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Abstract

Estimating seasonal influenza prevalence is of undeniable public health importance, but remains challenging with
traditional datasets due to cost and timeliness. Digital epidemiology has the potential to address this challenge, but
can introduce sampling biases that are distinct to traditional systems. In online participatory health surveillance
systems, the voluntary nature of the data generating process must be considered to address potential biases in
estimates. Here we examine user behaviours in one such platform, FluTracking, from 2011 to 2017. We build
a Bayesian model to estimate probabilities of an individual reporting in each week, given their past reporting
behaviour, and to infer the weekly prevalence of influenza-like-illness (ILI) in Australia. We show that a model
that corrects for user behaviour can substantially effect ILI estimates. The model examined here elucidates several
factors, such as the status of having ILI and consistency of prior reporting, that are strongly associated with the
likelihood of participating in online health surveillance systems. This framework could be applied to other digital
participatory health systems where participation is inconsistent and sampling bias may be of concern.
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1 Introduction

Influenza is a substantial public health concern, with ap-

proximately 3-5 million severe cases worldwide each year

[1]. There are many challenges in estimating influenza ac-

tivity and forecasting the spread of influenza, given that

disease transmission in the general population is largely

unobserved. Traditional influenza surveillance relies on

public health system monitoring, such as through hospital

admissions, notifications of laboratory confirmed cases, or

voluntary reporting from local physicians [2, 3]. However,

in these systems, estimates of disease prevalence can be

limited by the time taken to collect, collate and publish

through public health systems.

Online participatory health surveillance systems at-

tempt to address these challenges by providing a conve-

nient, simple and near real-time platform for self-reporting

of symptoms. FluTracking [4] is one such system for mon-

itoring influenza-like-illness (ILI), with a principal aim to

contribute to community level ILI surveillance in Aus-

tralia and New Zealand. Similar platforms exist in the

US (Flu Near You [5]) and Europe (Influenzanet [6]).

These platforms often publish estimates of the inci-

dence or prevalence of ILI in the population, usually de-

rived as a proportion of the total number of reports re-

ceived that week. These estimates have been found to

correlate well with clinical surveillance by public health

bodies [7–9], including across different definitions of ILI

cases [6].

While systems such as FluTracking show promise in

estimating the incidence of ILI in the population, there is

evidence that these systems can be effected by variations

in user participation [9–12]. Very little is known about

how these biases could affect disease prevalence estimates

and there is a clear lack of studies that attempt to quan-

titatively adjust for them. Attempts to correct for these

biases have all been based on the removal of data, such

as only considering users who frequently participate [6,

7, 13, 14], removing the first report of a user [12], or by

creating noise filtering algorithms that minimise sudden

departures from sentinel data due to changes in participa-

tion [15]. While not unreasonable, these methods do not

give insight into user behaviour, and do not examine the

effect of their corrections on the estimates they examine.

Some examinations of the heterogeneity of users and their

behaviours have been conducted, such as inferring signifi-

cant predictors for and classifying users on their participa-

tion levels [16, 17], and examining the demographic repre-

sentativeness of the participating population [14, 17, 18].

However, user behaviour has not been analysed within a
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systematic, statistical modelling framework, in particular

one which can simultaneously correct disease prevalence

estimates. This work addresses this gap by using informa-

tion about how individuals behave with regard to survey

completion to inform our estimate of the weekly preva-

lence of ILI. While the scope of this work is limited to

Australia, the analysis is generalisable to other types of

voluntary, web-based surveillance in other locations and

settings, of which there are numerous.

FluTracking Data

Participants can register in FluTracking at any stage of

the year, and upon registration, they provide various de-

mographic details about themselves, including age, gen-

der, and postcode. Participants can optionally register

and report on behalf of others in their household. Those

participants who are submitting reports, on behalf of them-

selves and/or their household, will henceforth be referred

to as ‘masters’, while any individual observed, master or

not, will continue to be referred to generally as ‘partic-

ipants’. After registering, masters are sent an email on

the Monday of each week during the influenza season to

respond to an online questionnaire about the presence of

fever or cough that they or their household members may

have experienced in the week prior, and whether they

have received the influenza vaccine this year.

Surveys can be submitted for up to 5 weeks from their

first reminder. Note that FluTracking often publishes es-

timates of ILI incidence to examine the spread of new

cases of ILI [19]. In this study, we will focus on estimates

of prevalence in order to determine if user behaviour is

influenced by ILI status.

If a participant reports both a fever and a cough, fol-

low up questions are revealed, such as enquiring about

any health-seeking behaviour taken or if a sore throat

was experienced. In this study, we define an ILI case as a

survey response with a fever and a cough, which closely re-

sembles the World Health Organization surveillance case

definition [20].

Note that a report, and therefore an observation of

ILI status in a household, is generated by the action of

the master, and so it is the report of the master and

subsequent reports on behalf of the rest of the household

that is the outcome of interest. Also note that in order to

build a framework for near real-time prediction, we have

chosen to define a report submitted less than 7 days after

the initial request as an ‘on-time’ report and not a ‘late’

report. This is the interval of time before the subsequent

request for the next survey is sent. However, if symptoms

are submitted in a late report, this information is not

excluded, but used in the derivation of predictor variables

for subsequent survey weeks, irrespective of submission

date.

FluTracking operates between May and October every

year in the winter season in the Southern Hemisphere. We

examine all Australian reports submitted between 2011

and 2017, totalling 3,459,339 unique reports from 30,564

households and 52,773 participants. Of these reports,

352,287 (approx. 10%) are late reports.

Using the registration date of individuals, we can in-

fer the weeks in which household reports were missed and

never submitted as survey weeks without a report after

their registration date for each season. This includes an-

other 496,175 missed surveys.

The Model

The conventional estimate in the literature is given by the

total number of individuals that have reported with ILI,

divided by the number of on-time reports in the given

week. We improve this by developing a framework to

adjust ILI prevalence estimates by correcting for user be-

haviour, and construct a model to predict the probabil-

ity of a user reporting in a given week, based on their

prior behaviour and demography (Figure 1). An individ-

ual household i in a given week w will receive a survey

request to participate, and will then proceed to either re-

port and provide information on their symptoms, or not

report. Given that they report, and their symptoms are

therefore known, they will either report on-time, or report

late. We will compare the following two estimates of the

prevalence of ILI:

• the näıve estimate (an extension of the conventional

estimate); and,

• a behaviour corrected estimate, (our new frame-

work).

Our näıve estimate extends the conventional by consider-

ing a Bayesian perspective on the estimate, which respects

the same mode value as the conventional estimate. The

behaviour corrected estimate is inferred from a framework

that incorporates an observation process in the model,

whereas the näıve model does not. Both estimates assume

the number of individuals with ILI in the population is

binomially distributed.

Materials and Methods

Näıve Model

The conventional estimate takes the total number of in-

dividuals that have reported with ILI this week Xw and

divides this by the number of on-time reports this week

Nw. If we consider that each individual in the popula-

tion has an equal probability π̂w of having ILI in week

w, then Xw can be modelled with a binomial likelihood

with probability π̂w and trials Nw. Note that this in-

terpretation considers Nw as fixed and not a random
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Figure 1: Visualisation of model of user outcomes for a
household i in week w, where the probability of report-
ing given their health status is modelled with the link
function listed below respective compartment. The prob-
ability of having at least one household member with ILI
is modelled with φw (Equation 2).

variable. Given a uniform prior Beta(1, 1) and a bino-

mial likelihood, the posterior distribution of π̂w is then

Beta(Xw + 1,Nw −Xw + 1). This results in the mode of

the posterior distribution of π̂w as Xw/Nw, which is the

conventional point estimate often used in the literature

(See [6, 7, 15, 21]). We define this posterior distribution

of π̂w as the näıve estimate, which is an estimate for the

prevalence of ILI in the population, without consideration

of user behaviours. In the work presented here, we did

not split the cohort by vaccination status and model esti-

mates for vaccinated and unvaccinated prevalence. Mod-

els using a split cohort with separate parameters for vacci-

nated and unvaccinated prevalence were examined, with

only marginal differences in the corresponding parame-

ters, typically near the peak ILI week. As such, we have

simplified the model and reduced the number of param-

eters inferred. While it can be tempting to examine the

difference between the vaccinated and unvaccinated esti-

mates as a measure of influenza vaccine effectiveness, in

this study we examine cases of ILI, not influenza. Any

examination of vaccine effectiveness will require further

modelling.

Behaviour Model

We construct a model (Figure 1) that accounts for user

behaviour and informs an estimate for the prevalence of

ILI in the population, for vaccinated and unvaccinated

individuals. For a household i in week w, let Y be a

binary indicator of an on-time report submitted by the

master of the household, I be a binary indicator of at

least one participant of the household having ILI, and

M be a binary indicator of the master of the household

having ILI.

For every household in every week, there can be one

of four outcomes:

• A household submits a report on-time, and no par-

ticipants report having ILI (Y = 1, I = 0),

• A household submits a report on-time, and at least

one member that is not the master reports having

ILI, (Y = 1, I = 1,M = 0),

• A household submits a report on-time, and the mas-

ter reports having ILI, (Y = 1, I = 1,M = 1),

• A household does not submit a report on-time (Y =

0).

Logistic regression can be used to estimate a house-

hold’s probability of reporting p, where for some set of

predictors xi,w and parameters θ, βH and βM . The link

function is defined as

log

(
p(I,M)

1− p(I,M)

)
=xt

i,wθ + I ((1−M)βH +MβM ) ,

(1)

where:

• xi,w is the vector of predictors for reporting,

• θ is the parameter vector of regression coefficients,

• βH is the parameter for the change in reporting be-

haviour due to the household having at least one

member with ILI, but not the master, and

• βM is the parameter for the change in reporting

behaviour due to the master having ILI.

Assume each household member has an independent

probability πw of having ILI in week w, then we can define

φw to be the probability that a household of size ni has

at least one individual with ILI in a given week w. The

probability φw can then be modelled as

φw =1− (1− πw)ni . (2)

The expression of the probability of the master having ILI

M and reporting Y can be seen below. The other three

possible outcomes for a given household in a given week

can be similarly derived, and is not presented.

P (M,Y, I) =P (Y |I,M)P (M |I)P (I)

=P (Y |M)P (M |I)P (I), as M ⊂ I
=p(I,M)P (M |I)φw.

Defining ζ = P (M |I), an expression for ζ is:
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Table 1: Variables from the dataset used in constructing
predictors.

Chronological Epidemiological Demographic

Survey week Had fever Participant ID
Year Had cough Household ID
Join date Days of absence Postcode
Submit date Sought medical

advice?
Age group

Diagnosis Health worker
Test results Vaccinated

ζ = P (M |I)

=
P (I|M)P (M)

P (I)

=
P (M)

P (I)

=
πw

φw
.

The likelihood L is then the product of the likelihood

of each household i in each week w in the training set

L =
∏
i,w

Li,w (3)

where

Li,w(I,M) =

F (I,M) Y = 1,

1−
∑
I,M

F (I,M) Y = 0. (4)

and

F (I,M) = p(I,M)
(
φwζ

Mζ1−M
)I

(1− φw)1−I . (5)

Model Fitting

We use a Bayesian framework to estimate the posterior

distribution of the parameters θ, β = (βH , βM ), and π,

conditional on the data X and y, via Bayes’ rule:

P(θ,β,π|X, y) ∝ P (y|θ,β,π,X) P (θ,β,π) .

Prior distributions for the parameters were:

θ,β ∼ Norm(0, 0.7I),

π ∼ Unif(0, 1),

where 0 is the zero vector and I is the identity matrix.

The variance of the prior distributions for θ and β

were chosen to provide a near uniform prior density for

the probability of reporting and reporting on-time, given

the distribution of the training set predictors. Figure S1

in the Supplementary Information shows the prior distri-

bution transformed from the log odds scale to the prob-

ability scale, after multiplication with samples from the

training set predictors. Results were not sensitive to this

choice of variance.

All predictors xi,w were scaled to be between 0 and 1,

to allow for simplicity in comparing the predictive strength

of each parameter. The set of predictors used for regres-

sion were derived from variables listed in Table 1, and the

complete set of predictors used can be seen in Table S1.

To estimate the posterior distribution of the param-

eters of the model, we used Hamiltonian Monte Carlo

(HMC) implemented in the software package Stan (ver-

sion 2.18) [22]. HMC is particularly effective over other

Markov chain Monte Carlo methods, such as Random

Walk Metropolis-Hastings, in high dimensional parame-

ter spaces such as in this analysis, and the Stan imple-

mentation uses adaptive tuning of algorithm parameters,

reducing the need to tune the inference algorithm [23].

For model training and inference of results, 80% of

the households in each year were used in the training set

for the model, and the remainder left in a test set for

cross-validation of model predictions. For each season ex-

amined, the first week of reports was used in determining

the prior behaviours of users and used in calculating pre-

dictor values, but were not used to infer parameters of

the model, as predictors involving prior behaviours could

not be well defined in the first week.

Data Access

Reproduction of this study would require individual level

data, which is precluded by ethics approval (The Uni-

versity of Adelaide Human Research Ethics Committee

(HREC) H-2017-131). Anonymised data may still allow

the possibility of identification of individuals, given the

rich set of features and the small numbers in some post-

codes.

Results

Comparison to Näıve Estimate

Without correcting for user behaviour, our results show

that näıve estimates of ILI prevalence are biased and over-

estimate the actual prevalence. The distribution of the

näıve estimates have nearly all their probability density

higher than the distribution of the behaviour corrected

estimates for the ILI prevalence (Figure 2). This bias was

found to be greatest when prevalence of ILI was great-

est, and implies that users may be more likely to report

when they have ILI. This trend was observed for every

year of analysis (see Supplementary Information). Figure
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2 shows the results from training the model on the year

2017.

Reporting Behaviour

Predictors of reporting behaviour were determined from

chronological, epidemiological and demographic data (Ta-

ble 1). Given a consistent identification number for each

individual and each household, predictors such as the

week of the survey, whether the individual reported hav-

ing a single symptom previously this year, and whether

an individual is reporting on behalf of others can be de-

termined. A full list of predictors used and their expla-

nations can be found in Table S1.

Unsurprisingly, the greatest predictor for reporting be-

haviour was found to be the proportion of reports submit-

ted on-time in the year so far for an individual, with all

posterior samples of log odds ratio greater than 4 (see

Figure S10). Here we will present predictors of interest,

and the marginal densities of all predictors are presented

in the Supplementary Information.

A comparison of marginal posterior densities of re-

gression coefficients for predicting the probability of re-

porting (p) can be seen in Figure 3. Those reporting on

behalf of others were not found to be much more likely

to report, inconsistent with analysis in other studies [16,

17]. These studies did not consider the past reporting

behaviour of users in their analysis, and this may have

confounded this predictor in previous work. Individuals

who have reported being vaccinated for this season were

also found to be more likely to report in any given week.

Individuals who had reported having a symptom in

previous weeks were much more likely to submit a report.

However, the increasing number of weeks since the symp-

tom occurred was a strong predictor for not submitting a

report. Given no other differences, the model then pre-

dicts an increase in probability for an individual to report

when they have reported having a symptom, with the in-

crease decaying over time as the number of weeks since

reporting the symptom increases. Figure 3 also shows

that there is a large increase in the log odds of reporting

when the household, but not the master, has ILI. How-

ever, when the master has ILI, there is a substantially

larger increase in log odds or reporting. This would in-

dicate that the status of having ILI in proximity, and in

particular personally experienced, is a strong predictor re-

porting and participating in FluTracking. The posterior

densities are remarkably consistent across the years, with

the direction of the effect of the predictor consistent in all

years, with the exception of those with small effects.

The current week was also used as a predictor for the

probability a user will report, and their marginal proba-

bilities of reporting declined sharply in the first third of

the season, before a more shallow decline as the season

continues (Figure 4). This could be explained by user

fatigue, where dedication to participating in a voluntary

system wanes through the year. This trend was also seen

in every year studied (see Supplementary Information).

Model Validation

To validate the model, 20% of the households in each year

were excluded from training the model and kept as a test

set. Model predictions were compared to observations in

the test set by taking 1000 samples of the parameters from

the posterior distribution, and simulating outcomes from

the model for each sample and each household in the test

set. The simulated data classified each household in each

week into one of the four outcomes (Figure 1).

The proportion of reporting households with at least

one participant with ILI, and the participation rate of

households of the simulated data, were compared to ob-

servations from the test set. The proportion of report-

ing households with at least one participant with ILI was

calculated by dividing the number of households report-

ing on-time with ILI by the total number of households

reporting on-time. The participation rate of households

is determined by dividing the number of households re-

porting by the total number of households registered who

have submitted at least one report in that year. Both

summary statistics from the data were similar to simula-

tions from the model on the test set using samples from

the posterior, and these comparisons can be seen in the

Supplementary Information Figures S13 to S19. The sim-

ulated data from the model matches well to the actual

observations from the test set and appears to retain the

autocorrelation or time dependence of the actual test out-

comes, without time dependence being explicitly included

in the model. As the model predictions correspond well to

outcomes observed in the test set in both summary statis-

tics, the model shows no indication of bias of observable

outcomes at a population level.

Discussion

Online participatory health surveillance systems strive to

provide near real-time estimates of disease prevalence,

and yield complementary insights to traditional public

health systems. However, the voluntary nature of these

systems, and the reliance on user participation, need to

be considered.

In this work we find that the presence of ILI in the

household, as well as other demographic factors, impacts

the probability a user will submit a report. At a popu-

lation level in FluTracking, this results in overestimation

of the prevalence of ILI in the population when using the

näıve estimate. This difference is greatest near the peak

prevalence of ILI. This may be due to users being trig-

gered to report by their symptoms, and being more likely
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Figure 2: Comparison of behaviour corrected posterior estimate of the prevalence of ILI in the population (solid) to
the näıve estimate (dashed) for the winter of 2017, and the difference between the two distributions over time. Lines
represent the median of the distribution and shaded regions are 95% credible intervals of the posterior distributions.

to report in voluntary health surveillance systems when

directly affected by the illness, through their household,

or more strongly by personal experience.

Participation in FluTracking, derived as the number

of on-time reports divided by the number of registered

users reporting at least one in a given year, generally

ranges between 70% and 90% for any given year and any

given week. This is much higher than rates observed in

Influenzanet and Flu Near You, where previous studies

have shown that 70% and 35% of users respectively sub-

mit more than 3 reports in a season [16, 17]. This is

despite FluTracking having proportionally much higher

numbers of participants than the European and US sys-

tems, relative to the respective populations of these re-

gions. While the variance of participation over time has

not been examined in the other systems, correcting for

user behaviour would potentially be even more critical

than observed here.

The estimates of the prevalence of ILI were not mod-

elled with influenza vaccination status incorporated. As

mentioned earlier, models with vaccination status included

were considered, but are not presented here. Models

which produce simple ILI prevalence estimates, as ex-

amined here, can not be used as a measure of influenza

vaccine effectiveness. The vaccine is not targeted to ILI,

and the changes in prevalence over time does not consider

the population size, or the number of cases of influenza

reduced in a season. For these reasons, vaccination sta-

tus was not incorporated into the model for prevalence

estimates.

However, there exists the potential to construct a mea-

sure of vaccine effectiveness by comparing the two groups.

The conventional metric of test-negative cases [24] does

not extend simply to the behaviour corrected estimates

presented here. However, with the potential to correct for

potential bias in the data and reporting behaviour across

different years, further studies may help inform vaccine

effectiveness estimates in near real time.

Whilst past behaviours and illness status were used

to predict user participation within the season, this study

did not attempt to train the model across seasons. Train-

ing the model across every season would allow for users’

behaviour in past years to inform behaviour in later sea-

sons. However, the computational difficulty in substan-

tially increasing the size of the training data, and the

number of parameters involved, remains a challenge left

for further work.

Predictors for user behaviour have only been taken

from within the FluTracking data set. Social media and

news coverage [25] and public awareness [26] are some

examples where external factors can influence behaviour

during an epidemic. Inclusion of these factors in the

model may further improve estimates of disease preva-

lence where user behaviour may be significant.
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Figure 4: The marginal posterior densities of the log odds
ratio of chronological regression coefficients for predicting
the probability of an individual reporting in a given week
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Information.

This analysis assumes each individual has an equal

probability of having ILI in a given week. Incorporating

a spatial mechanistic model, particularly given the post-

code and demographic information in the data set may

enable further insights into the mechanisms that drive

the transmission of influenza and ILI in Australia. Re-

cent analysis has shown the onset of influenza epidemics

is largely synchronised across regional areas [27].

With this model we have shown that user behaviour

can have a significant effect on disease prevalence esti-

mates drawn from the data. The framework developed

herein, which elucidates drivers of user reporting in volun-

tary health surveillance systems and improves estimates

of disease prevalence, should prove useful as digital data

streams burgeon in epidemiology.
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Supplementary Information

Methods

Table S.1 presents all predictors used in the analysis. Figure S.1 depicts the choice of prior distribution for the

regression coefficients.

Results

All figures are presented in reverse chronological order, as the more recent years have the most directly comparable

populations of participants to 2017, the year that was primarily discussed in the main paper. Figures S.2 to

S.7 compare the näıve estimate to model posterior distributions of ILI prevalence in vaccinated and unvaccinated

individuals across all years studied. 2017 results are presented in the main article. Figures S.8 to S.12 show the

marginal posterior densities of the log odds ratio of all regression coefficients for predicting the probability of an

individual reporting on-time across all years examined. Figure S.11 shows some of the bivariate kernel densities of

certain parameters of the posterior, displaying the lack of correlation between parameters in the posterior. Figures

S.13 to S.19 compare the model predictions against summary statistics of the test sets across all years examined.
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Table S.1: List of predictor variables used and their definitions. Asterisks indicate variables in which the value is
divided by the number of weeks in the season to scale the predictor between 0 and 1. School holidays breaks are
sourced from Australian government sources [28].

Predictor Description

HH has reported having ILI
previously

Has the household (HH) reported having
ILI previously this year, exclusive of the
master.

HH has reported having
symptoms

Has the HH reported having either fever or
cough, but not both, previously this year,
exclusive of the master.

Master works with patients Is the master in a patient facing occupation
Report is during a
State/Territory school
holiday

Does the current survey week cover days
that are in the master’s state school holi-
day period.

Master is reporting on be-
half of others

Is the master reporting on behalf of others.

Master reported having ILI
previously

Has the master reported having ILI previ-
ously this year.

Master reported having a
symptom previously

Has the master reported having either
fever or cough, but not both, previously
this year.

Master is vaccinated Has the master reported being vaccinated
for influenza this year.

Proportion of reports so far Proportion of reports submitted on-time so
far this year.

Number of weeks since HH
reported having ILI*

The number of weeks since the HH, but
not the master, was reported to have ILI.

Number of weeks since HH
reported having symptoms*

The number of weeks since the HH, but not
the master, was reported to have a fever or
a cough, but not both.

Number of weeks since re-
porting ILI*

The number of weeks since the master re-
ported having ILI.

Number of weeks since re-
porting symptom*

The number of weeks since the master re-
ported having a fever or a cough, but not
both.

Week Categorical predictor for the week of the
survey. Not used in predicting whether a
report will be on-time or late given a report
has been submitted.

Intercept Intercept variable to capture base level
reporting rate. Not used in predicting
whether a report will be on-time or late
given a report has been submitted.
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Figure S.1: The prior distribution of the regression coefficients transformed from the log odds scale to the probability
scale via the logit function, after multiplication with 1000 samples from the training set predictors of 2017. The
covariance matrix 0.7 I was chosen for the model as it was somewhat uniform across the probability scale, with some
skewness towards the boundaries.
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Figure S.2: Comparison of model posterior estimate of the prevalence rate of ILI in the population to the näıve
estimate for the winter of 2016, and the difference between the two distributions over time. Lines represent the
median of the distribution and shaded regions are 95% credible intervals of the posterior distributions.
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Figure S.3: Comparison of model posterior estimate of the prevalence rate of ILI in the population to the näıve
estimate for the winter of 2015, and the difference between the two distributions over time. Lines represent the
median of the distribution and shaded regions are 95% credible intervals of the posterior distributions.
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Figure S.4: Comparison of model posterior estimate of the prevalence rate of ILI in the population to the näıve
estimate for the winter of 2014, and the difference between the two distributions over time. Lines represent the
median of the distribution and shaded regions are 95% credible intervals of the posterior distributions.
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Figure S.5: Comparison of model posterior estimate of the prevalence rate of ILI in the population to the näıve
estimate for the winter of 2013, and the difference between the two distributions over time. Lines represent the
median of the distribution and shaded regions are 95% credible intervals of the posterior distributions.
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Figure S.6: Comparison of model posterior estimate of the prevalence rate of ILI in the population to the näıve
estimate for the winter of 2012, and the difference between the two distributions over time. Lines represent the
median of the distribution and shaded regions are 95% credible intervals of the posterior distributions.
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Figure S.7: Comparison of model posterior estimate of the prevalence rate of ILI in the population to the näıve
estimate for the winter of 2011, and the difference between the two distributions over time. Lines represent the
median of the distribution and shaded regions are 95% credible intervals of the posterior distributions.
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Figure S.8: The marginal posterior densities of the log odds ratio of the first half of non-chronological regression
coefficients for predicting the probability of an individual reporting for all years.
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Figure S.9: The marginal posterior densities of the log odds ratio of the second half of non-chronological regression
coefficients for predicting the probability of an individual reporting for all years.
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Figure S.10: The marginal posterior densities of the log odds ratio of the largest regression coefficients for predicting
the probability of an individual reporting for all years. Presented here are coefficients for if a member of the household
has ILI and the proportion of reports submitted on-time
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Figure S.11: The bivariate kernel density of samples from the posterior for some parameters inferred from the 2017
data. Bivariate plots show little correlation between parameters, with some correlation in the chronological regression
coefficients (Week 21 and Week 22).
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Figure S.12: The marginal posterior densities of the log odds ratio of chronological regression coefficients for predicting
the probability of an individual reporting in a given week for years 2011 to 2016.
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Figure S.13: Cross validation of model predictions with actual outcomes of test set for the 2017 season. Lines
represent the median and shaded regions the 95% credible intervals. The model is able to generate the data observed
in the test set with high probability.
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Figure S.14: Cross validation of model predictions with actual outcomes of test set for the 2016 season. Lines
represent the median and shaded regions the 95% credible intervals. The model is able to generate the data observed
in the test set with high probability.
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Figure S.15: Cross validation of model predictions with actual outcomes of test set for the 2015 season. Lines
represent the median and shaded regions the 95% credible intervals. The model is able to generate the data observed
in the test set with high probability.
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Figure S.16: Cross validation of model predictions with actual outcomes of test set for the 2014 season. Lines
represent the median and shaded regions the 95% credible intervals. The model is able to generate the data observed
in the test set with high probability.
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Figure S.17: Cross validation of model predictions with actual outcomes of test set for the 2013 season. Lines
represent the median and shaded regions the 95% credible intervals. The model is able to generate the data observed
in the test set with high probability.
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Figure S.18: Cross validation of model predictions with actual outcomes of test set for the 2012 season. Lines
represent the median and shaded regions the 95% credible intervals. The model is able to generate the data observed
in the test set with high probability.
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Figure S.19: Cross validation of model predictions with actual outcomes of test set for the 2011 season. Lines
represent the median and shaded regions the 95% credible intervals. The model is able to generate the data observed
in the test set with high probability.
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