 1. v will vary depending on the day of symptom onset t,, and group g (e.g., due to
awareness or availability of testing), so we index it as ¢y, 4. Similarly, the time- and group-varying
probability that a person who recovered from COVID-19 was diagnosed is denoted ¢y, 4. Finally,
we denote the true CFR as py,, 4. Then, for each person A in group g and onset ¢y, there are three
possibilities:

e Scenario 1: A recovered and was diagnosed, with probability ¢y, (1 — Pron.qg);
e Scenario 2: A died and was diagnosed, with probability ., ¢Dt.. g3
e Scenario 3: A undiagnosed, with probability (1 — ¢r.,.4)(1 = Dton.g) + (1 = Pton.g)Plon.g-

Define Ng , as the (unknown) number of total cases infected at time oy and in group g. Then
the three scenarios define a multinomial model with three categories. If we had to, and the time of
death /recovery for each COVID-19 patient, the model could be fit analytically. But we do not, so
we need an extra assumption: that we know, conditioned on the death of a patient, the probability
that they die on any day tqy > ton. This quantity is defined as:

n;j := P[death occurred at time to, +j | death occurred].

Two assumptions are needed to fit this model. First, p must be small. Second, either: 1) the
proportion of people reporting fatal and non-fatal cases is constant; or 2) reporting rates do not



Iran | Italy | South Korea

Eraive | 1.94 | 2.45 0.34
Eops 4.16 | 10.51 0.76
Ours | 3.29 | 6.97 0.14

Table 1: The relative CFR for different nations using the three different estimators.

vary among covariates; or 3) 100% of fatalities are reported. An extensive mathematical treatment
and evaluation of this model is in Reich et al. [14]. They show that as long as p, stays below 0.05,
the estimated CFR is off by less than 10% of its true value. Similarly, it is not very sensitive to
misspecification of the distribution of deaths, . In order to get absolute CFR information, we have
to either compare a country to a simulated reference outbreak with a known CFR, or time-lag the
country’s data against itself. We did the latter. We will now apply this model to the COVID-19
data [3].

6 Results

Using the coarseDataTools package in RStudio, we applied the above model on the open-sourced
COVID-19 data. The code is included for reproducibility.

6.1 Relative CFRs

We report results for the estimation of relative CFRs in three countries in Table 1. The CFRs are
calculated relative to China’s CFR. Independently, we estimated this absolute CFR to be 2.1%.
More relative CFRs can be calculated using our codebase.

6.2 Choosing 7

Fourteen vectors of length L, ni*, were chosen to illustrate the estimator’s performance as our
assumption about the true distribution of deaths changes. We stopped at 14 because that is the
current best estimate for the mean time to death|[17]. The 1 were chosen as L evenly spaced points
along the domain of a Gaussian probability distribution function with mean ¢ and unit standard

deviation:
1 1

@[] = Eexp(—ﬁ(l —i)%).

For all relative CFR, calculations, we used 714.

6.3 Bias-Corrected CFR

We found that the bias-corrected CFR was between 1.7% and 3.6% depending on the chosen 7.
Table 2 summarizes our results for all values of 7. Our results indicate a downward correction of the
naive estimate of 4.4% to 2.4%. More importantly, as more data becomes available, our time-series
based methodology will increase in accuracy. It will also be possible to model longer-tailed death
distributions as more data points become available.



I 1 2 3 4 5 6 7 8 9 |10 11|12 | 13| 14
CFR (%) [ 3629|2017 |18 |21[23]23[23]26|26/|25/|28|24
Table 2: Using our likelihood model, the global, absolute CFR decreases to 2.4 as the mean time to
death approaches the true mean of 14. Above, if u = ¢, it implies that the experiment was carried

out sampling X ~ N(,1), as described in section 6.2.

7 Discussion

Our result indicates that after correction for time-dependent reporting rates, the WHO estimate of
3.4% (now 4.4%) is likely an overestimate of the true CFR. This fact motivates the methodology
that we use. We note that the motivation will only strengthen as the reporting-rate adjusted
estimators for relative CFR begin to converge with more evenly distributed testing in Italy, South
Korea, Iran, and the United States. We also show that the epidemiological community should be
highly skeptical of both E.ve and Eops; they are biased even in generous infinite-data conditions.
Our code, released on GitHub with this submission, includes a script which will run the estimator
on new COVID-19 data worldwide as it is published.

The estimates in Table 1 numerically confirm the intuitive observation that in Italy and Iran,
CFR is much higher than in both China and South Korea, likely due to the differences in availability
of medical care. Finer-grained estimates, such as those based on city-level surveillance data, may
help allocate personal protective equipment and medical personnel in these dire circumstances.

Our estimate seeks to address only a subset of biases. We explicitly account for the time-
dependence of reporting rates, which may differ among covariates. We have separate time-dependent
reporting rates for cases which will eventually be fatal or non-fatal, correcting for the fact that
reporting is higher among severe cases. Deaths are known to be related to some combination of
healthcare quality and age, which can therefore be accounted for by our relative CFR estimates.
Reporting delay may be country dependent, which we address, as long as our constant-proportion
assumption holds (which it may well not).

Many key biases (in addition to our modeling assumptions) remain unaddressed by the com-
munity. Tests are often reserved for severe cases of COVID-19, in order to prescribe treatments
to diseased patients. This likely biases any CFR estimate upwards, even with our correction, by
causing unpredictable variations in reporting jointly by group and time. Details in the definitions
of terms across countries and times also result in severe bias in time series data; for example,
on February 12th, the Chinese government changed the definition of “confirmed case” to include
symptom-based diagnoses, resulting in a 600% increase in cases that day [11]. Still, China explicitly
says they will not count asymptomatic cases towards the confirmed case count (which may actually
help, since if the proportion of asymptomatic cases is an intrinsic property of the disease, this could
help us estimate the total number of cases). It is questionable whether all data is fully and honestly
reported from all countries. Finally, the sensitivity and specificity of COVID-19 assays vary signif-
icantly by country. Because many of these biases place higher weight on fatal cases than non-fatal
cases, countries with more biased data collection strategies will likely have artificially inflated CFRs.
Accounting for these biases may be possible with great effort by many data analysts. However, it
may be best for the statistical community to instead channel this effort into a unison clarion call
to governments: randomized testing of a closed population, with at-home test kits or at grocery
stores, is by far the best way to debias these estimates.
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A Proof that the naive estimator of CFR is biased

The naive estimator has two major limitations: 1) It does not compensate for the fact that people
who become confirmed cases are biased to become more severely ill. 2) It does not compensate for
censoring. The first proof deals with 1), and the second deals with 2).

This proof will have different notation from the rest of the paper, since it deals with individual
random variables for each COVID-19 infected person instead of time-series data.

Index the infected population with the integers {1,--- , N}. Let T; ~ Ber(p) be a Bernoulli ran-
dom variable representing whether or not i died, and let W; ~ Ber(q) be a Bernoulli random variable
representing whether or not ¢ was diagnosed with the virus. Also define vy =P[W; =1 |T; =1] =
(Cov(T;, W;) + pq)/p. We want to estimate p. But we only have Zf\;l Vi = Zf\il T;W;. Applying
the tower property of conditional expectation and using the exchangeability of the (T}, W;) pairs,

E [ Zi\il Vi Vi

we have:
_— T .
N N
Zj:l Wi Zj:l W; ”
Since Wi is independent of W3  n, we can express the sum in the denominator as a binomial

random variable, B ~ Bin(/N — 1,¢q). Note the fact that E [ﬁ} = ((1 - (1 —-¢)"))/Ngq. Then,
evaluating the innermost expectation first:

N

:ZE

=1

1

— NE —
Wi+, W

TE (W,

1 1 git N
NE |HE|\Wy—— | Th|| =NE | T'nE |—— | | Th| =p— (1 — (1 — .
[1 [ 1W1+B’ 1” [171 [l—l—B}’ 1] pq( ( a)")
Finally, substituting for 1, we obtain the final form:
Cov(W;, T3) + pq

q

Recall that g is the probability of reporting given an infection, and p is the probability of death
given an infection. Therefore Eqive is biased for p unless both ¢ = 1 and Cov(T;, W;) = 0, which

is clearly false for any real disease. Interestingly this empirical CFR is not constrained to be an
Cov(Wy,T1)(1—(1—¢q)™)
: ) . a(l=a)™ ' :

Also, if there exists some small probability € of dying independent of the disease and the co-
variance between T and D is otherwise nonnegative, the (asymptotic) overestimate can get as bad

as:

E [Enaive] = (1—-(1- Q)N)-

underestimate, and can overestimate p if p >

. Cov(T;, W;) +pg _ .. €+pq
lim > lim =00
q—0 q q—0 q

In other words, as the rate of reporting (g) decreases or the covariance between death and reporting
increases, the CFR gets worse, ultimately becoming infinitely bad. Simiarly, the ratio % can
become infinitely bad as the product pg decreases.

A proof of Part 2), that the naive estimator of the CFR is biased for the true CFR, can be found
in Appendix A of Reich et al. [14].

B Proof that the observation-only estimator of CFR is biased

We borrow notation and proof technique from Reich et al. [14]. Specifically, define the time-
dependent reporting rate of fatal cases in group ¢ as at time t as ¢4 € [0,1]. Similarly, the



time-dependent reporting rate of non-fatal cases is ¢4 € [0,1]. Dy g4, Ry g, and Cp4 are the time
series of deaths, recoveries, and confirmed cases, as before. Also define Ny, as the total number of
cases, reported and unreported, at time ¢ for group g.

In addition, define: d;, := E[Dy, | Nf ] = N{ pgthr and 1y g = E[Ry g | Ni ] = N (1 — pg)ér.
Also, introduce two functions, Fy(t) — [0,1] and F,.(t) — [0, 1], where Fy; represents the fraction of
confirmed, fatal cases who have died by time ¢. Similarly F,. represents the fraction of confirmed,
non-fatal cases who have recovered by time t. During an active outbreak, we have F; < 1 and
F, < 1. Finally, define T" as the current time; all sums over time below have an upper limit of T’
unless otherwise specified. We seek the asymptotic convergence target of:

Fy(T)%4, Dy, 4

Eops = .
" (Fu(T)S4, Dty g) + (Fr(T) %4, Ry g)

By the weak law of large numbers we have:

dtg D
’ M
N, = Pt
and similarly,
Ttyg p
—= = (1 - .
N;:g ( pg)¢t

Now we focus on the denominator. We have to introduce a “smoothness” assumption: the
number of infected people at each timestep N;| , has a constant ratio with the number of infected
people at each other timestep Ny, ;. This is a conservative assumption in any real-world scenario.
In particular, as Ny, ; — co and Ny, , — o0,

*
Nthg

*
NtZ g

- >‘t1,t2,9‘

Therefore, we also have by Slutsky’s theorem that:

diy,g + 71y,
2 * = & )‘t17t2,g(pgwt + (1 _pg)@)-
t2,9

Now, applying the weak law of large numbers and our assumption:

*
diy,g + Tta,g _ Nt179

* - *
Nthg Nt2»9

dy Ttyg D
(2% + 25) = Mgt g(Pg¥r + (1 — pg)r).
Nt2’g Nt2’g 2,01,9 g g

Then, by Slutsky’s theorem,

dt27g _ dt2,g/Nt*2,g LN pg¢t
Yy diy g+ Tty g E1t1(alt1,g + Ttug)/Ntz,g 2, (>\t1,t2,g(pgwt + (1 — pg)¢t))

Finally, applying these results to our estimator (and with one final application of Slutsky’s theorem
to Fy and F)),

Fd(T)pg@bt
(T) (3t Aty t0,9Pg%t) + Fr(T)(Bty Ay t9,9(1 — pg) )

This is clearly a biased estimator of p,.

Eobs £> Ztg Fd



References

1]

2]

3]

4]
[5]

6]
7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

S. J. Akhmetzhanov, B. Yuan, R. Kinoshita, and H. Nishiura. Epidemiological characteristics
of novel coronavirus infection: A statistical analysis of publicly available case data. medRziv,
2020.

M. Battegay, R. Kuehl, S. Tschudin-Sutter, H. H. Hirsch, A. F. Widmer, and R. A. Neher.
2019-novel Coronavirus (2019-nCoV): estimating the case fatality rate—a word of caution. Swiss
Medical Weekly, 150(0506), 2020.

E. Dong, H. Du, and L. Gardner. An interactive web-based dashboard to track COVID-19 in

real time. The Lancet Infectious Diseases, Online First, 2020.
B. Efron. Censored data and the bootstrap. J. Amer. Stat. Assc., 76(374):312-319, 1981.

K. Ejima, R. Omori, B. J. Cowling, K. Aihara, and H. Nishiura. The time required to estimate
the case fatality ratio of influenza using only the tip of an iceberg: joint estimation of the vir-
ulence and the transmission potential. Computational and Mathematical Methods in Medicine,
2012, 2012.

A. S. Fauci, H. C. Lane, and R. R. Redfield. Covid 19: Navigating the uncharted, 2020.

E. L. Frome and H. Checkoway. Use of poisson regression models in estimating incidence rates
and ratios. American Journal of Epidemiology, 121(2):309-323, 1985.

T. A. Ghebreyesus. Who Director-General’s opening remarks at the media briefing on COVID-
19 — 3 march 2020, 2020.

N. P. Jewell, X. Lei, A. C. Ghani, C. A. Donnelly, G. M. Leung, L. Ho, B. J. Cowling, and
A. J. Hedley. Non-parametric estimation of the case fatality ratio with competing risks data: an
application to Severe Acute Respiratory Syndrome (sars). Statistics in Medicine, 26(9):1982—
1998, 2007.

Y. Liu, A. A. Gayle, A. Wilder-Smith, and J. Rocklév. The reproductive number of COVID-19
is higher compared to SARS coronavirus. Journal of Travel Medicine, 2020.

National Health Commision of China. How to interpret the 15,152 surge in COVID-19 new
cases of february 12. Accessed on-line, 2020.

R. Qi, C. Ye, X. Qin, and X. Yu. Case fatality rate of novel Coronavirus disease 2019 in china.
medRxiv, 2020.

J. M. Read, J. RE Bridgen, D. AT Cummings, A. Ho, and C. P. Jewell. Novel coronavirus
2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRziv,
2020.

N. G. Reich, J. Lessler, D. AT Cummings, and R. Brookmeyer. Estimating absolute and relative
case fatality ratios from infectious disease surveillance data. Biometrics, 68(2):598-606, 2012.

B. Stelter. Trump makes spurious claims about coronavirus in phone call with Sean Hannity,
3 2020.

10



[16] The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemio-
logical characteristics of an outbreak of 2019 novel Coronavirus diseases (COVID-19) in China.
China CDC Weekly, 41(2):145, 2020.

[17] W. Wang, J. Tang, and F. Wei. Updated understanding of the outbreak of 2019 novel coron-
avirus (2019-nCoV) in wuhan, china. Journal of Medical Virology, 92:441-447, 2020.

[18] Z. Wu and J. M. McGoogan. Characteristics of and important lessons from the Coronavirus
disease 2019 (COVID-19) outbreak in China: Summary of a report of 72, 314 cases from the
Chinese Center for Disease Control and Prevention. J. Amer. Med. Assc., 2 2020.

11



	1 Introduction
	2 Notation
	3 The naïve estimator
	4 Estimation using only observed outcomes
	5 Likelihood models
	6 Results
	6.1 Relative CFRs
	6.2 Choosing 
	6.3 Bias-Corrected CFR

	7 Discussion
	8 Conflicts
	9 Acknowledgements
	A Proof that the naïve estimator of CFR is biased
	B Proof that the observation-only estimator of CFR is biased

