An estimate of total active cases of COVID-19 based on number of announced deaths in a given region

March 23, 2020

Sony Fermino dos Santos Independent Researcher sony.fermino@gmail.com

Abstract

Considering the exponential nature of the spread of COVID-19, the Infected Fatality Rate, and the mean time to death, it is possible to estimate a more realist number of total active cases – in contrast to the reported confirmed cases – based on the number of deaths announced on a given day in a region. In an example we have the number of active cases estimated in 1600 times the number of new deaths in that day. This can be useful to provide better resource allocations.

Definitions

D	Mean number of days since infection to death
t_0	Initial date of infection of a group of n_0 people
t_D	Date after <i>D</i> days have passed after t_0 ($t_D = t_0 + D$)
I_{FR}	Infected Fatality Rate, percentage of infected people who die
m	Total number of new deaths announced on day t_D
T	Time to double the number of cases, in days
n_0	Total number of infected people on day t_0
n_D	Total number of infected people on day t_D

Development

Since m is the number n_0 of infected people who die after D days, we have:

$$m = n_0 \frac{I_{FR}}{100} \tag{1}$$

or

$$n_0 = \frac{100 \, m}{I_{ER}} \tag{2}$$

Let p be the number of doubling periods T in D days, that is:

$$p = \frac{D}{T} \tag{3}$$

So, after D days, the total number of active cases is multiplied by 2^p , that is:

$$n_D = n_0 2^p \tag{4}$$

Therefore, the total number of active cases in day t_D is:

$$n_D = \frac{100 \, m}{I_{FR}} 2^{D/T} \tag{5}$$

Example

For this example we will take some common parameters, but they vary widely according to region¹:

$$D = 20 \text{ days} \tag{6}$$

$$I_{FR} = 1\% \tag{7}$$

$$T = 5 \text{ days}$$
 (8)

which lead us to

$$n_D = 100 \, m \, 2^{20/5} = 1600 \, m \tag{9}$$

Conclusion

This approximation shows that the real number of total active cases can be much higher than the reported confirmed cases in a day, based on the number of new deaths of that day. This can be useful to provide better demand previsions to allocate healthcare resources according to region.

Reference

1. Max Roser, Hannah Ritchie and Esteban Ortiz-Ospina (2020). Coronavirus Disease (COVID-19) – Statistics and Research. https://ourworldindata.org/coronavirus.